• This record comes from PubMed

Study of the Structure and Antimicrobial Activity of Ca-Deficient Ceramics on Chlorhexidine Nanoclay Substrate

. 2019 Sep 16 ; 12 (18) : . [epub] 20190916

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
LQ1602 The Ministry of Education, Youth and Sports of the Czech republic from the National Programme of Sustainability (NPU II) project "IT4Innovations excellence in science - LQ1602"
SP2018/166 Ministry of Education, Youth and Sport of the Czech Republic
SP2018/112 Ministry of Education, Youth and Sport of the Czech Republic
LO1203 Ministry of Education, Youth and Sport of the Czech Republic Project No. LO1203 "Regional Materials Science and Technology Centre - Feasibility Program"

Novel biomedical composites, based on organically modified vermiculite and montmorillonite with deposited Ca-deficient hydroxyapatite (CDH), were prepared. The monoionic sodium forms of vermiculite and montmorillonite were intercalated with chlorhexidine diacetate (CA). The surfaces of organoclays were used for the precipitation of Ca-deficient hydroxyapatite. The composites with Ca-deficient hydroxyapatite showed very good antibacterial effects, similar to the antimicrobial activity of pure organoclay samples. Better antibacterial activity was shown in the organically modified montmorillonite sample with Ca-deficient hydroxyapatite compared with the vermiculite composite, but, in the case of Staphylococcus aureus, both composites showed the same minimum inhibitory concentration (MIC) value. The antimicrobial effect of composites against bacteria and fungi increased with the time of exposure. The structural characterization of all the prepared materials, performed using X-ray diffraction and FT infrared spectroscopy analysis, detected no changes in the original clay or CDH during the intercalation or precipitation process, therefore we expect the strength of the compounds to be in the original power.

See more in PubMed

Li L., Pan H., Tao J., Xu X., Mao C., Gu X., Tang R. Repair of enamel by using hydroxyapatite nanoparticles as the building block. J. Mater. Chem. 2008;18:4079–4084. doi: 10.1039/b806090h. DOI

Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clin. Orthop. Rel. Res. 1981;157:259–278. doi: 10.1097/00003086-198106000-00037. PubMed DOI

Dorozhkin S.V. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498. doi: 10.3390/ma2020399. DOI

Šupová M. Isolation and preparation of nanoscale bioapatites from natural sources: A review. J. Nanosci. Nanotechnol. 2014;14:546–563. doi: 10.1166/jnn.2014.8895. PubMed DOI

Carretero M.I., Pozo M. Clay and non–clay minerals in the pharmaceutical industry Part I. Excipients and medical applications. Appl. Clay. Sci. 2009;46:73–80. doi: 10.1016/j.clay.2009.07.017. DOI

Ambre A., Katti K.S., Katti D.R. In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater. Sci. Eng. C. 2011;31:1017–1029. doi: 10.1016/j.msec.2011.03.001. PubMed DOI

Kneiflová J. Evaluation of the bactericidal effectiveness of disinfection agents using a suspension micromethod. Ceskoslovenska Epidemiol. Mikrobiol. Imunol. 1988;37:97–104. (In Czech) PubMed

Marcos C., Argüelles A., Ruíz–Conde A., Sánchez–Soto P.J., Blanco J.A. Study of the dehydration process of vermiculites by applying a vacuum pressure: Formation of interstratified phases. Mineral. Mag. 2003;67:1253–1268. doi: 10.1180/0026461036760163. DOI

Marcos C., Arango Y.C., Rodriguez I. X–ray diffraction studies of the thermal behaviour of commercial vermiculites. Appl. Clay Sci. 2009;42:368–378. doi: 10.1016/j.clay.2008.03.004. DOI

Valášková M., Kupková J., Simha Martynková G., Seidlerová J., Tomášek V., Ritz M., Kočí K., Klemm V., Rafaja D. Comparable study of vermiculites from four commercial deposits prepared with fixed ceria nanocomposites. Appl. Clay. Sci. 2018;151:164–174. doi: 10.1016/j.clay.2017.10.006. DOI

Samlíková M., Holešová S., Hundáková M., Pazdziora E., Jankovič Ľ., Valášková M. Preparation of antibacterial chlorhexidine/vermiculite and release study. Int. J. Miner. Process. 2017;159:1–6. doi: 10.1016/j.minpro.2016.12.002. DOI

Simha Martynková G., Valášková M., Čapková P., Matějka V. Structural ordering of organovermiculite: Experiments and modelling. J. Colloid. Interface. Sci. 2007;313:281–287. doi: 10.1016/j.jcis.2007.04.007. PubMed DOI

Alves J.L., Rosa P.D.T.V.E., Morales A.R. Evaluation of organic modification of montmorillonite with ionic and nonionic surfactants. App. Clay. Sci. 2017;150:23–33. doi: 10.1016/j.clay.2017.09.001. DOI

Scherrer P. Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgensrahlen [Determination of the size and internal structure of colloidal particles using X–rays], Nachr Ges Wiss Goettingen. Math. Phys. Kl. 1918:98–100.

Farmer V.C. In: The infrared Spectra of Minerals. Farmer V.C., editor. The Mineralogical Society; London, UK: 1974.

Madejová J., Komadel P. Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 2001;49:410–432.

Moenke H.H.W. Silica, the three–dimensional silicates, borosilicates and beryllium silicates. In: Farmer V.C., editor. Infrared Spectra of Minerals. Mineralogical Society; London, UK: 1974. pp. 365–382.

Silverstein R.M., Basser G.C., Morrill T.C. Spectrometric Identification of Organic Compounds. 2nd ed. John Wiley & Sons Inc.; New York, NY, USA: 1991.

Socrates G. Infrared and Raman Characteristic Group Frequencies, Tables and Charts. 3rd ed. John Wiley & Sons Inc.; Chichester, UK: 2001.

Holešová S., Valášková M., Hlaváč D., Madejová J., Samlíková M., Tokarský J., Pazdziora E. Antibacterial kaolinite/urea/chlorhexidine nanocomposites: Experiment and molecular modelling. Appl. Surf. Sci. 2014;305:783–791. doi: 10.1016/j.apsusc.2014.04.008. DOI

Panda R.N., Hsieh M.F., Chung R.J., Chin T.S. FTIR, XRD, SEM and solid state NMR investigations of carbonate–containing hydroxyapatite nanoparticles synthesized by hydroxide–gel technique. J. Phys. Chem. Solids. 2003;64:193–199. doi: 10.1016/S0022-3697(02)00257-3. DOI

Mistra D.N. Interaction of chlorhexidine digluconate with and adsorption of chlorhexidine on hydroxyapatite. J. Biomed. Mater Res. 1994;28:1375–1381. doi: 10.1002/jbm.820281116. PubMed DOI

Gen–Tao Z., Qi–Zhi Y., Jie N., Gu J. Formation of aragonite mesocrystals and implication for biomineralization. Am. Mineral. 2009;94:293–302.

Pazourková L., Hundáková M., Peikertová P., Simha Martynková G. Preparation of calcium–deficient hydroxyapatite particles on vermiculite by precipitation and sonication. J. Aust. Ceram Soc. 2017;53:775–785. doi: 10.1007/s41779-017-0091-1. DOI

Narayan R. Advances in Bioceramics and Porous Ceramics VIII: Ceramic Engineering and Science Proceedings. John Wiley & Sons; Hoboken, NJ, USA: 2015.

Holešová S., Samlíková M., Pazdziora E., Valášková M. Antibacterial activity of organomontmorillonites and organovermiculites prepared using chlorhexidine diacetátem. Appl. Clay Sci. 2013;83:17–23.

Tarte P. Infra–red spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A Mol. Spectrosc. 1967;23:2127–2143. doi: 10.1016/0584-8539(67)80100-4. DOI

Yahiaoui A., Belbachir M., Hachemaoui A. An acid exchanged montmorillonite clay–catalyzed synthesis of polyepichlorhydrin. Int. J. Mol. Sci. 2003;4:548–561. doi: 10.3390/i4100548. DOI

Masindi V., Gitari M., Tutu H., Debeer M. Synthesis of cryptocrystalline magnesite–bentonite clay composite and its application for neutralization and attenuation of inorganic contaminants in acidic and metalliferous mine drainage. J. Water Proc. Eng. 2017;15:2–17. doi: 10.1016/j.jwpe.2015.11.007. DOI

Radev L., Hristov V., Michailova I., Fernandes H., Salvado M. In vitro bioactivity of biphasic calcium phosphate silicate glass–ceramic in CaO–SiO2–P2O5 system. Proces. Appl. Cer. 2010;4:15–24. doi: 10.2298/PAC1001015R. DOI

Musić S., Filipović–Vinceković N., Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 2011;28:89–94. doi: 10.1590/S0104-66322011000100011. DOI

Ciobanu C., Iconaru S., Pasuk I., Vasile B., Lupu A., Hermenean A., Dinischiotu A., Predoi D. Structural properties of silver doped hydroxyapatite and their biocompatibility. Mater. Sci. Eng. C. 2013;33:1395–1402. doi: 10.1016/j.msec.2012.12.042. PubMed DOI

Bai X., More K., Rouleau C., Rabiel A. Functionally graded hydroxyapatite coatings doped with antibacterial components. Acta Biomater. 2010;6:2264–2273. doi: 10.1016/j.actbio.2009.12.002. PubMed DOI

Katti K., Katti D. Effect of clay–water interactions on swelling in montmorillonite clay. [(accessed on 5 September 2018)];2018 Available online: https://www.researchgate.net/publication/242072574_Effect_Of_Clay–Water_Interactions_On_Swelling_In_Montmorillonite_Clay.

Daud N., Bahri I., Malek N., Hermawan H., Saidin S. Immobilization of antibacterial chlorhexidine on stainless steel using crosslinking polydopamine film: Towards infection resistant medical devices. Colloids Surf B. 2016;145:130–139. doi: 10.1016/j.colsurfb.2016.04.046. PubMed DOI

Šontevska V., Jovanovski G., Makreski P., Raškovska A., Šoptrajanova B. Minerals from Macedonia. XXI. Vibrational Spectroscopy as Identificational Tool for Some Phyllosilicate Minerals. Acta Chim. Slov. 2008;55:757–766.

Lerot L., Low P. Effect of swelling on the infrared absorption spectrum of montmorillonite. Clays Clay Miner. 1976;14:191–199. doi: 10.1346/CCMN.1976.0240407. DOI

Li X., Su H., Ren G., Wang S. The role of MgO in the performance of Pd/SiO2/cordierite monolith catalyst for the hydrogenation of 2–ethyl–anthraquinone. Appl. Catal. A. 2016;517:168–175. doi: 10.1016/j.apcata.2016.01.011. DOI

Che C., Glotch T., Bish D., Michalski J., Xu W. Spectroscopic study of the dehydration and/or dehydroxylation of phyllosilicate and zeolite minerals. J. Geophys Res. Plan. 2011;116 doi: 10.1029/2010JE003740. DOI

Senthil Kumar R., Rajkumar P. Characterization of minerals in air dust particles in the state of Tamilnadu, India through ftir spectroscopy. Atmos. Chem. Phys. Discuss. 2013;13:22221–22248. doi: 10.5194/acpd-13-22221-2013. DOI

Ovadyahu D., Yariv S., Lapides I. Mechanochemical Adsorption of Phenol by Tot Swelling Clay Minerals. J. Therm. Anal. Calorim. 1998;51:415–430. doi: 10.1007/BF03340182. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...