• This record comes from PubMed

Genetic diversity of Trichoderma atroviride strains collected in Poland and identification of loci useful in detection of within-species diversity

. 2015 Jul ; 60 (4) : 297-307. [epub] 20150320

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Molecular markers that enable monitoring of fungi in their natural environment or assist in the identification of specific strains would facilitate Trichoderma utilization, particularly as an agricultural biocontrol agent (BCA). In this study, sequence analysis of internal transcribed spacer regions 1 and 2 (ITS1 and ITS2) of the ribosomal RNA (rRNA) gene cluster, a fragment of the translation elongation factor 1-alpha (tef1) gene, and random amplified polymorphic DNA (RAPD) markers were applied to determine the genetic diversity of Trichoderma atroviride strains collected in Poland, and also in order to identify loci and PCR-based molecular markers useful in genetic variation assessment of that fungus. Although tef1 and RAPD analysis showed limited genetic diversity among T. atroviride strains collected in Poland, it was possible to distinguish major groups that clustered most of the analyzed strains. Polymorphic RAPD amplicons were cloned and sequenced, yielding sequences representing 13 T. atroviride loci. Based on these sequences, a set of PCR-based markers specific to T. atroviride was developed and examined. Three cleaved amplified polymorphic sequence (CAPS) markers could assist in distinguishing T. atroviride strains. The genomic regions identified may be useful for further exploration and development of more precise markers suitable for T. atroviride identification and monitoring, especially in environmental samples.

See more in PubMed

Abbasi PA, Miller SA, Meulia T, Hoitink HAJ, Kim J-M. Precise detection and tracing of Trichoderma hamatum 382 in compost-amended potting mixes by using molecular markers. Appl Environ Microbiol. 1999;65:5421–5426. PubMed PMC

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Atanasova L, Druzhinina IS. Global nutrient profiling by Phenotype MicroArrays: a tool complementing genomic and proteomic studies in conidial fungi. J Zhejiang Univ Sci B (Biomed and Biotechnol) 2010;11:151–168. doi: 10.1631/jzus.B1000007. PubMed DOI PMC

Atanasova L, Druzhinina IS, Jaklitsch WM. Two hundred Trichoderma species recognized on the basis of molecular phylogeny. In: Mukherjee PK, Horwitz BA, Singh US, Mukherjee M, Schmoll M, editors. Trichoderma: biology and applications. Wallingford: CABI; 2013. pp. 10–42.

Benítez T, Rincón AM, Limón MC, Codón AC. Biocontrol mechanisms of Trichoderma strains. Int Microbiol. 2004;7:249–260. PubMed

Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M. Species diversity of Trichoderma in Poland. J Appl Genet. 2011;52:233–243. doi: 10.1007/s13353-011-0039-z. PubMed DOI PMC

Bowen K, Franicevic SC, Crowhurst RN, Templeton MD, Stewart A. Differentiation of a specific Trichoderma biological control agent by restriction fragment length polymorphism (RFLP) analysis. N Z J Crop Hortic. 1996;24:207–217. doi: 10.1080/01140671.1996.9513955. DOI

Buhariwalla HK, Srilakshmi P, Kannan S, Kanchi RS, Chandra S, Satyaprasad K, Waliyar F, Thakur RP, Crouch JH. AFLP analysis of Trichoderma spp. from India compared with sequence and morphological–based diagnostics. J Phytopathol. 2005;153:389–400. doi: 10.1111/j.1439-0434.2005.00989.x. DOI

Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous Ascomycetes. Mycologia. 1999;91:553–556. doi: 10.2307/3761358. DOI

Chakraborty BN, Chakraborty U, Sunar K, Dey PL. RAPD profile and rDNA sequence analysis of Talaromyces flavus and Trichoderma species. Indian J Biotechnol. 2011;10:487–495.

Chen X, Romaine CP, Tan Q, Schlagnhaufer B, Ospina-Giraldo MD, Royse DJ, Huff DR. PCR-based genotyping of epidemic and preepidemic Trichoderma isolates associated with green mold of Agaricus bisporus. Appl Environ Microbiol. 1999;65:2674–2678. PubMed PMC

Chet I, Inbar J. Biological control of fungal pathogens. Appl Biochem Biotechnol. 1994;48:37–43. doi: 10.1007/BF02825358. PubMed DOI

Cooke DEL, Duncan JM. Phylogenetic analysis of Phytophthora species based on ITS1 and ITS2 sequences of the ribosomal RNA gene repeat. Mycol Res. 1997;101:667–677. doi: 10.1017/S0953756296003218. DOI

Cordier C, Edel-Hermann V, Martin-Laurent F, Blal B, Steinberg C, Alabouvette C. SCAR-based real time PCR to identify a biocontrol strain (T1) of Trichoderma atroviride and study its population dynamics in soils. J Microbiol Methods. 2007;68:60–68. doi: 10.1016/j.mimet.2006.06.006. PubMed DOI

D’Andrea LD, Regan L. TPR proteins: the versatile helix. Trends Biochem Sci. 2003;28:655–662. doi: 10.1016/j.tibs.2003.10.007. PubMed DOI

Devi TP, Kamil D, Prabhakaran N. Development of genus specific rDNA based marker for detection of Trichoderma species. J Mycol Plant Pathol. 2011;41:600–604.

Dodd SL, Lieckfeldt E, Samuels GJ (2003) Hypocrea atroviridis sp. nov., the teleomorph of Trichoderma atroviride. Mycologia 95:27–40 PubMed

Dodd SL, Hill RA, Stewart A. Monitoring the survival and spread of the biocontrol fungus Trichoderma atroviride (C65) on kiwifruit using a molecular marker. Australas Plant Pathol. 2004;33:189–196. doi: 10.1071/AP03070. DOI

Dodd SL, Hill RA, Stewart A. A duplex-PCR bioassay to detect a Trichoderma virens biocontrol isolate in non-sterile soil. Soil Biol Biochem. 2004;36:1955–1965. doi: 10.1016/j.soilbio.2004.03.012. DOI

Druzhinina I, Kubicek CP. Species concepts and biodiversity in Trichoderma and Hypocrea: from aggregate species to species clusters? J Zhejiang Univ Sci B. 2005;6:100–112. doi: 10.1631/jzus.2005.B0100. PubMed DOI PMC

Druzhinina IS, Kopchinskiy AG, Komoń M, Bissett J, Szakacs G, Kubicek CP. An oligonucleotide barcode for species identification in Trichoderma and Hypocrea. Fungal Genet Biol. 2005;42:813–828. doi: 10.1016/j.fgb.2005.06.007. PubMed DOI

Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol. 2011;9:749–759. doi: 10.1038/nrmicro2637. PubMed DOI

Feng XM, Holmberg A-IJ, Sundh I, Ricard T, Melin P. Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. BioControl. 2011;56:903–913. doi: 10.1007/s10526-011-9365-7. DOI

Friedl MA, Druzhinina IS. Taxon-specific metagenomics of Trichoderma reveals a narrow community of opportunistic species that regulate each other's development. Microbiology. 2012;158:69–83. doi: 10.1099/mic.0.052555-0. PubMed DOI PMC

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina IS, Viterbo A, Yarden O. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol. 2011;77:5100–5109. doi: 10.1128/AEM.00541-11. PubMed DOI PMC

Goytain A, Hines RM, El-Husseini A, Quamme GA. NIPA1(SPG6), the basis for autosomal dominant form of hereditary spastic paraplegia, encodes a functional Mg2+ transporter. J Biol Chem. 2007;282:8060–8068. doi: 10.1074/jbc.M610314200. PubMed DOI

Goytain A, Hines RM, Quamme GA. Functional characterization of NIPA2, a selective Mg2+ transporter. Am J Physiol Cell Physiol. 2008;295:C944–C953. doi: 10.1152/ajpcell.00091.2008. PubMed DOI

Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I. The genome portal of the department of energy joint genome institute. Nucleic Acids Res. 2012;40:D26–D32. doi: 10.1093/nar/gkr947. PubMed DOI PMC

Hagn A, Wallisch S, Radl V, Charles Munch J, Schloter M. A new cultivation independent approach to detect and monitor common Trichoderma species in soils. J Microbiol Methods. 2007;69:86–92. doi: 10.1016/j.mimet.2006.12.004. PubMed DOI

Harman GE, Howell CR, Viterbo A, Chet I, Lorito M. Trichoderma species — opportunistic, avirulent plant symbionts. Nat Rev Microbiol. 2004;2:43–56. doi: 10.1038/nrmicro797. PubMed DOI

Hermosa MR, Grondona I, Iturriaga EA, Diaz-Minguez JM, Castro C, Monte E, Garcia-Acha I. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl Environ Microbiol. 2000;66:1890–1898. doi: 10.1128/AEM.66.5.1890-1898.2000. PubMed DOI PMC

Hermosa MR, Grondona I, Díaz-Mínguez JM, Iturriaga EA, Monte E. Development of a strain-specific SCAR marker for the detection of Trichoderma atroviride 11, a biological control agent against soilborne fungal plant pathogens. Curr Genet. 2001;38:343–350. doi: 10.1007/s002940000173. PubMed DOI

Hoyos-Carvajal L, Orduz S, Bissett J. Genetic and metabolic biodiversity of Trichoderma from Colombia and adjacent neotropic regions. Fungal Genet Biol. 2009;46:615–631. doi: 10.1016/j.fgb.2009.04.006. PubMed DOI

Jaklitsch WM, Komon M, Kubicek CP, Druzhinina IS. Hypocrea voglmayrii sp. nov. from the Austrian Alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 2005;97:1365–1378. doi: 10.3852/mycologia.97.6.1365. PubMed DOI

Jaklitsch WM, Samuels GJ, Dodd SL, Lu B-S, Druzhinina IS. Hypocrea rufa/Trichoderma viride: a reassessment, and description of five closely related species with and without warted conidia. Stud Mycol. 2006;56:135–177. doi: 10.3114/sim.2006.56.04. PubMed DOI PMC

Kindermann J, El-Ayouti Y, Samuels GJ, Kubicek CP. Phylogeny of the genus Trichoderma based on sequence analysis of the internal transcribed spacer region 1 of the rDNA cluster. Fungal Genet Biol. 1998;24:298–309. doi: 10.1006/fgbi.1998.1049. PubMed DOI

Kopchinskiy A, Komoń M, Kubicek CP, Druzhinina IS. TrichoBLAST: a multilocus database for Trichoderma and Hypocrea identifications. Mycol Res. 2005;109:658–660. doi: 10.1017/S0953756205233397. PubMed DOI

Kredics L, Kocsubé S, Nagy L, Komoń-Żelazowska M, Manczinger L, Sajben E, Nagy A, Vágvölgyi C, Kubicek CP, Druzhinina IS, Hatvani L. Molecular identification of Trichoderma species associated with Pleurotus ostreatus and natural substrates of the oyster mushroom. FEMS Microbiol Lett. 2009;300:58–67. doi: 10.1111/j.1574-6968.2009.01765.x. PubMed DOI

Kredics L, Hatvani L, Naeimi S, Körmöczi P, Manczinger L, Vágvölgyi C, Druzhinina I. Biodiversity of the genus Hypocrea/Trichoderma in different habitats. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and biology of Trichoderma. London: Elsevier; 2014. pp. 3–24.

Kubicek CP, Bissett J, Druzhinina IS, Kullnig-Gradinger C, Szakacs G. Genetic and metabolic diversity of Trichoderma: a case study on South-East Asian isolates. Fungal Genet Biol. 2003;38:310–319. doi: 10.1016/S1087-1845(02)00583-2. PubMed DOI

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011;12:R40. doi: 10.1186/gb-2011-12-4-r40. PubMed DOI PMC

Kullnig CM, Krupica T, Woo SL, Mach RL, Rey M, Benítez T, Lorito M, Kubicek CP. Confusion abounds over identities of Trichoderma biocontrol isolates. Mycol Res. 2001;105:769–772. doi: 10.1017/S0953756201229967. DOI

Longa CMO, Savazzini F, Tosi S, Elad Y, Pertot I. Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol. 2009;106:1549–1557. doi: 10.1111/j.1365-2672.2008.04117.x. PubMed DOI

Lorito M, Woo SL, Harman GE, Monte E. Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol. 2010;48:1–23. doi: 10.1146/annurev-phyto-073009-114414. PubMed DOI

Miyazaki K, Tsuchiya Y, Okuda T. Specific PCR assays for the detection of Trichoderma harzianum causing green mold disease during mushroom cultivation. Mycoscience. 2009;50:94–99. doi: 10.1007/S10267-008-0460-2. DOI

Mulaw TB, Kubicek CP, Druzhinina IS. The rhizosphere of Coffea arabica in its native highland forests of Ethiopia provides a niche for a distinguished diversity of Trichoderma. Diversity. 2010;2:527–549. doi: 10.3390/d2040527. DOI

Naef A, Senatore M, Défago G. A microsatellite based method for quantification of fungi in decomposing plant material elucidates the role of Fusarium graminearum DON production in the saprophytic competition with Trichoderma atroviride in maize tissue microcosms. FEMS Microbiol Ecol. 2006;55:211–220. doi: 10.1111/j.1574-6941.2005.00023.x. PubMed DOI

Naeimi S, Kocsubé S, Antal Z, Okhovvat SM, Javan-Nikkhah M, Vágvölgyi C, Kredics L. Strain-specific SCAR markers for the detection of Trichoderma harzianum AS12-2, a biological control agent against Rhizoctonia solani, the causal agent of rice sheath blight. Acta Biol Hung. 2011;62:73–84. doi: 10.1556/ABiol.61.2011.1.8. PubMed DOI

Olczak-Woltman H, Bartoszewski G, Madry W, Niemirowicz-Szczytt K. Inheritance of resistance to angular leaf spot (Pseudomonas syringae pv. lachrymans) in cucumber and identification of molecular markers linked to resistance. Plant Pathol. 2009;58:145–151. doi: 10.1111/j.1365-3059.2008.01911.x. DOI

Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD. The Pfam protein families database. Nucleic Acids Res. 2012;40:D290–D301. doi: 10.1093/nar/gkr1065. PubMed DOI PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012;61:539–542. doi: 10.1093/sysbio/sys029. PubMed DOI PMC

Rubio MB, Hermosa MR, Keck E, Monte E. Specific PCR assays for the detection and quantification of DNA from the biocontrol strain Trichoderma harzianum 2413 in soil. Microb Ecol. 2005;49:25–33. doi: 10.1007/s00248-003-0171-3. PubMed DOI

Rubtsov AM, Lopina OD. Ankyrins. FEBS Lett. 2000;482:1–5. doi: 10.1016/S0014-5793(00)01924-4. PubMed DOI

Samuels GJ, Dodd SL, Lu BS, Petrini O, Schroers HJ, Druzhinina IS. The Trichoderma koningii aggregate species. Stud Mycol. 2006;56:67–133. doi: 10.3114/sim.2006.56.03. PubMed DOI PMC

Savazzini F, Longa CMO, Pertot I, Gessler C. Real-time PCR for detection and quantification of the biocontrol agent Trichoderma atroviride strain SC1 in soil. J Microbiol Methods. 2008;73:185–194. doi: 10.1016/j.mimet.2008.02.004. PubMed DOI

Schuster A, Schmoll M. Biology and biotechnology of Trichoderma. Appl Microbiol Biotechnol. 2010;87:787–799. doi: 10.1007/s00253-010-2632-1. PubMed DOI PMC

Stewart A, Hill R. Applications of Trichoderma in plant growth promotion. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and biology of Trichoderma. London: Elsevier; 2014. pp. 415–428.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–4882. doi: 10.1093/nar/25.24.4876. PubMed DOI PMC

Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238–4246. PubMed PMC

White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press; 1990. pp. 315–322.

Woo SL, Scala F, Ruocco M, Lorito M. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology. 2006;96:181–185. doi: 10.1094/PHYTO-96-0181. PubMed DOI

Zimand G, Valinsky L, Elad Y, Chet I, Manulis S. Use of the RAPD procedure for the identification of Trichoderma strains. Mycol Res. 1994;98:531–534. doi: 10.1016/S0953-7562(09)80474-7. DOI

Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. doi: 10.1093/nar/gkg595. PubMed DOI PMC

See more in PubMed

GENBANK
KJ786718, KJ786719, KJ786720, KJ786721, KJ786722, KJ786723, KJ786724, KJ786725, KJ786726, KJ786727, KJ786728, KJ786729, KJ786730, KJ786731, KJ786732, KJ786733, KJ786734, KJ786735, KJ786736, KJ786737, KJ786738, KJ786739, KJ786740, KJ786741, KJ786742, KJ786743, KJ786744, KJ786745, KJ786746, KJ786747, KJ786748, KJ786749, KJ786750, KJ786751, KJ786752, KJ786753, KJ786754, KJ786755, KJ786756, KJ786757, KJ786799, KJ786800, KJ786801, KJ786802, KJ786803, KJ786804, KJ786805, KJ786806, KJ786807, KJ786808, KJ786809, KJ786810, KJ786811, KJ786812, KJ786813, KJ786814, KJ786815, KJ786816, KJ786817, KJ786818, KJ786819, KJ786820, KJ786821, KJ786822, KJ786823, KJ786824, KJ786825, KJ786826, KJ786827, KJ786828, KJ786829, KJ786830, KJ786831, KJ786832, KJ786833, KJ786834, KJ786835, KJ786836, KJ786837, KJ786838, KJ786839

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...