Vasopressin and oxytocin in sensory neurones: expression, exocytotic release and regulation by lactation

. 2018 Aug 30 ; 8 (1) : 13084. [epub] 20180830

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30166555
Odkazy

PubMed 30166555
PubMed Central PMC6117293
DOI 10.1038/s41598-018-31361-1
PII: 10.1038/s41598-018-31361-1
Knihovny.cz E-zdroje

The neurohormones arginine-vasopressin (AVP) and oxytocin (OT) synthesised in supraoptic and paraventricular nuclei of neurohypophysis regulate lactation, systemic water homeostasis and nociception. Using transgenic rats expressing AVP and OT tagged with fluorescent proteins we demonstrate that both neurohormones are expressed in sensory neurones both in vitro, in primary cultures, and in situ, in the intact ganglia; this expression was further confirmed with immunocytochemistry. Both neurohormones were expressed in nociceptive neurones immunopositive to transient receptor potential vannilloid 1 (TRPV1) channel antibodies. The AVP and OT-expressing DRG neurones responded to AVP, OT, 50 mM K+ and capsaicin with [Ca2+]i transients; responses to AVP and OT were specifically blocked by the antagonists of V1 AVP and OT receptors. Probing the extracellular incubation saline with ELISA revealed AVP and OT secretion from isolated DRGs; this secretion was inhibited by tetanus toxin (TeNT) indicating the role for vesicular release. Expression of OT, but not AVP in DRG neurones significantly increased during lactation. Together, the results indicate novel physiological roles (possibly related to nociception and mood regulation) of AVP and OT in the sensory neurones.

Zobrazit více v PubMed

Cazalis M, Dayanithi G, Nordmann JJ. The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J Physiol. 1985;369:45–60. doi: 10.1113/jphysiol.1985.sp015887. PubMed DOI PMC

Dayanithi G, Sabatier N, Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp Physiol. 2000;85 Spec No:75S–84S. doi: 10.1111/j.1469-445X.2000.tb00010.x. PubMed DOI

Dayanithi G, Viero C, Shibuya I. The role of calcium in the action and release of vasopressin and oxytocin from CNS neurones/terminals to the heart. J Physiol Pharmacol. 2008;59(Suppl 8):7–26. PubMed

Manning M, et al. Peptide and non-peptide agonists and antagonists for the vasopressin and oxytocin V1a, V1b, V2 and OT receptors: research tools and potential therapeutic agents. Prog Brain Res. 2008;170:473–512. doi: 10.1016/S0079-6123(08)00437-8. PubMed DOI

Viero C, et al. REVIEW: Oxytocin: Crossing the bridge between basic science and pharmacotherapy. CNS Neurosci Ther. 2010;16:e138–156. doi: 10.1111/j.1755-5949.2010.00185.x. PubMed DOI PMC

Kai-Kai MA, Anderton BH, Keen P. A quantitative analysis of the interrelationships between subpopulations of rat sensory neurons containing arginine vasopressin or oxytocin and those containing substance P, fluoride-resistant acid phosphatase or neurofilament protein. Neuroscience. 1986;18:475–486. doi: 10.1016/0306-4522(86)90168-5. PubMed DOI

Kai-Kai MA, Swann RW, Keen P. Localization of chromatographically characterized oxytocin and arginine-vasopressin to sensory neurones in the rat. Neurosci Lett. 1985;55:83–88. doi: 10.1016/0304-3940(85)90316-7. PubMed DOI

Vecsernyes M, Jojart I, Jojart J, Laczi F, Laszlo FA. Presence of chromatographically identified oxytocin in human sensory ganglia. Brain Res. 1987;414:153–154. doi: 10.1016/0006-8993(87)91337-0. PubMed DOI

Boehmer CG, Norman J, Catton M, Fine LG, Mantyh PW. High levels of mRNA coding for substance P, somatostatin and alpha-tubulin are expressed by rat and rabbit dorsal root ganglia neurons. Peptides. 1989;10:1179–1194. doi: 10.1016/0196-9781(89)90011-9. PubMed DOI

Garry MG, Miller KE, Seybold VS. Lumbar dorsal root ganglia of the cat: a quantitative study of peptide immunoreactivity and cell size. J Comp Neurol. 1989;284:36–47. doi: 10.1002/cne.902840104. PubMed DOI

Weihe, E. In The primary afferent neuron: A surgery of recent morpho-functional aspects (eds Zenker, W. & Neuhuber, W.) 127–159 (Plenum, 1989).

Horn AM, Lightman SL. Vasopressin-induced turnover of phosphatidylinositol in the sensory nervous system of the rat. Exp Brain Res. 1987;68:299–304. doi: 10.1007/BF00248795. PubMed DOI

Breton JD, Poisbeau P, Darbon P. Antinociceptive action of oxytocin involves inhibition of potassium channel currents in lamina II neurons of the rat spinal cord. Mol Pain. 2009;5:63. doi: 10.1186/1744-8069-5-63. PubMed DOI PMC

Kang YS, Park JH. Brain uptake and the analgesic effect of oxytocin–its usefulness as an analgesic agent. Arch Pharm Res. 2000;23:391–395. doi: 10.1007/BF02975453. PubMed DOI

Schorscher-Petcu A, Dupre A, Tribollet E. Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset. Neurosci Lett. 2009;461:217–222. doi: 10.1016/j.neulet.2009.06.016. PubMed DOI

Schorscher-Petcu A, et al. Oxytocin-induced analgesia and scratching are mediated by the vasopressin-1A receptor in the mouse. J Neurosci. 2010;30:8274–8284. doi: 10.1523/JNEUROSCI.1594-10.2010. PubMed DOI PMC

Juif PE, et al. Long-lasting spinal oxytocin analgesia is ensured by the stimulation of allopregnanolone synthesis which potentiates GABA(A) receptor-mediated synaptic inhibition. J Neurosci. 2013;33:16617–16626. doi: 10.1523/JNEUROSCI.3084-12.2013. PubMed DOI PMC

Koshimizu TA, Tsujimoto G. New topics in vasopressin receptors and approach to novel drugs: vasopressin and pain perception. J Pharmacol Sci. 2009;109:33–37. doi: 10.1254/jphs.08R18FM. PubMed DOI

Ueta Y, et al. Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology. 2005;146:406–413. doi: 10.1210/en.2004-0830. PubMed DOI

Dayanithi G, Forostyak O, Ueta Y, Verkhratsky A, Toescu EC. Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium. 2012;51:293–299. doi: 10.1016/j.ceca.2012.02.002. PubMed DOI

Ueta Y, Dayanithi G, Fujihara H. Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm Behav. 2011;59:221–226. doi: 10.1016/j.yhbeh.2010.12.007. PubMed DOI

Maruyama T, et al. Diurnal changes of arginine vasopressin-enhanced green fluorescent protein fusion transgene expression in the rat suprachiasmatic nucleus. Peptides. 2010;31:2089–2093. doi: 10.1016/j.peptides.2010.08.010. PubMed DOI

Todoroki M, et al. Induction of the arginine vasopressin-enhanced green fluorescent protein fusion transgene in the rat locus coeruleus. Stress. 2010;13:281–291. doi: 10.3109/10253890903383406. PubMed DOI

Dayanithi G, et al. Neuron-glia interactions in peripheral vasopressin and oxytocin systems unveiled in transgenic rats. Glia. 2011;59:S103–S103.

Dayanithi, G. et al. Transgenic rat models to visualize fluorescent vasopressin and oxytocin in the dorsal root ganglia and glial cells. Neuroscience 2011, Society for Neuroscience - Washington D.C. (2011).

Katoh A, et al. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology. 2011;152:2768–2774. doi: 10.1210/en.2011-0006. PubMed DOI

Katoh A, et al. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary. J Endocrinol. 2010;204:275–285. doi: 10.1677/JOE-09-0289. PubMed DOI PMC

Krames, E. S. The dorsal root ganglion in chronic pain and as a target for neuromodulation: a review. Neuromodulation18, 24–32; discussion 32, 10.1111/ner.12247 (2015). PubMed

Mickle, A. D., Shepherd, A. J. & Mohapatra, D. P. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies. Pharmaceuticals (Basel)9, 10.3390/ph9040072 (2016). PubMed PMC

Dreifuss, J. J., Tribollet, E., Dubois-Dauphin, M. & Raggenbass, M. Receptors and neural effects of oxytocin in the rodent hypothalamus and preoptic region. Ciba Found Symp168, 187–199; discussion 200–188 (1992). PubMed

Schiavo G, et al. Tetanus and botulinum-B neurotoxins block neurotransmitter release by proteolytic cleavage of synaptobrevin. Nature. 1992;359:832–835. doi: 10.1038/359832a0. PubMed DOI

Manzano-Garcia, A., Gonzalez-Hernandez, A., Tello-Garcia, I. A., Martinez-Lorenzana, G. & Condes-Lara, M. The role of peripheral vasopressin 1A and oxytocin receptors on the subcutaneous vasopressin antinociceptive effects. Eur J Pain, 10.1002/ejp.1134 (2017). PubMed

Qiu F, et al. Oxytocin inhibits the activity of acid-sensing ion channels through the vasopressin, V1A receptor in primary sensory neurons. Br J Pharmacol. 2014;171:3065–3076. doi: 10.1111/bph.12635. PubMed DOI PMC

Mogil JS, et al. Pain sensitivity and vasopressin analgesia are mediated by a gene-sex-environment interaction. Nat Neurosci. 2011;14:1569–1573. doi: 10.1038/nn.2941. PubMed DOI PMC

Gong L, et al. Oxytocin-induced membrane hyperpolarization in pain-sensitive dorsal root ganglia neurons mediated by Ca2+/nNOS/NO/KATP pathway. Neuroscience. 2015;289:417–428. doi: 10.1016/j.neuroscience.2014.12.058. PubMed DOI

Kubo A, et al. Oxytocin alleviates orofacial mechanical hypersensitivity associated with infraorbital nerve injury through vasopressin-1A receptors of the rat trigeminal ganglia. Pain. 2017;158:649–659. doi: 10.1097/j.pain.0000000000000808. PubMed DOI

Yang Q, et al. Modulation by oxytocin of ATP-activated currents in rat dorsal root ganglion neurons. Neuropharmacology. 2002;43:910–916. doi: 10.1016/S0028-3908(02)00127-2. PubMed DOI

Moreno-Lopez Y, Martinez-Lorenzana G, Condes-Lara M, Rojas-Piloni G. Identification of oxytocin receptor in the dorsal horn and nociceptive dorsal root ganglion neurons. Neuropeptides. 2013;47:117–123. doi: 10.1016/j.npep.2012.09.008. PubMed DOI

Ayar A, et al. Oxytocin activates calcium signaling in rat sensory neurons through a protein kinase C-dependent mechanism. J Physiol Biochem. 2014;70:43–48. doi: 10.1007/s13105-013-0278-z. PubMed DOI

Hobo S, Hayashida K, Eisenach JC. Oxytocin inhibits the membrane depolarization-induced increase in intracellular calcium in capsaicin sensitive sensory neurons: a peripheral mechanism of analgesic action. Anesth Analg. 2012;114:442–449. doi: 10.1213/ANE.0b013e31823b1bc8. PubMed DOI PMC

Tse A, Lee AK. Arginine vasopressin triggers intracellular calcium release, a calcium-activated potassium current and exocytosis in identified rat corticotropes. Endocrinology. 1998;139:2246–2252. doi: 10.1210/endo.139.5.5999. PubMed DOI

Han RT, et al. Oxytocin produces thermal analgesia via vasopressin-1a receptor by modulating TRPV1 and potassium conductance in the dorsal root ganglion neurons. Korean J Physiol Pharmacol. 2018;22:173–182. doi: 10.4196/kjpp.2018.22.2.173. PubMed DOI PMC

Kortus S, et al. Physiology of spontaneous [Ca2+]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus. Cell Calcium. 2016;59:280–288. doi: 10.1016/j.ceca.2016.04.001. PubMed DOI PMC

Kortus S, et al. Sodium-calcium exchanger and R-type Ca2+ channels mediate spontaneous [Ca2+]i oscillations in magnocellular neurones of the rat supraoptic nucleus. Cell Calcium. 2016;59:289–298. doi: 10.1016/j.ceca.2016.03.010. PubMed DOI

Moriya T, et al. Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurones in the rat supraoptic nucleus. Cell Calcium. 2015;57:25–37. doi: 10.1016/j.ceca.2014.11.003. PubMed DOI

Vogelaar CF, et al. Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones. Mol Cell Neurosci. 2009;42:102–115. doi: 10.1016/j.mcn.2009.06.002. PubMed DOI PMC

Forostyak O, et al. Specific profiles of ion channels and ionotropic receptors define adipose- and bone marrow derived stromal cells. Stem Cell Res. 2016;16:622–634. doi: 10.1016/j.scr.2016.03.010. PubMed DOI

Jamen F, et al. Impaired somatodendritic responses to pituitary adenylate cyclase-activating polypeptide (PACAP) of supraoptic neurones in PACAP type I -receptor deficient mice. J Neuroendocrinol. 2003;15:871–881. doi: 10.1046/j.1365-2826.2003.01075.x. PubMed DOI

Lambert RC, Dayanithi G, Moos FC, Richard P. A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J Physiol. 1994;478(Pt 2):275–287. doi: 10.1113/jphysiol.1994.sp020249. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace