Physiology of spontaneous [Ca(2+)]i oscillations in the isolated vasopressin and oxytocin neurones of the rat supraoptic nucleus

. 2016 Jun ; 59 (6) : 280-8. [epub] 20160406

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27072326
Odkazy

PubMed 27072326
PubMed Central PMC4969632
DOI 10.1016/j.ceca.2016.04.001
PII: S0143-4160(16)30038-0
Knihovny.cz E-zdroje

The magnocellular vasopressin (AVP) and oxytocin (OT) neurones exhibit specific electrophysiological behaviour, synthesise AVP and OT peptides and secrete them into the neurohypophysial system in response to various physiological stimulations. The activity of these neurones is regulated by the very same peptides released either somato-dendritically or when applied to supraoptic nucleus (SON) preparations in vitro. The AVP and OT, secreted somato-dendritically (i.e. in the SON proper) act through specific autoreceptors, induce distinct Ca(2+) signals and regulate cellular events. Here, we demonstrate that about 70% of freshly isolated individual SON neurones from the adult non-transgenic or transgenic rats bearing AVP (AVP-eGFP) or OT (OT-mRFP1) markers, produce distinct spontaneous [Ca(2+)]i oscillations. In the neurones identified (through specific fluorescence), about 80% of AVP neurones and about 60% of OT neurones exhibited these oscillations. Exposure to AVP triggered [Ca(2+)]i oscillations in silent AVP neurones, or modified the oscillatory pattern in spontaneously active cells. Hyper- and hypo-osmotic stimuli (325 or 275 mOsmol/l) respectively intensified or inhibited spontaneous [Ca(2+)]i dynamics. In rats dehydrated for 3 or 5days almost 90% of neurones displayed spontaneous [Ca(2+)]i oscillations. More than 80% of OT-mRFP1 neurones from 3 to 6-day-lactating rats were oscillatory vs. about 44% (OT-mRFP1 neurones) in virgins. Together, these results unveil for the first time that both AVP and OT neurones maintain, via Ca(2+) signals, their remarkable intrinsic in vivo physiological properties in an isolated condition.

Department of Molecular Neurophysiology Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic

Department of Molecular Neurophysiology Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic; Department of Neuroscience Charles University 2nd Medical Faculty 5 Uvalu 84 15006 Prague Czech Republic

Department of Molecular Neurophysiology Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic; Institut National de la Santé et de la Recherche Médicale Unité de recherche U1198 Université Montpellier 2 34095 Montpellier France; Ecole Pratique des Hautes Etudes Sorbonne 75014 Paris France

Department of Molecular Neurophysiology Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic; Institute of Physiology Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic; Institute of Biophysics and Informatics 1st Faculty of Medicine Charles University Prague Salmovska 1 12000 Prague Czech Republic

Department of Neuroscience Charles University 2nd Medical Faculty 5 Uvalu 84 15006 Prague Czech Republic; Department of Cellular Neurophysiology Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic

Department of Neuroscience Charles University 2nd Medical Faculty 5 Uvalu 84 15006 Prague Czech Republic; Department of Neuroscience Institute of Experimental Medicine Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic

Department of Physiology School of Medicine University of Occupational and Environmental Health Kitakyushu 807 8555 Japan

Institute of Physiology Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic; Institute of Biophysics and Informatics 1st Faculty of Medicine Charles University Prague Salmovska 1 12000 Prague Czech Republic

University of Manchester School of Biological Sciences D 4417 Michael Smith Building Oxford Road M13 9PT Manchester United Kingdom; Achucarro Center for Neuroscience IKERBASQUE Basque Foundation for Science 48011 Bilbao Spain; Department of Neurosciences University of the Basque Country UPV EHU and CIBERNED Leioa Spain; University of Nizhny Novgorod Nizhny Novgorod 603022 Russia

Zobrazit více v PubMed

Cazalis M., Dayanithi G., Nordmann J.J. The role of patterned burst and interburst interval on the excitation-coupling mechanism in the isolated rat neural lobe. J. Physiol. 1985;369:45–60. PubMed PMC

Cazalis M., Dayanithi G., Nordmann J.J. Requirements for hormone release from permeabilized nerve endings isolated from the rat neurohypophysis. J. Physiol. 1987;390:71–91. PubMed PMC

Cazalis M., Dayanithi G., Nordmann J.J. Hormone release from isolated nerve endings of the rat neurohypophysis. J. Physiol. 1987;390:55–70. PubMed PMC

Brethes D., Dayanithi G., Letellier L., Nordmann J.J. Depolarization-induced Ca2+ increase in isolated neurosecretory nerve terminals measured with fura-2. Proc. Natl. Acad. Sci. U. S. A. 1987;84:1439–1443. PubMed PMC

Dayanithi G., Cazalis M., Nordmann J.J. Relaxin affects the release of oxytocin and vasopressin from the neurohypophysis. Nature. 1987;325:813–816. PubMed

Gouzenes L., Sabatier N., Richard P., Moos F.C., Dayanithi G. V1a- and V2-type vasopressin receptors mediate vasopressin-induced Ca2+ responses in isolated rat supraoptic neurones. J. Physiol. 1999;517(Pt 3):771–779. PubMed PMC

Moos F., Gouzenes L., Brown D., Dayanithi G., Sabatier N., Boissin L., Rabie A., Richard P. New aspects of firing pattern autocontrol in oxytocin and vasopressin neurones. Adv. Exp. Med. Biol. 1998;449:153–162. PubMed

Dayanithi G., Widmer H., Richard P. Vasopressin-induced intracellular Ca2+ increase in isolated rat supraoptic cells. J. Physiol. 1996;490(Pt 3):713–727. PubMed PMC

Sabatier N., Richard P., Dayanithi G. L-, N- and T- but neither P- nor Q-type Ca2+ channels control vasopressin-induced Ca2+ influx in magnocellular vasopressin neurones isolated from the rat supraoptic nucleus. J. Physiol. 1997;503(Pt 2):253–268. PubMed PMC

Sabatier N., Richard P., Dayanithi G. Activation of multiple intracellular transduction signals by vasopressin in vasopressin-sensitive neurones of the rat supraoptic nucleus. J. Physiol. 1998;513(Pt 3):699–710. PubMed PMC

Lambert R.C., Dayanithi G., Moos F.C., Richard P. A rise in the intracellular Ca2+ concentration of isolated rat supraoptic cells in response to oxytocin. J. Physiol. 1994;478(Pt 2):275–287. PubMed PMC

Dayanithi G., Sabatier N., Widmer H. Intracellular calcium signalling in magnocellular neurones of the rat supraoptic nucleus: understanding the autoregulatory mechanisms. Exp. Physiol. 2000;85:75s–84s. PubMed

Ludwig M., Sabatier N., Bull P.M., Landgraf R., Dayanithi G., Leng G. Intracellular calcium stores regulate activity-dependent neuropeptide release from dendrites. Nature. 2002;418:85–89. PubMed

Komori Y., Tanaka M., Kuba M., Ishii M., Abe M., Kitamura N., Verkhratsky A., Shibuya I., Dayanithi G. Ca2+ homeostasis, Ca2+ signalling and somatodendritic vasopressin release in adult rat supraoptic nucleus neurones. Cell Calcium. 2010;48:324–332. PubMed

Dayanithi G., Forostyak O., Ueta Y., Verkhratsky A., Toescu E.C. Segregation of calcium signalling mechanisms in magnocellular neurones and terminals. Cell Calcium. 2012;51:293–299. PubMed

Oliet S.H., Bourque C.W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993;364:341–343. PubMed

Bourque C.W., Renaud L.P. Activity patterns and osmosensitivity of rat supraoptic neurones in perfused hypothalamic explants. J. Physiol. 1984;349:631–642. PubMed PMC

Prager-Khoutorsky M., Bourque C.W. Osmosensation in vasopressin neurons: changing actin density to optimize function. Trends Neurosci. 2010;33:76–83. PubMed

Mason W.T. Supraoptic neurones of rat hypothalamus are osmosensitive. Nature. 1980;287:154–157. PubMed

Wakerley J.B., Poulain D.A., Brown D. Comparison of firing patterns in oxytocin- and vasopressin-releasing neurones during progressive dehydration. Brain Res. 1978;148:425–440. PubMed

Ueta Y., Dayanithi G., Fujihara H. Hypothalamic vasopressin response to stress and various physiological stimuli: visualization in transgenic animal models. Horm. Behav. 2011;59:221–226. PubMed

Jamen F., Alonso G., Shibuya I., Widmer H., Vacher C.M., Calas A., Bockaert J., Brabet P., Dayanithi G. Impaired somatodendritic responses to pituitary adenylate cyclase-activating polypeptide (PACAP) of supraoptic neurones in PACAP type I—receptor deficient mice. J. Neuroendocrinol. 2003;15:871–881. PubMed

Sabatier N., Shibuya I., Dayanithi G. Intracellular calcium increase and somatodendritic vasopressin release by vasopressin receptor agonists in the rat supraoptic nucleus: involvement of multiple intracellular transduction signals. J. Neuroendocrinol. 2004;16:221–236. PubMed

Ueta Y., Fujihara H., Serino R., Dayanithi G., Ozawa H., Matsuda K., Kawata M., Yamada J., Ueno S., Fukuda A., Murphy D. Transgenic expression of enhanced green fluorescent protein enables direct visualization for physiological studies of vasopressin neurons and isolated nerve terminals of the rat. Endocrinology. 2005;146:406–413. PubMed

Katoh A., Fujihara H., Ohbuchi T., Onaka T., Hashimoto T., Kawata M., Suzuki H., Ueta Y. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats. Endocrinology. 2011;152:2768–2774. PubMed

Viero C., Shibuya I., Kitamura N., Verkhratsky A., Fujihara H., Katoh A., Ueta Y., Zingg H.H., Chvatal A., Sykova E., Dayanithi G. Review: Oxytocin: crossing the bridge between basic science and pharmacotherapy. CNS Neurosci. Ther. 2010;16:e138–156. PubMed PMC

Moriya T., Shibasaki R., Kayano T., Takebuchi N., Ichimura M., Kitamura N., Asano A., Hosaka Y.Z., Forostyak O., Verkhratsky A., Dayanithi G., Shibuya I. Full-length transient receptor potential vanilloid 1 channels mediate calcium signals and possibly contribute to osmoreception in vasopressin neurones in the rat supraoptic nucleus. Cell Calcium. 2015;57:25–37. PubMed

Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem. 1985;260:3440–3450. PubMed

Dayanithi G., Mechaly I., Viero C., Aptel H., Alphandery S., Puech S., Bancel F., Valmier J. Intracellular Ca2+ regulation in rat motoneurons during development. Cell Calcium. 2006;39:237–246. PubMed

Viero C., Mechaly I., Aptel H., Puech S., Valmier J., Bancel F., Dayanithi G. Rapid inhibition of Ca2+ influx by neurosteroids in murine embryonic sensory neurones. Cell Calcium. 2006;40:383–391. PubMed

Forostyak O., Romanyuk N., Verkhratsky A., Sykova E., Dayanithi G. Plasticity of calcium signaling cascades in human embryonic stem cell-derived neural precursors. Stem Cells Dev. 2013;22:1506–1521. PubMed PMC

Oliet S.H., Bourque C.W. Properties of supraoptic magnocellular neurones isolated from the adult rat. J. Physiol. 1992;455:291–306. PubMed PMC

Trudel E., Bourque C.W. Circadian modulation of osmoregulated firing in rat supraoptic nucleus neurones. J. Neuroendocrinol. 2012;24:577–586. PubMed

Knight W.D., Ji L.L., Little J.T., Cunningham J.T. Dehydration followed by sham rehydration contributes to reduced neuronal activation in vasopressinergic supraoptic neurons after water deprivation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;299:R1232–1240. PubMed PMC

Nordmann J.J., Cazalis M., Dayanithi G., Castanas E., Giraud P., Legros J.J., Louis F. Are opioid peptides co-localized with vasopressin or oxytocin in the neural lobe of the rat? Cell Tissue Res. 1986;246:177–182. PubMed

Huang W.C., Ploth D.W., Navar L.G. Angiotensin-mediated alterations in nephron function in goldblatt hypertensive rats. Am. J. Physiol. 1982;243:F553–F560. PubMed

Moos F.C., Rossi K., Richard P. Activation of N-methyl-d-aspartate receptors regulates basal electrical activity of oxytocin and vasopressin neurons in lactating rats. Neuroscience. 1997;77:993–1002. PubMed

Chevaleyre V., Dayanithi G., Moos F.C., Desarmenien M.G. Developmental regulation of a local positive autocontrol of supraoptic neurons. J. Neurosci. 2000;20:5813–5819. PubMed PMC

Ludwig M., Bull P.M., Tobin V.A., Sabatier N., Landgraf R., Dayanithi G., Leng G. Regulation of activity-dependent dendritic vasopressin release from rat supraoptic neurones. J. Physiol. 2005;564:515–522. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Vasopressin and oxytocin in sensory neurones: expression, exocytotic release and regulation by lactation

. 2018 Aug 30 ; 8 (1) : 13084. [epub] 20180830

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...