Repertoire-based mapping and time-tracking of T helper cell subsets in scRNA-Seq

. 2025 ; 16 () : 1536302. [epub] 20250404

Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40255395

INTRODUCTION: The functional programs of CD4+ T helper (Th) cell clones play a central role in shaping immune responses to different challenges. While advances in single-cell RNA sequencing (scRNA-Seq) have significantly improved our understanding of the diversity of Th cells, the relationship between scRNA-Seq clusters and the traditionally characterized Th subsets remains ambiguous. METHODS: In this study, we introduce TCR-Track, a method leveraging immune repertoire data to map phenotypically sorted Th subsets onto scRNA-Seq profiles. RESULTS AND DISCUSSION: This approach accurately positions the Th1, Th1-17, Th17, Th22, Th2a, Th2, T follicular helper (Tfh), and regulatory T-cell (Treg) subsets, outperforming mapping based on CITE-Seq. Remarkably, the mapping is tightly focused on specific scRNA-Seq clusters, despite 4-year interval between subset sorting and the effector CD4+ scRNA-Seq experiment. These findings highlight the intrinsic program stability of Th clones circulating in peripheral blood. Repertoire overlap analysis at the scRNA-Seq level confirms that the circulating Th1, Th2, Th2a, Th17, Th22, and Treg subsets are clonally independent. However, a significant clonal overlap between the Th1 and cytotoxic CD4+ T-cell clusters suggests that cytotoxic CD4+ T cells differentiate from Th1 clones. In addition, this study resolves a longstanding ambiguity: we demonstrate that, while CCR10+ Th cells align with a specific Th22 scRNA-Seq cluster, CCR10-CCR6+CXCR3-CCR4+ cells, typically classified as Th17, represent a mixture of bona fide Th17 cells and clonally unrelated CCR10low Th22 cells. The clear distinction between the Th17 and Th22 subsets should influence the development of vaccine- and T-cell-based therapies. Furthermore, we show that severe acute SARS-CoV-2 infection induces systemic type 1 interferon (IFN) activation of naive Th cells. An increased proportion of effector IFN-induced Th cells is associated with a moderate course of the disease but remains low in critical COVID-19 cases. Using integrated scRNA-Seq, TCR-Track, and CITE-Seq data from 122 donors, we provide a comprehensive Th scRNA-Seq reference that should facilitate further investigation of Th subsets in fundamental and clinical studies.

Zobrazit více v PubMed

Kunzli M, Masopust D. Cd4(+) T cell memory. Nat Immunol. (2023) 24:903–14. doi: 10.1038/s41590-023-01510-4 PubMed DOI PMC

Sallusto F. Heterogeneity of human cd4(+) T cells against microbes. Annu Rev Immunol. (2016) 34:317–34. doi: 10.1146/annurev-immunol-032414-112056 PubMed DOI

Borst J, Ahrends T, Babala N, Melief CJM, Kastenmuller W. Cd4(+) T cell help in cancer immunology and immunotherapy. Nat Rev Immunol. (2018) 18:635–47. doi: 10.1038/s41577-018-0044-0 PubMed DOI

McDonald DR. Th17 deficiency in human disease. J Allergy Clin Immunol. (2012) 129:1429–35; quiz 36-7. doi: 10.1016/j.jaci.2012.03.034 PubMed DOI PMC

Cook MC, Tangye SG. Primary immune deficiencies affecting lymphocyte differentiation: lessons from the spectrum of resulting infections. Int Immunol. (2009) 21:1003–11. doi: 10.1093/intimm/dxp076 PubMed DOI

Hernandez-Santos N, Huppler AR, Peterson AC, Khader SA, McKenna KC, Gaffen SL. Th17 cells confer long-term adaptive immunity to oral mucosal candida albicans infections. Mucosal Immunol. (2013) 6:900–10. doi: 10.1038/mi.2012.128 PubMed DOI PMC

Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D'Oro U, et al. . Addition of a tlr7 agonist to an acellular pertussis vaccine enhances th1 and th17 responses and protective immunity in a mouse model. Vaccine. (2017) 35:5256–63. doi: 10.1016/j.vaccine.2017.08.009 PubMed DOI

Bacher P, Scheffold A. Antigen-specific regulatory T-cell responses against aeroantigens and their role in allergy. Mucosal Immunol. (2018) 11:1537–50. doi: 10.1038/s41385-018-0038-z PubMed DOI

McGee HS, Agrawal DK. Th2 cells in the pathogenesis of airway remodeling: regulatory T cells a plausible panacea for asthma. Immunologic Res. (2006) 35:219–32. doi: 10.1385/IR:35:3:219 PubMed DOI

Finotto S. T-cell regulation in asthmatic diseases. Chem Immunol Allergy. (2008) 94:83–92. doi: 10.1159/000154869 PubMed DOI

Izraelson M, Metsger M, Davydov AN, Shagina IA, Dronina MA, Obraztsova AS, et al. . Distinct organization of adaptive immunity in the long-lived rodent spalax galili. Nat Aging. (2021) 1:179–89. doi: 10.1038/s43587-021-00029-3 PubMed DOI

Osnes LT, Nakken B, Bodolay E, Szodoray P. Assessment of intracellular cytokines and regulatory cells in patients with autoimmune diseases and primary immunodeficiencies - novel tool for diagnostics and patient follow-up. Autoimmun Rev. (2013) 12:967–71. doi: 10.1016/j.autrev.2013.02.003 PubMed DOI

Costa N, Marques O, Godinho SI, Carvalho C, Leal B, Figueiredo AM, et al. . Two separate effects contribute to regulatory T cell defect in systemic lupus erythematosus patients and their unaffected relatives. Clin Exp Immunol. (2017) 189:318–30. doi: 10.1111/cei.12991 PubMed DOI PMC

Bonelli M, Savitskaya A, von Dalwigk K, Steiner CW, Aletaha D, Smolen JS, et al. . Quantitative and qualitative deficiencies of regulatory T cells in patients with systemic lupus erythematosus (Sle). Int Immunol. (2008) 20:861–8. doi: 10.1093/intimm/dxn044 PubMed DOI

Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, et al. . Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol. (2005) 175:8392–400. doi: 10.4049/jimmunol.175.12.8392 PubMed DOI

Protti MP, De Monte L, Di Lullo G. Tumor antigen-specific cd4+ T cells in cancer immunity: from antigen identification to tumor prognosis and development of therapeutic strategies. Tissue Antigens. (2014) 83:237–46. doi: 10.1111/tan.12329 PubMed DOI

Andreatta M, Tjitropranoto A, Sherman Z, Kelly MC, Ciucci T, Carmona SJ. A cd4(+) T cell reference map delineates subtype-specific adaptation during acute and chronic viral infections. eLife. (2022) 11. doi: 10.7554/eLife.76339 PubMed DOI PMC

Yasumizu Y, Takeuchi D, Morimoto R, Takeshima Y, Okuno T, Kinoshita M, et al. . Single-cell transcriptome landscape of circulating cd4+ T cell populations in human autoimmune diseases. bioRxiv. (2023) 4:100473. doi: 10.1101/2023.05.09.540089 PubMed DOI PMC

Radtke D, Thuma N, Schulein C, Kirchner P, Ekici AB, Schober K, et al. . Th2 single-cell heterogeneity and clonal distribution at distant sites in helminth-infected mice. eLife. (2022) 11. doi: 10.7554/eLife.74183 PubMed DOI PMC

Schmiedel BJ, Gonzalez-Colin C, Fajardo V, Rocha J, Madrigal A, Ramirez-Suastegui C, et al. . Single-cell eqtl analysis of activated T cell subsets reveals activation and cell type-dependent effects of disease-risk variants. Sci Immunol. (2022) 7:eabm2508. doi: 10.1126/sciimmunol.abm2508 PubMed DOI PMC

Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. . Proteogenomic characterization of human colon and rectal cancer. Nature. (2014) 513:382–7. doi: 10.1038/nature13438 PubMed DOI PMC

Reimegard J, Tarbier M, Danielsson M, Schuster J, Baskaran S, Panagiotou S, et al. . A combined approach for single-cell mrna and intracellular protein expression analysis. Commun Biol. (2021) 4:624. doi: 10.1038/s42003-021-02142-w PubMed DOI PMC

Stoeckius M, Hafemeister C, Stephenson W, Houck-Loomis B, Chattopadhyay PK, Swerdlow H, et al. . Simultaneous epitope and transcriptome measurement in single cells. Nat Methods. (2017) 14:865–8. doi: 10.1038/nmeth.4380 PubMed DOI PMC

Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. . Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. (2017) 35:936–9. doi: 10.1038/nbt.3973 PubMed DOI

Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. (2017) 7:44447. doi: 10.1038/srep44447 PubMed DOI PMC

Murphy KM, Stockinger B. Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol. (2010) 11:674–80. doi: 10.1038/ni.1899 PubMed DOI PMC

Kiner E, Willie E, Vijaykumar B, Chowdhary K, Schmutz H, Chandler J, et al. . Gut cd4(+) T cell phenotypes are a continuum molded by microbes, not by T(H) archetypes. Nat Immunol. (2021) 22:216–28. doi: 10.1038/s41590-020-00836-7 PubMed DOI PMC

Kasatskaya SA, Ladell K, Egorov ES, Miners KL, Davydov AN, Metsger M, et al. . Functionally specialized human cd4(+) T-cell subsets express physicochemically distinct tcrs. eLife. (2020) 9. doi: 10.7554/eLife.57063 PubMed DOI PMC

Knudson CJ, Ferez M, Alves-Peixoto P, Erkes DA, Melo-Silva CR, Tang L, et al. . Mechanisms of antiviral cytotoxic cd4 T cell differentiation. J Virol. (2021) 95:e0056621. doi: 10.1128/JVI.00566-21 PubMed DOI PMC

Hoeks C, Duran G, Hellings N, Broux B. When helpers go above and beyond: development and characterization of cytotoxic cd4(+) T cells. Front Immunol. (2022) 13:951900. doi: 10.3389/fimmu.2022.951900 PubMed DOI PMC

Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, Tuong ZK, et al. . Single-cell multi-omics analysis of the immune response in covid-19. Nat Med. (2021) 27:904–16. doi: 10.1038/s41591-021-01329-2 PubMed DOI PMC

Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. . Vdjtools: unifying post-analysis of T cell receptor repertoires. PloS Comput Biol. (2015) 11:e1004503. doi: 10.1371/journal.pcbi.1004503 PubMed DOI PMC

Izraelson M, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA, Putintseva EV, et al. . Comparative analysis of murine T-cell receptor repertoires. Immunology. (2018) 153:133–44. doi: 10.1111/imm.12857 PubMed DOI PMC

Cheroutre H, Husain MM. Cd4 ctl: living up to the challenge. Semin Immunol. (2013) 25:273–81. doi: 10.1016/j.smim.2013.10.022 PubMed DOI PMC

Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O'Rourke P, de Silva AD, et al. . Precursors of human cd4(+) cytotoxic T lymphocytes identified by single-cell transcriptome analysis. Sci Immunol. (2018) 3. doi: 10.1126/sciimmunol.aan8664 PubMed DOI PMC

Hashimoto K, Kouno T, Ikawa T, Hayatsu N, Miyajima Y, Yabukami H, et al. . Single-cell transcriptomics reveals expansion of cytotoxic cd4 T cells in supercentenarians. Proc Natl Acad Sci U.S.A. (2019) 116:24242–51. doi: 10.1073/pnas.1907883116 PubMed DOI PMC

Brenna E, Davydov AN, Ladell K, McLaren JE, Bonaiuti P, Metsger M, et al. . Cd4(+) T follicular helper cells in human tonsils and blood are clonally convergent but divergent from non-tfh cd4(+) cells. Cell Rep. (2020) 30:137–52 e5. doi: 10.1016/j.celrep.2019.12.016 PubMed DOI PMC

Kilpatrick RD, Rickabaugh T, Hultin LE, Hultin P, Hausner MA, Detels R, et al. . Homeostasis of the naive cd4+ T cell compartment during aging. J Immunol. (2008) 180:1499–507. doi: 10.4049/jimmunol.180.3.1499 PubMed DOI PMC

Egorov ES, Kasatskaya SA, Zubov VN, Izraelson M, Nakonechnaya TO, Staroverov DB, et al. . The changing landscape of naive T cell receptor repertoire with human aging. Front Immunol. (2018) 9:1618. doi: 10.3389/fimmu.2018.01618 PubMed DOI PMC

Bunis DG, Bronevetsky Y, Krow-Lucal E, Bhakta NR, Kim CC, Nerella S, et al. . Single-cell mapping of progressive fetal-to-adult transition in human naive T cells. Cell Rep. (2021) 34:108573. doi: 10.1016/j.celrep.2020.108573 PubMed DOI PMC

Silva SL, Albuquerque AS, Matoso P, Charmeteau-de-Muylder B, Cheynier R, Ligeiro D, et al. . Il-7-induced proliferation of human naive cd4 T-cells relies on continued thymic activity. Front Immunol. (2017) 8:20. doi: 10.3389/fimmu.2017.00020 PubMed DOI PMC

Seumois G, Ramirez-Suastegui C, Schmiedel BJ, Liang S, Peters B, Sette A, et al. . Single-cell transcriptomic analysis of allergen-specific T cells in allergy and asthma. Sci Immunol. (2020) 5. doi: 10.1126/sciimmunol.aba6087 PubMed DOI PMC

Scharf L, Axelsson H, Emmanouilidi A, Mathew NR, Sheward DJ, Leach S, et al. . Longitudinal single-cell analysis of sars-cov-2-reactive B cells uncovers persistence of early-formed, antigen-specific clones. JCI Insight. (2023) 8. doi: 10.1172/jci.insight.165299 PubMed DOI PMC

McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. (2015) 15:87–103. doi: 10.1038/nri3787 PubMed DOI PMC

Deep D, Gudjonson H, Brown CC, Rose SA, Sharma R, Paucar Iza YA, et al. . Precursor central memory versus effector cell fate and naive cd4+ T cell heterogeneity. J Exp Med. (2024) 221. doi: 10.1084/jem.20231193 PubMed DOI PMC

Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. (2009) 10:857–63. doi: 10.1038/ni.1767 PubMed DOI

Barnes JL, Plank MW, Asquith K, Maltby S, Sabino LR, Kaiko GE, et al. . T-helper 22 cells develop as a distinct lineage from th17 cells during bacterial infection and phenotypic stability is regulated by T-bet. Mucosal Immunol. (2021) 14:1077–87. doi: 10.1038/s41385-021-00414-6 PubMed DOI

Perez LG, Kempski J, McGee HM, Pelzcar P, Agalioti T, Giannou A, et al. . Tgf-beta signaling in th17 cells promotes il-22 production and colitis-associated colon cancer. Nat Commun. (2020) 11:2608. doi: 10.1038/s41467-020-16363-w PubMed DOI PMC

Plank MW, Kaiko GE, Maltby S, Weaver J, Tay HL, Shen W, et al. . Th22 cells form a distinct th lineage from th17 cells in vitro with unique transcriptional properties and tbet-dependent th1 plasticity. J Immunol. (2017) 198:2182–90. doi: 10.4049/jimmunol.1601480 PubMed DOI PMC

Eizenberg-Magar I, Rimer J, Zaretsky I, Lara-Astiaso D, Reich-Zeliger S, Friedman N. Diverse continuum of cd4(+) T-cell states is determined by hierarchical additive integration of cytokine signals. Proc Natl Acad Sci U.S.A. (2017) 114:E6447–E56. doi: 10.1073/pnas.1615590114 PubMed DOI PMC

King CL, Malhotra I, Wamachi A, Kioko J, Mungai P, Wahab SA, et al. . Acquired immune responses to plasmodium falciparum merozoite surface protein-1 in the human fetus. J Immunol. (2002) 168:356–64. doi: 10.4049/jimmunol.168.1.356 PubMed DOI

Li N, van Unen V, Abdelaal T, Guo N, Kasatskaya SA, Ladell K, et al. . Memory cd4(+) T cells are generated in the human fetal intestine. Nat Immunol. (2019) 20:301–12. doi: 10.1038/s41590-018-0294-9 PubMed DOI PMC

Pogorelyy MV, Elhanati Y, Marcou Q, Sycheva AL, Komech EA, Nazarov VI, et al. . Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PloS Comput Biol. (2017) 13:e1005572. doi: 10.1371/journal.pcbi.1005572 PubMed DOI PMC

Prescott SL, Macaubas C, Smallacombe T, Holt BJ, Sly PD, Holt PG. Development of allergen-specific T-cell memory in atopic and normal children. Lancet. (1999) 353:196–200. doi: 10.1016/S0140-6736(98)05104-6 PubMed DOI

Huygens A, Dauby N, Vermijlen D, Marchant A. Immunity to cytomegalovirus in early life. Front Immunol. (2014) 5:552. doi: 10.3389/fimmu.2014.00552 PubMed DOI PMC

Renz H, Skevaki C. Early life microbial exposures and allergy risks: opportunities for prevention. Nat Rev Immunol. (2021) 21:177–91. doi: 10.1038/s41577-020-00420-y PubMed DOI

Pieren DKJ, Boer MC, de Wit J. The adaptive immune system in early life: the shift makes it count. Front Immunol. (2022) 13:1031924. doi: 10.3389/fimmu.2022.1031924 PubMed DOI PMC

Naniche D, Garenne M, Rae C, Manchester M, Buchta R, Brodine SK, et al. . Decrease in measles virus-specific cd4 T cell memory in vaccinated subjects. J Infect Dis. (2004) 190:1387–95. doi: 10.1086/424571 PubMed DOI

Jokinen S, Osterlund P, Julkunen I, Davidkin I. Cellular immunity to mumps virus in young adults 21 years after measles-mumps-rubella vaccination. J Infect Dis. (2007) 196:861–7. doi: 10.1086/521029 PubMed DOI

Yoshida K, Cologne JB, Cordova K, Misumi M, Yamaoka M, Kyoizumi S, et al. . Aging-related changes in human T-cell repertoire over 20years delineated by deep sequencing of peripheral T-cell receptors. Exp gerontology. (2017) 96:29–37. doi: 10.1016/j.exger.2017.05.015 PubMed DOI

Becattini S, Latorre D, Mele F, Foglierini M, De Gregorio C, Cassotta A, et al. . T cell immunity. Functional heterogeneity of human memory cd4(+) T cell clones primed by pathogens or vaccines. Science. (2015) 347:400–6. doi: 10.1126/science.1260668 PubMed DOI

Krienke C, Kolb L, Diken E, Streuber M, Kirchhoff S, Bukur T, et al. . A noninflammatory mrna vaccine for treatment of experimental autoimmune encephalomyelitis. Science. (2021) 371:145–53. doi: 10.1126/science.aay3638 PubMed DOI

Gammon JM, Carey ST, Saxena V, Eppler HB, Tsai SJ, Paluskievicz C, et al. . Engineering the lymph node environment promotes antigen-specific efficacy in type 1 diabetes and islet transplantation. Nat Commun. (2023) 14:681. doi: 10.1038/s41467-023-36225-5 PubMed DOI PMC

Britanova OV, Lupyr KR, Staroverov DB, Shagina IA, Aleksandrov AA, Ustyugov YY, et al. . Targeted depletion of trbv9(+) T cells as immunotherapy in a patient with ankylosing spondylitis. Nat Med. (2023) 29:2731–6. doi: 10.1038/s41591-023-02613-z PubMed DOI PMC

Uenishi GI, Repic M, Yam JY, Landuyt A, Saikumar-Lakshmi P, Guo T, et al. . Gnti-122: an autologous antigen-specific engineered treg cell therapy for type 1 diabetes. JCI Insight. (2024) 9. doi: 10.1172/jci.insight.171844 PubMed DOI PMC

Dempsey ME, Woodford-Berry O, Darling EM. Quantification of antibody persistence for cell surface protein labeling. Cell Mol Bioeng. (2021) 14:267–77. doi: 10.1007/s12195-021-00670-3 PubMed DOI PMC

LeBlanc G, Kreissl FK, Melamed J, Sobel AL, Constantinides MG. The role of unconventional T cells in maintaining tissue homeostasis. Semin Immunol. (2022) 61-64:101656. doi: 10.1016/j.smim.2022.101656 PubMed DOI PMC

Rosati E, Rios Martini G, Pogorelyy MV, Minervina AA, Degenhardt F, Wendorff M, et al. . A novel unconventional T cell population enriched in crohn's disease. Gut. (2022) 71:2194–204. doi: 10.1136/gutjnl-2021-325373 PubMed DOI PMC

Crowther MD, Dolton G, Legut M, Caillaud ME, Lloyd A, Attaf M, et al. . Genome-wide crispr-cas9 screening reveals ubiquitous T cell cancer targeting via the monomorphic mhc class I-related protein mr1. Nat Immunol. (2020) 21:178–85. doi: 10.1038/s41590-019-0578-8 PubMed DOI PMC

Davey MS, Willcox CR, Hunter S, Kasatskaya SA, Remmerswaal EBM, Salim M, et al. . The human vdelta2(+) T-cell compartment comprises distinct innate-like vgamma9(+) and adaptive vgamma9(-) subsets. Nat Commun. (2018) 9:1760. doi: 10.1038/s41467-018-04076-0 PubMed DOI PMC

Galletti G, De Simone G, Mazza EMC, Puccio S, Mezzanotte C, Bi TM, et al. . Two subsets of stem-like cd8(+) memory T cell progenitors with distinct fate commitments in humans. Nat Immunol. (2020) 21:1552–62. doi: 10.1038/s41590-020-0791-5 PubMed DOI PMC

Stewart A, Ng JC, Wallis G, Tsioligka V, Fraternali F, Dunn-Walters DK. Single-cell transcriptomic analyses define distinct peripheral B cell subsets and discrete development pathways. Front Immunol. (2021) 12:602539. doi: 10.3389/fimmu.2021.602539 PubMed DOI PMC

Hao Y, Hao S, Andersen-Nissen E, Mauck WM, 3rd, Zheng S, Butler A, et al. . Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573–87 e29. doi: 10.1016/j.cell.2021.04.048 PubMed DOI PMC

Denisenko E, Guo BB, Jones M, Hou R, de Kock L, Lassmann T, et al. . Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus rna-seq workflows. Genome Biol. (2020) 21:130. doi: 10.1186/s13059-020-02048-6 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...