Antibacterial and Biocompatible Polyethylene Composites with Hybrid Clay Nanofillers

. 2023 Jul 23 ; 16 (14) : . [epub] 20230723

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37512453

Low-density polyethylene is one of the basic polymers used in medicine for a variety of purposes; so, the relevant improvements in functional properties are discussed here, making it safer to use as devices or implants during surgery or injury. The objective of the laboratory-prepared material was to study the antimicrobial and biocompatible properties of low-density polyethylene composites with 3 wt. % hybrid nanoclay filler. We found that the antimicrobial activity was mainly related to the filler, i.e., the hybrid type, where inorganic clay minerals, vermiculite or montmorillonite, were intercalated with organic chlorhexidine diacetate and subsequently decorated with Ca-deficient hydroxyapatite. After fusion of the hybrid nanofiller with polyethylene, intense exfoliation of the clay layers occurred. This phenomenon was confirmed by the analysis of the X-ray diffraction patterns of the composite, where the original basal peak of the clays decreased or completely disappeared, and the optimal distribution of the filler was observed using the transmission mode of light microscopy. Functional property testing showed that the composites have good antibacterial activity against Staphylococcus aureus, and the biocompatibility prediction demonstrated the formation of Ca- and P-containing particles through an in vitro experiment, thus applicable for medical use.

Zobrazit více v PubMed

Ruiz-Hitzky E., Van Meerbeek A. Clay mineral–and organoclay–polymer nanocomposite. Dev. Clay Sci. 2006;1:583–621.

Katti K.S., Katti D.R., Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 2008;3:034122. doi: 10.1088/1748-6041/3/3/034122. PubMed DOI

Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021;11:149. doi: 10.3390/cryst11020149. DOI

Ambre A., Katti K.S., Katti D.R. In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater. Sci. Eng. C. 2011;31:1017–1029. doi: 10.1016/j.msec.2011.03.001. PubMed DOI

Duan S., Wu R., Xiong Y.H., Ren H.M., Lei C., Zhao Y.Q., Zhang X.Y., Xu F.J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022;125:100887. doi: 10.1016/j.pmatsci.2021.100887. DOI

Darouiche R.O. Treatment of infections associated with surgical implants. N. Eng. J. Med. 2004;350:1422–1429. doi: 10.1056/NEJMra035415. PubMed DOI

Kolpen M., Kragh K.N., Enciso J.B., Faurholt-Jepsen D., Lindegaard B., Egelund G.B., Jensen A.V., Ravn P., Mabuza Mathiensen I.H., Gheorge A.G., et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax. 2022;77:1015–1022. doi: 10.1136/thoraxjnl-2021-217576. PubMed DOI PMC

Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002;113:5–13. doi: 10.1016/S0002-9343(02)01054-9. PubMed DOI

Matl F.D., Obermeier A., Repmann S., Friess W., Stemberger A., Kuehn K.D. New anti-infective coatings of medical implants. Antimicrob. Agents Chemother. 2008;52:1957–1963. doi: 10.1128/AAC.01438-07. PubMed DOI PMC

Das-Gupta D.K. Polyethylene: Structure, morphology, molecular motion and dielectric behavior. IEEE Elect. Insul. Mag. 1994;10:5–15. doi: 10.1109/57.285418. DOI

Androsch R., Di Lorenzo M.L., Schick C., Wunderlich B. Mesophases in polyethylene, polypropylene, and poly (1-butene) Polymer. 2010;51:4639–4662. doi: 10.1016/j.polymer.2010.07.033. DOI

Holešová S., Samlíková M., Ritz M., Pazdziora E. Antibacterial polyethylene/clay nanocomposites using chlorhexidine as organic modifier. Mater. Today Proc. 2015;2:246–252. doi: 10.1016/j.matpr.2015.04.031. DOI

Hundáková M., Tokarský J., Valášková M., Slobodian P., Pazdziora E., Kimmer D. Structure and antibacterial properties of polyethylene/organo-vermiculite composites. Solid State Sci. 2015;48:197–204. doi: 10.1016/j.solidstatesciences.2015.08.011. DOI

Martynková G.S., Valášková M. Antimicrobial nanocomposites based on natural modified materials: A review of carbons and clays. J. Nanosci. Nanotechnol. 2014;14:673–693. doi: 10.1166/jnn.2014.8903. PubMed DOI

Valaskova M., Martynková G.S., editors. . Clay Minerals in Nature—Their Characterization, Modification and Application. InTech; London, UK: 2012. DOI

Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI

Christenson E.M., Anseth K.S., van den Beucken J.J.P., Chan C.K., Ercan B., Jansen J.A., Laurencin C.T., Li W.-J., Murugan R., Nair L.S., et al. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007;25:11–22. doi: 10.1002/jor.20305. PubMed DOI

Jaworski J.W., Cho S., Kim Y., Jung J.H., Jeon H.S., Min B.K., Kwon K.Y. Hydroxyapatite supported cobalt catalysts for hydrogen generation. J. Colloid Interface Sci. 2013;394:401–408. doi: 10.1016/j.jcis.2012.11.036. PubMed DOI

Pazourková L., Kupková J., Hundáková M., Seidlerová J., Martynková G.S. Sorption of Cd2+ on clay mineral/hydroxyapatite nanocomposites. J. Nanosci. Nanotechnol. 2016;16:7788–7791. doi: 10.1166/jnn.2016.12557. DOI

Ferraz C.C., de Almeida Gomes B.P., Zaia A.A., Teixeira F.B., de Souza-Filho F.J. In vitro assessment of the antimicrobial action and the mechanical ability of chlorhexidine gel as an endodontic irrigant. J. Endod. 2001;27:452–455. doi: 10.1097/00004770-200107000-00004. PubMed DOI

Daud N.M., Al-Ashwal R.H., Kadir M.R., Saidin S. Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: Apatite formation and in vitro osteoblastic evaluation. Ann. Anat.-Anat. Anz. 2018;220:29–37. doi: 10.1016/j.aanat.2018.06.009. PubMed DOI

Kotnala S., Bhushan B., Nayak A. Hydroxyapatite Polymer Nano-composites And Their Role in Biomedical Applications. Trends Biomater. Artif. Organs. 2022;1:36.

Ghosh S., Ghosh S., Atta A.K., Pramanik N. A succinct overview of hydroxyapatite based nanocomposite biomaterials: Fabrications, physicochemical properties and some relevant biomedical applications. J. Bionanosci. 2018;12:143–158. doi: 10.1166/jbns.2018.1515. DOI

Dawson J.I., Oreffo R.O. Clay: New opportunities for tissue regeneration and biomaterial design. Adv. Mater. 2013;25:4069–4086. doi: 10.1002/adma.201301034. PubMed DOI

George S.M., Nayak C., Singh I., Balani K. Multifunctional hydroxyapatite composites for orthopedic applications: A review. ACS Biomater. Sci. Eng. 2022;8:3162–3186. doi: 10.1021/acsbiomaterials.2c00140. PubMed DOI

Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020;5:584–603. doi: 10.1038/s41578-020-0204-2. DOI

Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI

Tashmetov M.Y., Ismatov N.B., Allayarov S.R. X-ray Diffraction Study of the Structure of Gamma-Irradiated Low-Density Polyethylene. High Energy Chem. 2022;56:175–179. doi: 10.1134/S0018143922030109. DOI

Tanniru M., Yuan Q., Misra R.D.K. On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer. 2006;47:2133–2146. doi: 10.1016/j.polymer.2006.01.063. DOI

Holešová S., Valášková M., Plevová E., Pazdziora E., Matějová K. Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. J. Colloid Interface Sci. 2010;342:593–597. doi: 10.1016/j.jcis.2009.10.051. PubMed DOI

Holešová S., Samlíková M., Pazdziora E., Valášková M. Antibacterial activity of organomontmorillonites and organovermiculites prepared using chlorhexidine diacetate. Appl. Clay Sci. 2013;83:17–23. doi: 10.1016/j.clay.2013.07.013. DOI

Hotta S., Paul D. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer. 2004;45:7639–7654. doi: 10.1016/j.polymer.2004.08.059. DOI

Pazourková L., Reli M., Hundáková M., Pazdziora E., Predoi D., Simha Martynková G., Lafdi K. Study of the structure and antimicrobial activity of Ca-deficient ceramics on chlorhexidine nanoclay substrate. Materials. 2019;12:2996. doi: 10.3390/ma12182996. PubMed DOI PMC

Pazourková L., Peikertová P., Hundáková M., Martynková G.S. Preparation of calcium deficient hydroxyapatite on the montmorillonite substrate: Structure and morphology. Mater. Today Proc. 2021;37:35–41. doi: 10.1016/j.matpr.2020.02.927. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...