Antibacterial and Biocompatible Polyethylene Composites with Hybrid Clay Nanofillers
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
37512453
PubMed Central
PMC10384059
DOI
10.3390/ma16145179
PII: ma16145179
Knihovny.cz E-zdroje
- Klíčová slova
- antibacterial, biocompatible, chlorhexidine diacetate, composites, hydroxyapatite, nanoclays, polyethylene,
- Publikační typ
- časopisecké články MeSH
Low-density polyethylene is one of the basic polymers used in medicine for a variety of purposes; so, the relevant improvements in functional properties are discussed here, making it safer to use as devices or implants during surgery or injury. The objective of the laboratory-prepared material was to study the antimicrobial and biocompatible properties of low-density polyethylene composites with 3 wt. % hybrid nanoclay filler. We found that the antimicrobial activity was mainly related to the filler, i.e., the hybrid type, where inorganic clay minerals, vermiculite or montmorillonite, were intercalated with organic chlorhexidine diacetate and subsequently decorated with Ca-deficient hydroxyapatite. After fusion of the hybrid nanofiller with polyethylene, intense exfoliation of the clay layers occurred. This phenomenon was confirmed by the analysis of the X-ray diffraction patterns of the composite, where the original basal peak of the clays decreased or completely disappeared, and the optimal distribution of the filler was observed using the transmission mode of light microscopy. Functional property testing showed that the composites have good antibacterial activity against Staphylococcus aureus, and the biocompatibility prediction demonstrated the formation of Ca- and P-containing particles through an in vitro experiment, thus applicable for medical use.
Zobrazit více v PubMed
Ruiz-Hitzky E., Van Meerbeek A. Clay mineral–and organoclay–polymer nanocomposite. Dev. Clay Sci. 2006;1:583–621.
Katti K.S., Katti D.R., Dash R. Synthesis and characterization of a novel chitosan/montmorillonite/hydroxyapatite nanocomposite for bone tissue engineering. Biomed. Mater. 2008;3:034122. doi: 10.1088/1748-6041/3/3/034122. PubMed DOI
Shi H., Zhou Z., Li W., Fan Y., Li Z., Wei J. Hydroxyapatite based materials for bone tissue engineering: A brief and comprehensive introduction. Crystals. 2021;11:149. doi: 10.3390/cryst11020149. DOI
Ambre A., Katti K.S., Katti D.R. In situ mineralized hydroxyapatite on amino acid modified nanoclays as novel bone biomaterials. Mater. Sci. Eng. C. 2011;31:1017–1029. doi: 10.1016/j.msec.2011.03.001. PubMed DOI
Duan S., Wu R., Xiong Y.H., Ren H.M., Lei C., Zhao Y.Q., Zhang X.Y., Xu F.J. Multifunctional antimicrobial materials: From rational design to biomedical applications. Prog. Mater. Sci. 2022;125:100887. doi: 10.1016/j.pmatsci.2021.100887. DOI
Darouiche R.O. Treatment of infections associated with surgical implants. N. Eng. J. Med. 2004;350:1422–1429. doi: 10.1056/NEJMra035415. PubMed DOI
Kolpen M., Kragh K.N., Enciso J.B., Faurholt-Jepsen D., Lindegaard B., Egelund G.B., Jensen A.V., Ravn P., Mabuza Mathiensen I.H., Gheorge A.G., et al. Bacterial biofilms predominate in both acute and chronic human lung infections. Thorax. 2022;77:1015–1022. doi: 10.1136/thoraxjnl-2021-217576. PubMed DOI PMC
Foxman B. Epidemiology of urinary tract infections: Incidence, morbidity, and economic costs. Am. J. Med. 2002;113:5–13. doi: 10.1016/S0002-9343(02)01054-9. PubMed DOI
Matl F.D., Obermeier A., Repmann S., Friess W., Stemberger A., Kuehn K.D. New anti-infective coatings of medical implants. Antimicrob. Agents Chemother. 2008;52:1957–1963. doi: 10.1128/AAC.01438-07. PubMed DOI PMC
Das-Gupta D.K. Polyethylene: Structure, morphology, molecular motion and dielectric behavior. IEEE Elect. Insul. Mag. 1994;10:5–15. doi: 10.1109/57.285418. DOI
Androsch R., Di Lorenzo M.L., Schick C., Wunderlich B. Mesophases in polyethylene, polypropylene, and poly (1-butene) Polymer. 2010;51:4639–4662. doi: 10.1016/j.polymer.2010.07.033. DOI
Holešová S., Samlíková M., Ritz M., Pazdziora E. Antibacterial polyethylene/clay nanocomposites using chlorhexidine as organic modifier. Mater. Today Proc. 2015;2:246–252. doi: 10.1016/j.matpr.2015.04.031. DOI
Hundáková M., Tokarský J., Valášková M., Slobodian P., Pazdziora E., Kimmer D. Structure and antibacterial properties of polyethylene/organo-vermiculite composites. Solid State Sci. 2015;48:197–204. doi: 10.1016/j.solidstatesciences.2015.08.011. DOI
Martynková G.S., Valášková M. Antimicrobial nanocomposites based on natural modified materials: A review of carbons and clays. J. Nanosci. Nanotechnol. 2014;14:673–693. doi: 10.1166/jnn.2014.8903. PubMed DOI
Valaskova M., Martynková G.S., editors. . Clay Minerals in Nature—Their Characterization, Modification and Application. InTech; London, UK: 2012. DOI
Šupová M., Martynková G.S., Barabaszová K. Effect of nanofillers dispersion in polymer matrices: A review. Sci. Adv. Mater. 2011;3:1–25. doi: 10.1166/sam.2011.1136. DOI
Christenson E.M., Anseth K.S., van den Beucken J.J.P., Chan C.K., Ercan B., Jansen J.A., Laurencin C.T., Li W.-J., Murugan R., Nair L.S., et al. Nanobiomaterial applications in orthopedics. J. Orthop. Res. 2007;25:11–22. doi: 10.1002/jor.20305. PubMed DOI
Jaworski J.W., Cho S., Kim Y., Jung J.H., Jeon H.S., Min B.K., Kwon K.Y. Hydroxyapatite supported cobalt catalysts for hydrogen generation. J. Colloid Interface Sci. 2013;394:401–408. doi: 10.1016/j.jcis.2012.11.036. PubMed DOI
Pazourková L., Kupková J., Hundáková M., Seidlerová J., Martynková G.S. Sorption of Cd2+ on clay mineral/hydroxyapatite nanocomposites. J. Nanosci. Nanotechnol. 2016;16:7788–7791. doi: 10.1166/jnn.2016.12557. DOI
Ferraz C.C., de Almeida Gomes B.P., Zaia A.A., Teixeira F.B., de Souza-Filho F.J. In vitro assessment of the antimicrobial action and the mechanical ability of chlorhexidine gel as an endodontic irrigant. J. Endod. 2001;27:452–455. doi: 10.1097/00004770-200107000-00004. PubMed DOI
Daud N.M., Al-Ashwal R.H., Kadir M.R., Saidin S. Polydopamine-assisted chlorhexidine immobilization on medical grade stainless steel 316L: Apatite formation and in vitro osteoblastic evaluation. Ann. Anat.-Anat. Anz. 2018;220:29–37. doi: 10.1016/j.aanat.2018.06.009. PubMed DOI
Kotnala S., Bhushan B., Nayak A. Hydroxyapatite Polymer Nano-composites And Their Role in Biomedical Applications. Trends Biomater. Artif. Organs. 2022;1:36.
Ghosh S., Ghosh S., Atta A.K., Pramanik N. A succinct overview of hydroxyapatite based nanocomposite biomaterials: Fabrications, physicochemical properties and some relevant biomedical applications. J. Bionanosci. 2018;12:143–158. doi: 10.1166/jbns.2018.1515. DOI
Dawson J.I., Oreffo R.O. Clay: New opportunities for tissue regeneration and biomaterial design. Adv. Mater. 2013;25:4069–4086. doi: 10.1002/adma.201301034. PubMed DOI
George S.M., Nayak C., Singh I., Balani K. Multifunctional hydroxyapatite composites for orthopedic applications: A review. ACS Biomater. Sci. Eng. 2022;8:3162–3186. doi: 10.1021/acsbiomaterials.2c00140. PubMed DOI
Koons G.L., Diba M., Mikos A.G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020;5:584–603. doi: 10.1038/s41578-020-0204-2. DOI
Kokubo T., Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–2915. doi: 10.1016/j.biomaterials.2006.01.017. PubMed DOI
Tashmetov M.Y., Ismatov N.B., Allayarov S.R. X-ray Diffraction Study of the Structure of Gamma-Irradiated Low-Density Polyethylene. High Energy Chem. 2022;56:175–179. doi: 10.1134/S0018143922030109. DOI
Tanniru M., Yuan Q., Misra R.D.K. On significant retention of impact strength in clay–reinforced high-density polyethylene (HDPE) nanocomposites. Polymer. 2006;47:2133–2146. doi: 10.1016/j.polymer.2006.01.063. DOI
Holešová S., Valášková M., Plevová E., Pazdziora E., Matějová K. Preparation of novel organovermiculites with antibacterial activity using chlorhexidine diacetate. J. Colloid Interface Sci. 2010;342:593–597. doi: 10.1016/j.jcis.2009.10.051. PubMed DOI
Holešová S., Samlíková M., Pazdziora E., Valášková M. Antibacterial activity of organomontmorillonites and organovermiculites prepared using chlorhexidine diacetate. Appl. Clay Sci. 2013;83:17–23. doi: 10.1016/j.clay.2013.07.013. DOI
Hotta S., Paul D. Nanocomposites formed from linear low density polyethylene and organoclays. Polymer. 2004;45:7639–7654. doi: 10.1016/j.polymer.2004.08.059. DOI
Pazourková L., Reli M., Hundáková M., Pazdziora E., Predoi D., Simha Martynková G., Lafdi K. Study of the structure and antimicrobial activity of Ca-deficient ceramics on chlorhexidine nanoclay substrate. Materials. 2019;12:2996. doi: 10.3390/ma12182996. PubMed DOI PMC
Pazourková L., Peikertová P., Hundáková M., Martynková G.S. Preparation of calcium deficient hydroxyapatite on the montmorillonite substrate: Structure and morphology. Mater. Today Proc. 2021;37:35–41. doi: 10.1016/j.matpr.2020.02.927. DOI