The influence of individual-level determinants on compliance with mHealth walking suggestions and older adults' experiences: A longitudinal exploratory mixed methods study
Language English Country England, Great Britain Media print
Document type Journal Article
Grant support
3G005520
Research Foundation Flanders (FWO)
BOF.PDO.2022.0013.01
Ghent University - Special Research Fund
PubMed
40366027
DOI
10.1111/aphw.70040
Knihovny.cz E-resources
- Keywords
- elderly, event‐based EMA, physical activity, recommendations,
- MeSH
- Patient Compliance * psychology MeSH
- Walking * psychology MeSH
- Smartphone MeSH
- Exercise psychology MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Health Promotion * methods MeSH
- Self Efficacy MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Telemedicine MeSH
- Intention MeSH
- Healthy Aging * psychology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Promoting healthy aging through physical activity (PA) is crucial as the global population grows older. Traditional interventions often fail to engage older adults, underlining the need for personalized, timely approaches. Smartphone-delivered PA interventions can offer personalized support during opportune moments for behavioral change. The current study examined whether the receptivity of inactive older adults influences compliance with mHealth walking suggestions after inactivity, and explored their experiences with it. Thirty healthy older adults (mean age 73.9 years) participated in the study and answered event-based EMA questionnaires via HealthReact after each 30-minute inactivity period. Emotions, physical complaints, intention, self-efficacy, perceived walking, and environmental permissiveness were assessed. Walking suggestions followed each EMA, and semi-structured interviews were conducted post-study. Multilevel logistic regressions in R were applied, and qualitative data were thematically analyzed using NVivo. Results show that higher intention, self-efficacy, and environmental permissiveness positively correlated with compliance, while higher perceived walking negatively correlated. Participants generally found the suggestions motivating and well-timed, but some reported increased alertness and pressure. Consequently, tailoring interventions to individual needs and targeting receptive moments can enhance compliance and promote healthier aging through increased PA. Future mobile interventions should consider self-efficacy, intention, prior activity, and environmental conditions to improve effectiveness.
Faculty of Physical Education and Sport Charles University Prague Czech Republic
Faculty of Science University of Hradec Kralove Hradec Kralove Czech Republic
See more in PubMed
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50, 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I., Fishbein, M. 1980. Understanding attitudes and predicting social behavior.
Angevaren, M., Aufdemkampe, G., Verhaar, H., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. In Cochrane database of systematic reviews. John Wiley & Sons, Ltd. https://doi.org/10.1002/14651858.cd005381.pub3
Aune, D., Norat, T., Leitzmann, M., Tonstad, S., & Vatten, L. J. (2015). Physical activity and the risk of type 2 diabetes: A systematic review and dose‐response meta‐analysis. European Journal of Epidemiology, 30, 529–542. https://doi.org/10.1007/s10654-015-0056-z
Bandura, A. (1998). Health promotion from the perspective of social cognitive theory. Psychology & Health, 13, 623–649. https://doi.org/10.1080/08870449808407422
Bull, F. C., Al‐Ansari, S. S., Biddle, S., Borodulin, K., Buman, M. P., Cardon, G., Carty, C., Chaput, J. P., Chastin, S., Chou, R., Dempsey, P. C., Dipietro, L., Ekelund, U., Firth, J., Friedenreich, C. M., Garcia, L., Gichu, M., Jago, R., Katzmarzyk, P. T., … Willumsen, J. F. (2020). World Health Organization 2020 guidelines on physical activity and sedentary behaviour. British Journal of Sports Medicine, 54, 1451–1462. https://doi.org/10.1136/bjsports-2020-102955
Carey, R. N., Connell, L. E., Johnston, M., Rothman, A. J., De Bruin, M., Kelly, M. P., & Michie, S. (2018). Behavior change techniques and their mechanisms of action: A synthesis of links described in published intervention literature. Annals of Behavioral Medicine, 53, 693–707. https://doi.org/10.1093/abm/kay078
Daniels, K., Lemmens, R., Knippenberg, E., Marinus, N., Vonck, S., Baerts, J., Bergs, J., Spooren, A., Hansen, D., & Bonnechère, B. (2023). Promoting physical activity and a healthy active lifestyle in community‐dwelling older adults: A design thinking approach for the development of a mobile health application. Frontiers in Public Health, 11, 1280941. https://doi.org/10.3389/fpubh.2023.1280941
De Marez L. Sevenhant R. Denecker F. Georges A. Wuyts G. Schuurman D. 2023 imec.digimeter.2022.
De Marez, L., Sevenhant, R., Denecker, F., Georges, A., Wuyts, G., Schuurman, D., 2024. imec.digimeter.2023.
Delespaul, P. (1995). Assessing schizophrenia in daily life: The experience sampling method. Maastricht University Press.
Delobelle, J., Lebuf, E., Dyck, D., Van, D., Compernolle, S., Janek, M., Backere, F., De, B., & Vetrovsky, T. (2024). Fitbit's accuracy to measure short bouts of stepping and sedentary behavior: Validation, sensitivity and specificity study. Digital Health, 10, 20552076241262710. https://doi.org/10.1177/20552076241262710
Dunton, G. F. (2017). Ecological momentary assessment in physical activity research. Exercise and Sport Sciences Reviews, 45, 48–54. https://doi.org/10.1249/JES.0000000000000092
Dunton, G. F., Atienza, A. A., Castro, C. M., & King, A. C. (2009). Using ecological momentary assessment to examine antecedents and correlates of physical activity bouts in adults age 50+ years: A pilot study. Annals of Behavioral Medicine, 38, 249–255. https://doi.org/10.1007/s12160-009-9141-4
Ekelund, U., Tarp, J., Fagerland, M. W., Johannessen, J. S., Hansen, B. H., Jefferis, B. J., Whincup, P. H., Diaz, K. M., Hooker, S., Howard, V. J., Chernofsky, A., Larson, M. G., Spartano, N., Vasan, R. S., Dohrn, I. M., Hagströmer, M., Edwardson, C., Yates, T., Shiroma, E. J., … Lee, I. M. (2020). Joint associations of accelero‐meter measured physical activity and sedentary time with all‐cause mortality: A harmonised meta‐analysis in more than 44 000 middle‐aged and older individuals. British Journal of Sports Medicine, 54, 1499–1506. https://doi.org/10.1136/bjsports-2020-103270
Hardeman, W., Houghton, J., Lane, K., Jones, A., & Naughton, F. (2019). A systematic review of just‐in‐time adaptive interventions (JITAIs) to promote physical activity. International Journal of Behavioral Nutrition and Physical Activity, 16, 31. https://doi.org/10.1186/s12966-019-0792-7
Janevic, M. R., McLaughlin, S. J., & Connell, C. M. (2012). Overestimation of physical activity among a nationally representative sample of underactive individuals with diabetes. Medical Care, 50, 441–445. https://doi.org/10.1097/MLR.0b013e3182422a52
Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2002). The PHQ‐15: Validity of a new measure for evaluating the severity of somatic symptoms. Psychosomatic Medicine, 64, 258–266. https://doi.org/10.1097/00006842-200203000-00008
Lachman, S., Boekholdt, S. M., Luben, R. N., Sharp, S. J., Brage, S., Khaw, K. T., Peters, R. J. G., & Wareham, N. J. (2018). Impact of physical activity on the risk of cardiovascular disease in middle‐aged and older adults: EPIC Norfolk prospective population study. European Journal of Preventive Cardiology, 25, 200–208. https://doi.org/10.1177/2047487317737628
Maes, I., Mertens, L., Poppe, L., Crombez, G., Vetrovsky, T., & Van Dyck, D. (2022). The variability of emotions, physical complaints, intention, and self‐efficacy: An ecological momentary assessment study in older adults. PeerJ, 10, e13234. https://doi.org/10.7717/peerj.13234
Maes, I., Mertens, L., Poppe, L., Vetrovsky, T., Crombez, G., De Backere, F., Brondeel, R., & Van Dyck, D. (2023). Within‐person associations of accelerometer‐assessed physical activity with time‐varying determinants in older adults: Time‐based ecological momentary assessment study. JMIR Aging, 6, e44425. https://doi.org/10.2196/44425
Maes, I., Van Dyck, D., Van Cauwenberg, J., & Mertens, L. (2021). Age‐related differences in the associations of physical environmental factors and psychosocial factors with accelerometer‐assessed physical activity. Health & Place, 67, 102492. https://doi.org/10.1016/j.healthplace.2020.102492
Maher, J., Dzubur, E., Huh, J., Intille, S., & Dunton, G. (2016). Within‐day time‐varying associations between behavioral cognitions and physical activity in adults. Journal of Sport & Exercise Psychology, 38(4), 423–434. https://doi.org/10.1123/jsep.2016-0058
Maher, J. P., & Dunton, G. F. (2020). Within‐day time‐varying associations between motivation and movement‐related behaviors in older adults. Psychology of Sport and Exercise, 47, 101522. https://doi.org/10.1016/j.psychsport.2019.04.012
Mahmood, A., Nayak, P., Deshmukh, A., English, C., Manikandan, N., Solomon, J., & Unnikrishnan, B. (2023). Measurement, determinants, barriers, and interventions for exercise adherence: A scoping review. Journal of Bodywork and Movement Therapies, 33, 95–105. https://doi.org/10.1016/j.jbmt.2022.09.014
Mair, J. L., Hayes, L. D., Campbell, A. K., Buchan, D. S., Easton, C., & Sculthorpe, N. (2022). A personalized smartphone‐delivered just‐in‐time adaptive intervention (JitaBug) to increase physical activity in older adults: Mixed methods feasibility study. JMIR Formative Research, 6, e34662. https://doi.org/10.2196/34662
Malm, C., Jakobsson, J., & Isaksson, A. (2019). Physical activity and sports—Real health benefits: A review with insight into the public health of Sweden. Sports, 7, 127. https://doi.org/10.3390/sports7050127
Nahum‐Shani, I., Hekler, E. B., & Spruijt‐Metz, D. (2015). Building health behavior models to guide the development of just‐in‐time adaptive interventions: A pragmatic framework. Health Psychology, 34, 1209–1219. https://doi.org/10.1037/hea0000306
Nahum‐Shani, I., Smith, S. N., Spring, B. J., Collins, L. M., Witkiewitz, K., Tewari, A., & Murphy, S. A. (2018). Just‐in‐time adaptive interventions (JITAIs) in mobile health: Key components and design principles for ongoing health behavior support. Annals of Behavioral Medicine, 52, 446–462. https://doi.org/10.1007/s12160-016-9830-8
Nahum‐Shani, I., Wetter, D. W., & Murphy, S. A. (2022). Adapting just‐in‐time interventions to vulnerability and receptivity: Conceptual and methodological considerations. In Digital therapeutics for mental health and addiction: The state of the science and vision for the future (pp. 77–87). Elsevier. https://doi.org/10.1016/B978-0-323-90045-4.00012-5
Picorelli, A. M. A., Pereira, L. S. M., Pereira, D. S., Felício, D., & Sherrington, C. (2014). Adherence to exercise programs for older people is influenced by program characteristics and personal factors: A systematic review. Journal of Physiotherapy, 60, 151–156. https://doi.org/10.1016/j.jphys.2014.06.012
Rudnicka, E., Napierała, P., Podfigurna, A., Męczekalski, B., Smolarczyk, R., & Grymowicz, M. (2020). The World Health Organization (WHO) approach to healthy ageing. Maturitas, 139, 6–11. https://doi.org/10.1016/j.maturitas.2020.05.018
Schroé, H., Van Der Mispel, C., De Bourdeaudhuij, I., Verloigne, M., Poppe, L., & Crombez, G. (2019). A factorial randomised controlled trial to identify efficacious self‐regulation techniques in an e‐ and m‐health intervention to target an active lifestyle: Study protocol. Trials, 20, 1–14. https://doi.org/10.1186/s13063-019-3456-7
Schroé, H., Van Dyck, D., De Paepe, A., Poppe, L., Loh, W. W., Verloigne, M., Loeys, T., De Bourdeaudhuij, I., & Crombez, G. (2020). Which behaviour change techniques are effective to promote physical activity and reduce sedentary behaviour in adults: A factorial randomized trial of an e‐ and m‐health intervention. International Journal of Behavioral Nutrition and Physical Activity, 17, 1–16. https://doi.org/10.1186/s12966-020-01001-x
Schuch, F. B., Vancampfort, D., Richards, J., Rosenbaum, S., Ward, P. B., & Stubbs, B. (2016). Exercise as a treatment for depression: A meta‐analysis adjusting for publication bias. Journal of Psychiatric Research, 77, 42–51. https://doi.org/10.1016/j.jpsychires.2016.02.023
Shiffman, S., Stone, A., & Hufford, M. (2008). Ecological momentary assessment. Annual Review of Clinical Psychology, 4, 1–32. https://doi.org/10.1146/annurev.clinpsy.3.022806.091415
Shrestha, N., Grgic, J., Wiesner, G., Parker, A., Podnar, H., Bennie, J. A., Biddle, S. J. H., & Pedisic, Z. (2019). Effectiveness of interventions for reducing non‐occupational sedentary behaviour in adults and older adults: A systematic review and meta‐analysis. British Journal of Sports Medicine, 53, 1206–1213. https://doi.org/10.1136/bjsports-2017-098270
Spence, J. C., & Lee, R. E. (2003). Toward a comprehensive model of physical activity. Psychology of Sport and Exercise, 4, 7–24. https://doi.org/10.1016/S1469-0292(02)00014-6
Van Holle, V., Van Cauwenberg, J., Van Dyck, D., Deforche, B., Van de Weghe, N., & De Bourdeaudhuij, I. (2014). Relationship between neighborhood walkability and older adults' physical activity: Results from the Belgian environmental physical activity study in seniors (BEPAS seniors). International Journal of Behavioral Nutrition and Physical Activity, 11, 110. https://doi.org/10.1186/s12966-014-0110-3
Vetrovsky, T., Kral, N., Pfeiferova, M., Kuhnova, J., Novak, J., Wahlich, C., Jaklova, A., Jurkova, K., Janek, M., Omcirk, D., Capek, V., Maes, I., Steffl, M., Ussher, M., Tufano, J. J., Elavsky, S., Van Dyck, D., Cimler, R., Yates, T., … Seifert, B. (2023). mHealth intervention delivered in general practice to increase physical activity and reduce sedentary behaviour of patients with prediabetes and type 2 diabetes (ENERGISED): Rationale and study protocol for a pragmatic randomised controlled trial. BMC Public Health, 23, 613. https://doi.org/10.1186/s12889-023-15513-1