Current trends in the development of polymer-based monolithic stationary phases
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article, Review
PubMed
38715639
PubMed Central
PMC10989626
DOI
10.1002/ansa.202100065
PII: ANSA202100065
Knihovny.cz E-resources
- Keywords
- column technology, liquid chromatography, monolith, sample treatment, surface modification,
- Publication type
- Journal Article MeSH
- Review MeSH
This review focuses on the development and applications of organic polymer monoliths, with special attention to the literature published in 2021. The latest protocols in the preparation of polymer monoliths are discussed. In particular, tailored surface modification using nanomaterials, the development of chiral stationary phases and development of stationary phases for capillary electrochromatography are reviewed. Furthermore, the optimization of pore forming solvents composition is also discussed. Finally, the use of monolithic stationary phases in sample treatment using solid-phase extraction and enrichment methods, molecularly imprinted polymers and enzymatic reactors is mentioned.
See more in PubMed
Hjerten S, Liao J. High‐performance liquid‐chromatography of proteins on compressed, non‐porous agarose beads .1. Hydrophobic‐interaction chromatography. Journal of Chromatography. 1988;457:165‐174. PubMed
Tennikova T, Bleha M, Svec F, Almazova T, Belenkii B. High‐performance membrane chromatography of proteins, a novel method of protein separation. Journal of Chromatography. 1991;555(1‐2):97‐107.
Svec F. Porous polymer monoliths: amazingly wide variety of techniques enabling their preparation. J Chromatogr A. 2010;1217(6):902‐924. PubMed PMC
Frantisek Svec, Frechet JMJ. Continuous rods of macroporous polymer as high‐performance liquid chromatography separation media. Anal Chem. 1992;64(7):820‐822. PubMed
Svec F, Lv Y. Advances and recent trends in the field of monolithic columns for chromatography. Anal Chem. 2015;87(1):250‐273. PubMed
Ibrahim AE, Hashem H, Saleh H, Elhenawee M. Performance comparison between monolithic, core‐shell, and totally porous particulate columns for application in greener and faster chromatography. J AOAC Int. 2018;101(6):1985‐1992. PubMed
Peters EC, Petro M, Svec F, Frechet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Anal Chem. 1998;70(11):2288‐2295. PubMed
Peters EC, Petro M, Svec F, Fréchet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 2. Effect of chromatographic conditions on the separation. Anal Chem. 1998;70(11):2296‐2302. PubMed
Urban J. Are we approaching a post‐monolithic era? J Sep Sci. 2020;43(9‐10):1628‐1633. PubMed
Komendova M, Ribeiro LF, Urban J. Controlling selectivity of polymer‐based monolithic stationary phases. J Sep Sci. 2019;42(5):952‐961. PubMed
Dores‐Sousa JL, Terryn H, Eeltink S. Morphology optimization and assessment of the performance limits of high‐porosity nanostructured polymer monolithic capillary columns for proteomics analysis. Analytica Chimica Acta. 2020;1124:176‐183. PubMed
Zou HF, Huang XD, Ye ML, Luo QZ. Monolithic stationary phases for liquid chromatography and capillary electrochromatography. J Chromatogr A. 2002;954(1‐2):5‐32. PubMed
Tennikova T, Belenkii B, Svec F. High‐performance membrane chromatography—a novel method of protein separation. J Liq Chromatogr. 1990;13(1):63‐70.
Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J Sep Science. 2004;27(10‐11):747‐766. PubMed
Eeltink S, Meston D, Svec F. Recent developments and applications of polymer monolithic stationary phases. Analytical Science Advances. 2021;2(3‐4):250‐260. PubMed PMC
Svec F, Peters EC, Sýkora D, Yu C, Fréchet JMJ. Monolithic stationary phases for capillary electrochromatography based on synthetic polymers: designs and applications. J High Resolut Chromatograph. 2000;23(1):3‐18.
Viklund C, Svec F, Frechet JMJ, Irgum K. Fast ion‐exchange HPLC of proteins using porous poly(glycidyl methacrylate‐co‐ethylene dimethacrylate) monoliths grafted with poly(2‐acrylamido‐2‐methyl‐1‐propanesulfonic acid). Biotechnol Prog. 1997;13(5):597‐600. PubMed
Coufal P, Čihák M, Suchánková J, Tesařová E, Bosáková Z, Štulík K. Methacrylate monolithic columns of 320 μm I.D. for capillary liquid chromatography. Journal of Chromatography A. 2002;946(1‐2):99‐106. PubMed
Moravcova D, Jandera P, Urban J, Planeta J. Characterization of polymer monolithic stationary phases for capillary HPLC. J Sep Sci. 2003;26(11):1005‐1016.
Moravcová D, Jandera P, Urban J, Planeta J. Comparison of monolithic silica and polymethacrylate capillary columns for LC. Journal of Separation Science. 2004;27(10‐11):789‐800. PubMed
Gusev I, Huang X, Horvath C. Capillary columns with in situ formed porous monolithic packing for micro high‐performance liquid chromatography and capillary electrochromatography. J Chromatogr A. 1999;855(1):273‐290. PubMed
Kucerova Z, Szumski M, Buszewski B, Jandera P. Alkylated poly(styrene‐divinylbenzene) monolithic columns for mu‐HPLC and CEC separation of phenolic acids. J Sep Sci. 2007;30(17):3018‐3026. PubMed
Svobodova A, Krizek T, Sirc J, et al. Monolithic columns based on a poly(styrene‐divinylbenzene‐methacrylic acid) copolymer for capillary liquid chromatography of small organic molecules. J Chromatogr A. 2011;1218(11):1544‐1547. PubMed
Xie S, Allington RW, Fréchet JMJ, Svec F, Freitag R. Modern advances in chromatography. Advances in Biochemical Engineering/Biotechnology. Berlin: Springer; 2002:87‐125.
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci. 2016;39(1):51‐68. PubMed
Nischang I, Brueggemann O. On the separation of small molecules by means of nano‐liquid chromatography with methacrylate‐based macroporous polymer monoliths. J Chromatogr A. 2010;1217(33):5389‐5397. PubMed
Nischang I, Teasdale I, Brüggemann O. Towards porous polymer monoliths for the efficient, retention‐independent performance in the isocratic separation of small molecules by means of nano‐liquid chromatography. Journal of Chromatography A. 2010;1217(48):7514‐7522. PubMed
Nischang I. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. Journal of Chromatography A. 2013;1287:39‐58. PubMed
Urban J, Svec F, Fréchet JMJ. Efficient separation of small molecules using a large surface area hypercrosslinked monolithic polymer capillary column. Anal Chem. 2010;82(5):1621‐1623. PubMed PMC
Furukawa H, Cordova KE, O'Keeffe M, Yaghi OM. The chemistry and applications of metal‐organic frameworks. Science. 2013;341(6149):974. PubMed
Cote AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166‐1170. PubMed
Chambers SD, Svec F, Frechet JMJ. Incorporation of carbon nanotubes in porous polymer monolithic capillary columns to enhance the chromatographic separation of small molecules. J Chromatogr A. 2011;1218(18):2546‐2552. PubMed PMC
Peristyy AA, Fedyanina ON, Paull B, Nesterenko PN. Diamond based adsorbents and their application in chromatography. J Chromatogr A. 2014;1357:68‐86. PubMed
Long DL, Tsunashima R, Polyoxometalates CroninL. Building blocks for functional nanoscale systems. Angew Chem‐Int Edit. 2010;49(10):1736‐1758. PubMed
Sajid M, Basheer C. Layered double hydroxides: emerging sorbent materials for analytical extractions. Trac‐Trends Anal Chem. 2016;75:174‐182.
Wang T, Chen Y, Ma J, et al. Attapulgite nanoparticles‐modified monolithic column for hydrophilic in‐tube solid‐phase microextraction of cyromazine and melamine. Anal Chem. 2016;88(3):1535‐1541. PubMed
Ning H, Yang Z, Yin Z, et al. A novel strategy to enhance the performance of CO2 adsorption separation: grafting hyper‐cross‐linked polyimide onto composites of UiO‐66‐NH2 and GO. ACS Appl Mater Interfaces. 2021;13(15):17781‐17790. PubMed
Lv Y, Tan X, Svec F. Preparation and applications of monolithic structures containing metal‐organic frameworks. J Sep Sci. 2017;40(1):272‐287. PubMed
Maya F, Paull B. Recent strategies to enhance the performance of polymer monoliths for analytical separations. J Sep Sci. 2019;42(8):1564‐1576. PubMed
Fu YY, Yang CX, Yan XP. Incorporation of metal‐organic framework UiO‐66 into porous polymer monoliths to enhance the liquid chromatographic separation of small molecules. Chem Commun. 2013;49(64):7162‐7164. PubMed
Huang HY, Lin CL, Wu CY, Cheng YJ, Lin CH. Metal organic framework‐organic polymer monolith stationary phases for capillary electrochromatography and nano‐liquid chromatography. Anal Chim Acta. 2013;779:96‐103. PubMed
Lin CL, Lirio S, Chen YT, Lin CH, Huang HY. A novel hybrid metal‐organic framework‐polymeric monolith for solid‐phase microextraction. Chem Eur J. 2014;20(12):3317‐3321. PubMed
Yusuf K, Badjah‐Hadj‐Ahmed AY, Aqel A, ALOthman ZA. Monolithic metal‐organic framework MIL‐53(Al)‐polymethacrylate composite column for the reversed‐phase capillary liquid chromatography separation of small aromatics. J Sep Sci. 2016;39(5):880‐888. PubMed
Snyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography, 3rd ed. New York, NY: Wiley. Accessed February 10, 2022. https://www.wiley.com/en‐ie/Introduction+to+Modern+Liquid+Chromatography%2C+3rd+Edition‐p‐9780470167540.
Ma M, Zhang J, Li P, et al. Immobilization of cellulase on monolith supported with Zr(IV)‐based metal‐organic framework as chiral stationary phase for enantioseparation of five basic drugs in capillary electrochromatography. Microchim Acta. 2021;188(6):186. PubMed
Torres‐Cartas S, Meseguer‐Lloret S, Gomez‐Benito C, Catala‐Icardo M, Simo‐Alfonso EF, Manuel Herrero‐Martinez J. Preparation of monolithic polymer‐magnetite nanoparticle composites into poly(ethylene‐co‐tetrafluoroethylene) tubes for uses in micro‐bore HPLC separation and extraction of phosphorylated compounds. Talanta. 2021;224:121806. PubMed
Fresco‐Cala B, Carrasco‐Correa EJ, Cárdenas S, Herrero‐Martínez JM. Carbon nanostructures incorporated on methacrylate monoliths for separation of small molecules by nano‐liquid chromatography. Microchemical Journal. 2018;139:222‐229.
Javier Carrasco‐Correa E, Ramis‐Ramos G. Hybrid methacrylate monolithic columns containing magnetic nanoparticles for capillary electrochromatography. J Chromatogr A. 2015;1385:77‐84. PubMed
Lv Y, Alejandro FM, Frechet JMJ, Svec F. Preparation of porous polymer monoliths featuring enhanced surface coverage with gold nanoparticles. J Chromatogr A. 2012;1261:121‐128. PubMed PMC
Terborg L, Masini JC, Lin M, Lipponen K, Riekolla ML, Svec F. Porous polymer monolithic columns with gold nanoparticles as an intermediate ligand for the separation of proteins in reverse phase‐ion exchange mixed mode. J Adv Res. 2015;6(3):441‐448. PubMed PMC
Ganewatta N, El Rassi Z. Polymethacrylate‐based monolithic column with incorporated carbamide‐modified fumed silica nanoparticles for hydrophilic liquid interaction chromatography. J Liq Chromatogr Relat Technol. 2021;44(3‐4):255‐264.
Ward TJ, Ward KD. Chiral separations: a review of current topics and trends. Anal Chem. 2012;84(2):626‐635. PubMed
Eljarrat E, Guerra P, Barcelo D. Enantiomeric determination of chiral persistent organic pollutants and their metabolites. Trac‐Trends Anal Chem. 2008;27(10):847‐861.
Rocco A, Aturki Z, Fanali S. Chiral separations in food analysis. TrAC Trends in Analytical Chemistry. 2013;52:206‐225.
Svec F. Recent developments in the field of monolithic stationary phases for capillary electrochromatography. J Sep Sci. 2005;28(8):729‐745. PubMed
Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns for high‐efficiency chromatographic separations. J Chromatogr A. 2002;965(1‐2):35‐49. PubMed
Guo J, Wang Q, Xu D, Crommen J, Jiang Z. Recent advances in preparation and applications of monolithic chiral stationary phases. TrAC Trends in Analytical Chemistry. 2020;123:115774.
Chen L, Li M, Ai Y, Dang X, Huang J, Chen H. One‐pot preparation of an acryloyled beta‐cyclodextrin‐silica hybrid monolithic column and its application for determination of carbendazim and carbaryl. Food Chem. 2018;269:181‐186. PubMed
Shen J, Okamoto Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem Rev. 2016;116(3):1094‐1138. PubMed
Deng M, Li M, Zhao Y, Jiang Z, Guo X. A novel one‐pot strategy to prepare beta‐cyclodextrin functionalized capillary monoliths for enantioseparation of basic drugs. Talanta. 2018;189:458‐466. PubMed
Ahmed M, Ghanem A. Chiral β‐cyclodextrin functionalized polymer monolith for the direct enantioselective reversed phase nano liquid chromatographic separation of racemic pharmaceuticals. Journal of Chromatography A. 2014;1345:115‐127. PubMed
Park JM, Park JH. Enantiomer separations of basic chiral compounds by capillary electrochromatography on a phosphated β‐cyclodextrin‐modified zirconia monolith. Journal of Chromatography A. 2014;1339:229‐233. PubMed
Zhao Y, Si H, Zhao X, et al. Fabrication of an allyl‐β‐cyclodextrin based monolithic column with triallyl isocyanurate as co‐crosslinker and its application in separation of lipopeptide antibiotics by HPLC. Microchemical Journal. 2021;168:106462.
Fouad A, Marzouk AA, Shaykoon MSA, Ibrahim SM, El‐Adl SM, Ghanem A. Daptomycin: a novel macrocyclic antibiotic as a chiral selector in an organic polymer monolithic capillary for the enantioselective analysis of a set of pharmaceuticals. Molecules. 2021;26(12):3527. PubMed PMC
Calleri E, Temporini C, Perani E, et al. Development of a bioreactor based on trypsin immobilized on monolithic support for the on‐line digestion and identification of proteins. Journal of Chromatography A. 2004;1045(1):99‐109. PubMed
Thelohan S, Jadaud P, Wainer IW. Immobilized enzymes as chromatographic phases for HPLC: the chromatography of free and derivatized amino acids on immobilized trypsin. Chromatographia. 1989;28(11‐12):551‐555.
Amalia S, Angga SC, Iftitah ED, et al. Immobilization of trypsin onto porous methacrylate‐based monolith for flow‐through protein digestion and its potential application to chiral separation using liquid chromatography. Heliyon. 2021;7(8):e07707. PubMed PMC
Rathore AS, Horváth C. Chapter 1‐Migration of charged sample components and electroosmotic flow in packed capillary columns. Journal of Chromatography Library. 2001;62:1‐38.
Neequaye T, El Rassi Z. Poly(carboxyethyl acrylate‐co‐ethylene glycol dimethacrylate) precursor monolith with bonded octadecyl ligands for use in reversed‐phase capillary electrochromatography. Electrophoresis. 2021;42:2656–2663. PubMed
Sun G, Tang W, Lu Y, Row KH. Growth of two‐layer copolymer as the stationary phase with very high separation efficiency for separating peptides in capillary electrochromatography. Electrophoresis. 2021;42(20):2087‐2093. PubMed
Hu C, Mao Z, Li Z, Li Q, Chen Z. Benzoic acid‐modified monolithic column for separation of hydrophilic compounds by capillary electrochromatography with high content of water in mobile phase. J Chromatogr A. 2021;1647:462166. PubMed
Svec F, Frechet J. Kinetic control of pore formation in macroporous polymers—formation of molded porous materials with high‐flow characteristics for separations or catalysis. Chem Mat. 1995;7(4):707‐715.
Li Y, Tolley HD, Lee ML. Poly[hydroxyethyl acrylate‐co‐poly(ethylene glycol) diacrylate] monolithic column for efficient hydrophobic interaction chromatography of proteins. Anal Chem. 2009;81(22):9416‐9424. PubMed
Liu Z, Peng Y, Wang T, et al. Preparation and application of novel zwitterionic monolithic column for hydrophilic interaction chromatography. Journal of Separation Science. 2013;36(2):262‐269. PubMed
Wang J, Jiang X, Zhang H, Liu S, Bai L, Liu H. Preparation of a porous polymer monolithic column with an ionic liquid as a porogen and its applications for the separation of small molecules in high performance liquid chromatography. Anal Methods. 2015;7(18):7879‐7888.
Urban J, Jandera P, Langmaier P. Effects of functional monomers on retention behavior of small and large molecules in monolithic capillary columns at isocratic and gradient conditions. J Sep Sci. 2011;34(16‐17):2054‐2062. PubMed
Gu C, He J, Jia J, Fang N, Simmons R, Shamsi SA. Surfactant‐bound monolithic columns for separation of proteins in capillary high performance liquid chromatography. J Chromatogr A. 2010;1217(4):530‐539. PubMed PMC
Li Y, Gu B, Tolley HD, Lee ML. Preparation of polymeric monoliths by copolymerization of acrylate monomers with amine functionalities for anion‐exchange capillary liquid chromatography of proteins. J Chromatogr A. 2009;1216(29):5525‐5532. PubMed
Santora BP, Gagné MR, Moloy KG, Radu NS. Porogen and cross‐linking effects on the surface area, pore volume distribution, and morphology of macroporous polymers obtained by bulk polymerization. Macromolecules. 2001;34(3):658‐661.
Du KF, Yang D, Sun Y. Fabrication of high‐permeability and high‐capacity monolith for protein chromatography. J Chromatogr A. 2007;1163(1‐2):212‐218. PubMed
Zhong H, El Rassi Z. Neutral polar methacrylate‐based monoliths for normal phase nano‐LC and CEC of polar species including N‐glycans. J Sep Sci. 2009;32(1):10‐20. PubMed
Koeck R, Fischnaller M, Bakry R, Tessadri R, Bonn GK. Preparation and evaluation of monolithic poly(N‐vinylcarbazole‐co‐1,4‐divinylbenzene) capillary columns for the separation of small molecules. Anal Bioanal Chem. 2014;406(24):5897‐5907. PubMed
Talebi M, Arrua RD, Gaspar A, et al. Epoxy‐based monoliths for capillary liquid chromatography of small and large molecules. Anal Bioanal Chem. 2013;405(7):2233‐2244. PubMed
Bai L, Wang J, Zhang H, Liu S, Qin J, Liu H. Ionic liquid as porogen in the preparation of a polymer‐based monolith for the separation of protein by high performance liquid chromatography. Anal Methods. 2015;7(2):607‐613.
Aggarwal P, Lawson JS, Tolley HD, Lee ML. High efficiency polyethylene glycol diacrylate monoliths for reversed‐phase capillary liquid chromatography of small molecules. J Chromatogr A. 2014;1364:96‐106. PubMed
Aoki H, Kubo T, Ikegami T, et al. Preparation of glycerol dimethacrylate‐based polymer monolith with unusual porous properties achieved via viscoelastic phase separation induced by monodisperse ultra high molecular weight poly(styrene) as a porogen. J Chromatogr A. 2006;1119(1‐2):66‐79. PubMed
Cooper AI, Holmes AB. Synthesis of molded monolithic porous polymers using supercritical carbon dioxide as the porogenic solvent. Advanced Materials. 1999;11(15):1270‐1274.
Hebb AK, Senoo K, Cooper AI. Synthesis of porous cross‐linked polymer monoliths using 1,1,1,2‐tetrafluoroethane (R134a) as the porogen. Compos Sci Technol. 2003;63(16):2379‐2387.
Danquah MK, Forde GM. Preparation of macroporous methacrylate monolithic material with convective flow properties for bioseparation: investigating the kinetics of pore formation and hydrodynamic performance. Chem Eng J. 2008;140(1‐3):593‐599.
Desire CT, Arrua RD, Talebi M, Lacher NA, Hilder EF. Poly(ethylene glycol)‐based monolithic capillary columns for hydrophobic interaction chromatography of immunoglobulin G subclasses and variants. J Sep Sci. 2013;36(17):2782‐2792. PubMed
Kornysova O, Maruska A, Owens PK, Erickson A. Non‐particulate (continuous bed or monolithic) acrylate‐based capillary columns for reversed‐phase liquid chromatography and electrochromatography. J Chromatogr A. 2005;1071(1‐2):171‐178. PubMed
Li Y, Tolley HD, Lee ML. Preparation of polymer monoliths that exhibit size exclusion properties for proteins and peptides. Anal Chem. 2009;81(11):4406‐4413. PubMed
Korzhikova‐Vlakh EG, Tennikova TB. Some factors affecting pore size in the synthesis of rigid polymer monoliths: theory and its applicability. J Appl Polym Sci. 2022;139(1):e51431.
Mansour FR, Arrua RD, Desire CT, Hilder EF. Non‐ionic surface active agents as additives toward a universal porogen system for porous polymer monoliths. Anal Chem. 2021;93(5):2802‐2810. PubMed
Mansour FR, Desire CT, Hilder EF, Arrua RD. Effect of ethoxylated sorbitan ester surfactants on the chromatographic efficiency of poly(ethylene glycol)‐based monoliths. J Chromatogr A. 2021;1654:462464. PubMed
Svec F. Less common applications of monoliths: preconcentration and solid‐phase extraction. J Chromatogr B. 2006;841(1‐2):52‐64. PubMed
Arthur C, Pawliszyn J. Solid‐phase microextraction with thermal‐desorption using fused‐silica optical fibers. Anal Chem. 1990;62(19):2145‐2148.
Hu W, Zhou W, Wang C, Liu Z, Chen Z. Rapid analysis of biological samples using monolithic polymer‐based in‐tube solid‐phase microextraction with direct mass spectrometry. ACS Appl Bio Mater. 2021;4(8):6236‐6243. PubMed
Wang R, Wan T, Li W, Chen Z. Schiff base network‐1 incorporated monolithic column for in‐tube solid phase microextraction of antiepileptic drugs in human plasma. Talanta. 2021;226:122098. PubMed
Zhang Q, Yang Y, Zhang C, Zheng Y, Wu Y, Wang X. Development of an aptamer‐functionalized capillary monolithic column for the highly‐selective and highly‐efficient recognition of patulin. Food Control. 2021;119:107461.
Han Y, Ye Z, Chen L, Xiao L. Gold nanoparticles enumeration with dark‐field optical microscope for the sensitive glycoprotein sandwich assay. Anal Chim Acta. 2020;1109:53‐60. PubMed
Wang C, Qian L, Ji L, et al. Affinity chromatography assisted comprehensive phosphoproteomics analysis of human saliva for lung cancer. Anal Chim Acta. 2020;1111:103‐113. PubMed
Ali MM, Hussain D, Tang Y, et al. Boronoisophthalic acid as a novel affinity ligand for the selective capture and release of glycoproteins near physiological pH. Talanta. 2021;225:121896. PubMed
Li D, Chen Y, Liu Z. Boronate affinity materials for separation and molecular recognition: structure, properties and applications. Chem Soc Rev. 2015;44(22):8097‐8123. PubMed
Huang H, Zheng Q, He Y, et al. Facile synthesis of bifunctional polymer monolithic column for tunable and specific capture of glycoproteins and phosphoproteins. J Chromatogr A. 2021;1651:462329. PubMed
Pichon V. Selective sample treatment using molecularly imprinted polymers. J Chromatogr A. 2007;1152(1‐2):41‐53. PubMed
Moein MM. Advancements of chiral molecularly imprinted polymers in separation and sensor fields: a review of the last decade. Talanta. 2021;224:121794. PubMed
Bhakta S, Mishra P. Molecularly imprinted polymer‐based sensors for cancer biomarker detection. Sens Actuator Rep. 2021;3:100061.
Nawaz N, Abu Bakar NK, Mahmud HNME, Jamaludin NS. Molecularly imprinted polymers‐based DNA biosensors. Anal Biochem. 2021;630:114328. PubMed
Mostafa AM, Barton SJ, Wren SP, Barker J. Review on molecularly imprinted polymers with a focus on their application to the analysis of protein biomarkers. Trac‐Trends Anal Chem. 2021;144:116431.
Huang C, Wang H, Ma S, Bo C, Ou J, Gong B. Recent application of molecular imprinting technique in food safety. J Chromatogr A. 2021;1657:462579. PubMed
Bouvarel T, Delaunay N, Pichon V. Molecularly imprinted polymers in miniaturized extraction and separation devices. J Sep Sci. 2021;44(8):1727‐1751. PubMed
Szumski M, Grzywinski D, Prus W, Buszewski B. Monolithic molecularly imprinted polymeric capillary columns for isolation of aflatoxins. J Chromatogr A. 2014;1364:163‐170. PubMed
Wen L, Tan X, Sun Q, Svec F, Lv Y. Smart” molecularly imprinted monoliths for the selective capture and easy release of proteins. J Sep Sci. 2016;39(16):3267‐3273. PubMed
Zhang X, Zhu D, Huang C, Sun Y, Lee YI. Sensitive detection of bisphenol A in complex samples by in‐column molecularly imprinted solid‐phase extraction coupled with capillary electrophoresis. Microchem J. 2015;121:1‐5.
Bouvarel T, Chendo C, Delaunay N, Pichon V. Simplified miniaturized analytical set‐up based on molecularly imprinted polymer directly coupled to UV detection for the determination of benzoylecgonine in urine. Talanta. 2021;233:122611. PubMed
Liu Y, Su Z, Wang J, Gong Z, Lyu H, Xie Z. Molecularly imprinted polymer with mixed‐mode mechanism for selective extraction and on‐line detection of ochratoxin A in beer sample. Microchem J. 2021;170:106696.
Zhou Z, Hartmann M. Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev. 2013;42(9):3894‐3912. PubMed
Wouters B, Currivan SA, Abdulhussain N, Hankemeier T, Schoenmakers PJ. Immobilized‐enzyme reactors integrated into analytical platforms: recent advances and challenges. Trac‐Trends Anal Chem. 2021;144:116419.
Zhang H, Bai Y, Zhu N, Xu J. Microfluidic reactor with immobilized enzyme‐from construction to applications: a review. Chin J Chem Eng. 2021;30:136‐145.
Mao Y, Fan R, Li R, Ye X, Kulozik U. Flow‐through enzymatic reactors using polymer monoliths: from motivation to application. Electrophoresis. PubMed
Wei ZH, Zhang X, Zhao X, Jiao YJ, Huang YP, Liu ZS. Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta. 2021;224:121810. PubMed