Are we approaching a post-monolithic era?

. 2020 May ; 43 (9-10) : 1628-1633. [epub] 20200209

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31981291

Grantová podpora
17-11252S Grantová Agentura České Republiky

Thirty years after their introduction, monolithic stationary phases are an important member of chromatographic phases. When compared to conventional particulate materials, the continuous internal structure of both inorganic silica and organic polymer monoliths allows some hydrodynamic and analytical possibilities that are not provided by conventional particulate stationary phases. Polymer-based monolithic stationary phases offer simple preparation and straightforward surface modification, which makes them very versatile materials that are applicable, for example, as chromatographic stationary phases, sample enrichment units, enzymatic reactors, and external trigger-responding materials. On the other hand, current polymer monoliths cannot compete with efficiency provided by superficially porous and sub 2 µm particles. In this highlight article, I take advantage of the 30th anniversary of their introduction to discuss several concerns related to polymer-based monolithic stationary phases. Particularly, I focus on preparation repeatability, porous properties, swelling of the polymers in organic solvents, column efficiency for small molecules, and heterogeneity of dominant flow-through pores. In the end, I offer three possible approaches on how to overcome drawbacks related to stationary phases heterogeneity to further increase the applicability of polymer-based monolithic stationary phases.

Zobrazit více v PubMed

Tswett, M. S., Physikalisch-chemische Studien über das Chlorophyll. Die Adsorptionen. Ber. Deutsch. Bot. Ges. 1906, 24, 316-323.

Mould, D. L., Synge, R. L. M., Electrokinetic ultrafiltration analysis of polysaccahrides-A new approach to the chromatography of large molecules. Analyst 1952, 77, 964-969.

Svec, F., Monolithic columns: A historical overview. Electrophoresis 2017, 38, 2810-2820.

Tennikova, T. B., Belenkii, B. G., Svec, F., High-performance membrane chromatography-A novel method of protein separation. J. Liq. Chromatogr. 1990, 13, 63-70.

Svec, F., Frechet, J. M. J., Continuous rods of macroporous polymer as high-performance liquid-chromatography separation media. Anal. Chem. 1992, 64, 820-822.

Svec, F., Lv, Y. Q., Advances and recent trends in the field of monolithic columns for chromatography. Anal. Chem. 2015, 87, 250-273.

Svec, F., Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation. J. Chromatogr. A 2010, 1217, 902-924.

Nischang, I., On the chromatographic efficiency of analytical scale column format porous polymer monoliths: Interplay of morphology and nanoscale gel porosity. J. Chromatogr. A 2012, 1236, 152-163.

Gritti, F., Guiochon, G., Mass transport of small retained molecules in polymer-based monolithic columns. J. Chromatogr. A 2014, 1362, 49-61.

Moravcova, D., Jandera, P., Urban, J., Planeta, J., Characterization of polymer monolithic stationary phases for capillary HPLC. J. Sep. Sci. 2003, 26, 1005-1016.

Geiser, L., Eeltink, S., Svec, F., Frechet, J. M. J., Stability and repeatability of capillary columns based on porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate). J. Chromatogr. A 2007, 1140, 140-146.

Urban, J., Svec, F., Frechet, J. M. J., Hypercrosslinking: New approach to porous polymer monolithic capillary columns with large surface area for the highly efficient separation of small molecules. J. Chromatogr. A 2010, 1217, 8212-8221.

Kositarat, S., Smith, N. W., Nacapricha, D., Wilairat, P., Chaisuwan, P., Repeatability in column preparation of a reversed-phase C18 monolith and its application to separation of tocopherol homologues. Talanta 2011, 84, 1374-1378.

Bernabe-Zafon, V., Beneito-Cambra, M., Simo-Alfonso, E. F., Herrero-Martinez, J. M., Comparison on photo-initiators for the preparation of methacrylate monolithic columns for capillary electrochromatography. J. Chromatogr. A 2010, 1217, 3231-3237.

Vonk, R. J., Aalbers, T., Eeltink, S., Schoenmakers, P. J., Temperature control in large-internal-diameter scaffolded monolithic columns operated at ultra-high pressures. J. Chromatogr. A 2015, 1401, 60-68.

Skerikova, V., Urban, J., Highly stable surface modification of hypercrosslinked monolithic capillary columns and their application in hydrophilic interaction chromatography. J. Sep. Sci. 2013, 36, 2806-2812.

Kele, M., Guiochon, G., Repeatability and reproducibility of retention data and band profiles on six batches of monolithic columns. J. Chromatogr. A 2002, 960, 19-49.

Nischang, I., Impact of biomolecule solute size on the transport and performance characteristics of analytical porous polymer monoliths. J. Chromatogr. A 2014, 1354, 56-64.

Jerabek, K., Characterization of swollen polymer gels using size exclusion chromatography. Anal. Chem. 1985, 57, 1598-1602.

Nischang, I., Porous polymer monoliths: Morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J. Chromatogr. A 2013, 1287, 39-58.

Laher, M., Causon, T. J., Buchberger, W., Hild, S., Nischang, I., Assessing the nanoscale structure and mechanical properties of polymer monoliths used for chromatography. Anal. Chem. 2013, 85, 5645-5649.

Urban, J., Eeltink, S., Jandera, P., Schoenmakers, P. J., Characterization of polymer-based monolithic capillary columns by inverse size-exclusion chromatography and mercury-intrusion porosimetry. J. Chromatogr. A 2008, 1182, 161-168.

Urban, J., Current trends in the development of porous polymer monoliths for the separation of small molecules. J. Sep. Sci. 2016, 39, 51-68.

Eeltink, S., Dolman, S., Detobel, F., Swart, R., Ursem, M., Schoenmakers, P. J., High-efficiency liquid chromatography-mass spectrometry separations with 50 mm, 250 mm, and 1 m long polymer-based monolithic capillary columns for the characterization of complex proteolytic digests. J. Chromatogr. A 2010, 1217, 6610-6615.

Tanaka, N., McCalley, D. V., Core-Shell, U. P., Monoliths, and other support materials in high-performance liquid chromatography. Anal. Chem. 2016, 88, 279-298.

Causon, T. J., Hilder, E. F., Nischang, I., Impact of mobile phase composition on the performance of porous polymeric monoliths in the elution of small molecules. J. Chromatogr. A 2012, 1263, 108-112.

Desmet, G., Clicq, D., Gzil, P., Geometry-independent plate height representation methods for the direct comparison of the kinetic performance of LC supports with a different size or morphology. Anal. Chem. 2005, 77, 4058-4070.

Nischang, I., Svec, F., Frechet, J. M. J., Downscaling limits and confinement effects in the miniaturization of porous polymer monoliths in narrow bore capillaries. Anal. Chem. 2009, 81, 7390-7396.

Dores-Sousa, J. L., Fernandez-Pumarega, A., De Vos, J., Lammerhofer, M., Desmet, G., Eeltink, S., Guidelines for tuning the macropore structure of monolithic columns for high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 522-533.

Müllner, T., Zankel, A., Svec, F., Tallarek, U., Finite-size effects in the 3D reconstruction and morphological analysis of porous polymers. Mater. Today 2014, 17, 404-411.

Müllner, T., Zankel, A., Holtzel, A., Svec, F., Tallarek, U., Morphological properties of methacrylate-based polymer monoliths: From gel porosity to macroscopic inhomogeneities. Langmuir 2017, 33, 2205-2214.

Müllner, T., Zankel, A., Mayrhofer, C., Reingruber, H., Holtzel, A., Lv, Y. Q., Svec, F., Tallarek, U., Reconstruction and characterization of a polymer-based monolithic stationary phase using serial block-face scanning electron microscopy. Langmuir 2012, 28, 16733-16737.

Al-Bokari, M., Cherrak, D., Guiochon, G., Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. J. Chromatogr. A 2002, 975, 275-284.

Guiochon, G., Monolithic columns in high-performance liquid chromatography. J. Chromatogr. A 2007, 1168, 101-168.

Sandra, K., Moshir, M., D'Hondt, F., Verleysen, K., Kas, K., Sandra, P., Highly efficient peptide separations in proteomics-Part 1. Unidimensional high performance liquid chromatography. J. Chromatogr. B 2008, 866, 48-63.

Urban, J., Jandera, P., Schoenmakers, P., Preparation of monolithic columns with target mesopore-size distribution for potential use in size-exclusion chromatography. J. Chromatogr. A 2007, 1150, 279-289.

Aggarwal, P., Lawson, J. S., Tolley, H. D., Lee, M. L., High efficiency polyethylene glycol diacrylate monoliths for reversed-phase capillary liquid chromatography of small molecules. J. Chromatogr. A 2014, 1364, 96-106.

Chirica, G. S., Remcho, V. T., Novel monolithic columns with templated porosity. J. Chromatogr. A 2001, 924, 223-232.

Vlakh, E. G., Sergeeva, Y. N., Evseeva, T. G., Saprykina, N. N., Men'shikova, A. Y., Tennikova, T. B., Monodisperse polystyrene microspheres used as porogenes in the synthesis of polymer monoliths. Polymer Sci. Ser. A 2011, 53, 172-182.

Kalsoom, U., Nesterenko, P. N., Paull, B., Current and future impact of 3D printing on the separation sciences. TRAC-Trend. Anal. Chem. 2018, 105, 492-502.

Salmean, C., Dimartino, S., 3D-printed stationary phases with ordered morphology: State of the art and future development in liquid chromatography. Chromatographia 2019, 82, 443-463.

Waheed, S., Cabot, J. M., Macdonald, N. P., Lewis, T., Guijt, R. M., Paull, B., Breadmore, M. C., 3D printed microfluidic devices: Enablers and barriers. Lab Chip 2016, 16, 1993-2013.

Broeckhoven, K., Eeltink, S., De Malsche, W., Matheuse, F., Desmet, G., Cabooter, D., Current and future chromatographic columns: Is one column enough to rule them all? LC GC N. Am. 2018, 36, 9-17.

Simon, U., Dimartino, S., Direct 3D printing of monolithic ion exchange adsorbers. J. Chromatogr. A 2019, 1587, 119-128.

Sandron, S., Heery, B., Gupta, V., Collins, D. A., Nesterenko, E. P., Nesterenko, P. N., Talebi, M., Beirne, S., Thompson, F., Wallace, G. G., Brabazon, D., Regan, F., Paull, B., 3D printed metal columns for capillary liquid chromatography. Analyst 2014, 139, 6343-6347.

Nawada, S., Dimartino, S., Fee, C., Dispersion behavior of 3D-printed columns with homogeneous microstructures comprising differing element shapes. Chem. Eng. Sci. 2017, 164, 90-98.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Current trends in the development of polymer-based monolithic stationary phases

. 2022 Apr ; 3 (3-4) : 154-164. [epub] 20220305

Recent developments and applications of polymer monolithic stationary phases

. 2021 Apr ; 2 (3-4) : 250-260. [epub] 20210303

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...