• This record comes from PubMed

Skin fairness is a better predictor for impaired physical and mental health than hair redness

. 2019 Dec 02 ; 9 (1) : 18138. [epub] 20191202

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 31792316
PubMed Central PMC6888829
DOI 10.1038/s41598-019-54662-5
PII: 10.1038/s41598-019-54662-5
Knihovny.cz E-resources

About 1-2% of people of European origin have red hair. Especially female redheads are known to suffer higher pain sensitivity and higher incidence of some disorders, including skin cancer, Parkinson's disease and endometriosis. Recently, an explorative study performed on 7,000 subjects showed that both male and female redheads score worse on many health-related variables and express a higher incidence of cancer. Here, we ran the preregistered study on a population of 4,117 subjects who took part in an anonymous electronic survey. We confirmed that the intensity of hair redness negatively correlated with physical health, mental health, fecundity and sexual desire, and positively with the number of kinds of drugs prescribed by a doctor currently taken, and with reported symptoms of impaired mental health. It also positively correlated with certain neuropsychiatric disorders, most strongly with learning disabilities disorder and phobic disorder in men and general anxiety disorder in women. However, most of these associations disappeared when the darkness of skin was included in the models, suggesting that skin fairness, not hair redness, is responsible for the associations. We discussed two possible explanations for the observed pattern, the first based on vitamin D deficiency due to the avoidance of sunbathing by subjects with sensitive skin, including some redheads, and second based on folic acid depletion in fair skinned subjects, again including some (a different subpopulation of) redheads. It must be emphasized, however, that both of these explanations are only hypothetical as no data on the concentration of vitamin D or folic acid are available for our subjects. Our results, as well as the conclusions of current reviews, suggest that the new empirical studies on the concentration of vitamin D and folic acids in relation to skin and hair pigmentation are urgently needed.

See more in PubMed

Hooton EA. Stature, head form, and pigmentation of adult male Irish. Am. J. Phys. Anthropol. 1940;26:229–249. doi: 10.1002/ajpa.1330260131. DOI

Sunderland E, Barnicot NA. Hair-colour variation in the United Kingdom. Ann. Hum. Genet. 1956;20:312–333. doi: 10.1111/j.1469-1809.1955.tb01286.x. PubMed DOI

Frost P. European hair and eye color - A case of frequency-dependent sexual selection? Evol. Hum. Behav. 2006;27:85–103. doi: 10.1016/j.evolhumbehav.2005.07.002. DOI

Frost Peter, Kleisner Karel, Flegr Jaroslav. Health status by gender, hair color, and eye color: Red-haired women are the most divergent. PLOS ONE. 2017;12(12):e0190238. doi: 10.1371/journal.pone.0190238. PubMed DOI PMC

Rhodes AR, Weinstock MA, Fitzpatrick TB, Mihm MC, Jr., Sober AJ. Risk factors for cutaneous melanoma. A practical method of recognizing predisposed individuals. JAMA. 1987;258:3146–3154. doi: 10.1001/jama.1987.03400210088032. PubMed DOI

Valverde P, Healy E, Jackson I, Rees JL, Thody AJ. Variants of the melanocyte-stimulating hormone-receptor gene are associated with red hair and fair skin in humans. Nat. Genet. 1995;11:328–330. doi: 10.1038/Ng1195-328. PubMed DOI

Wenczl E, et al. (Pheo)melanin photosensitizes UVA-induced DNA damage in cultured human melanocytes. J. Invest. Dermatol. 1998;111:678–682. doi: 10.1046/j.1523-1747.1998.00357.x. PubMed DOI

Hill HZ, Hill GJ. UVA, pheomelanin and the carcinogenesis of melanoma. Pigment Cell Res. 2000;13(Suppl 8):140–144. doi: 10.1034/j.1600-0749.13.s8.25.x. PubMed DOI

Morgan AM, Lo J, Fisher DE. How does pheomelanin synthesis contribute to melanomagenesis? Two distinct mechanisms could explain the carcinogenicity of pheomelanin synthesis. Bioessays. 2013;35:672–676. doi: 10.1002/bies.201300020. PubMed DOI PMC

Mitra D, et al. An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair/fair skin background. Nature. 2012;491:449–453. doi: 10.1038/nature11624. PubMed DOI PMC

Chen X, Feng D, Schwarzschild MA, Gao X. Red hair, MC1R variants, and risk for Parkinson’s disease - a meta-analysis. Ann. Clin. Transl. Neurolog. 2017;4:212–216. doi: 10.1002/acn3.381. PubMed DOI PMC

Gao X, Simon KC, Han J, Schwarzschild MA, Ascherio A. Genetic determinants of hair color and Parkinson’s disease risk. Ann. Neurol. 2009;65:76–82. doi: 10.1002/ana.21535. PubMed DOI PMC

Tell-Marti G, et al. The MC1R melanoma risk variant p.R160W is associated with Parkinson disease. Ann. Neurol. 2015;77:889–894. doi: 10.1002/ana.24373. PubMed DOI

Chen X, et al. The melanoma-linked “redhead” MC1R influences dopaminergic neuron survival. Ann. Neurol. 2017;81:395–406. doi: 10.1002/ana.24852. PubMed DOI PMC

Liem EB, Joiner TV, Tsueda K, Sessler DI. Increased sensitivity to thermal pain and reduced subcutaneous lidocaine efficacy in redheads. Anesthesiology. 2005;102:509–514. doi: 10.1097/00000542-200503000-00006. PubMed DOI PMC

Woodworth SH, et al. A prospective study on the association between red hair color and endometriosis in infertile patients. Fertil. Steril. 1995;64:651–652. doi: 10.1016/S0015-0282(16)57809-1. PubMed DOI

Missmer SA, et al. Natural hair color and the incidence of endometriosis. Fertil. Steril. 2006;85:866–870. doi: 10.1016/j.fertnstert.2005.12.008. PubMed DOI

Cunningham AL, Jones CP, Ansell J, Barry JD. Red for danger: the effects of red hair in surgical practice. BMJ. 2010;341:c6931. doi: 10.1136/bmj.c6931. PubMed DOI

Leebeek FWG, et al. The presumed increased bleeding tendency in red-haired individuals is not associated with von Willebrand factor antigen levels in older individuals. J. Thromb. Haemost. 2011;9:2509–2511. doi: 10.1111/j.1538-7836.2011.04540.x. PubMed DOI

Weir S, Fine-Davis M. Effect of hair colour on some attributed personality characteristics of women. Irish J. Psychol. 1989;10:11–19. doi: 10.1080/03033910.1989.10557730. DOI

Heckert DM, Best A. Ugly duckling to swan: Labeling theory and the stigmatization of red hair. Symb Interact. 1997;20:365–384. doi: 10.1525/si.1997.20.4.365. DOI

Allison S, Roeger L, Reinfeld-Kirkman N. Does school bullying affect adult health? Population survey of health-related quality of life and past victimization. Aust. N. Z. J. Psychiatry. 2009;43:1163–1170. doi: 10.3109/00048670903270399. PubMed DOI

Gladstone GL, Parket GDB, Malhi GS. Do bullied children become anxious and depressed adults? A cross-sectional investigation of the correlates of bullying and anxious depression. J. Nerv. Ment. Dis. 2006;194:201–208. doi: 10.1097/01.nmd.0000202491.99719.c3. PubMed DOI

Ttofi MM, Farrington DP, Losel F, Loeber R. Do the victims of school bullies tend to become depressed later in life? A systematic review and metaanalysis of longitudinal studies. J. Aggress.Conf. Peace Res. 2011;3:63–73. doi: 10.1108/17596591111132873. DOI

Kankova, S., Flegr, J. & Calda, P. The influence of latent toxoplasmosis on women’s reproductive function: four cross-sectional studies. Folia Parasitol. 62, 10.14411/fp.2015.041 (2015). PubMed

Benjamini Y, Hochberg Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B Met. 1995;57:289–300.

Jablonski NG, Chaplin G. The evolution of human skin coloration. J. Hum. Evol. 2000;39:57–106. doi: 10.1006/jhev.2000.0403. PubMed DOI

Waslien, C. I. Folic acid: Biochemistry and physiology in relation to the human nutrition requirement, 232–246 (The National Academies Press., 1977).

Duthie SJ, et al. Blood folate status and expression of proteins involved in immune function, inflammation, and coagulation: Biochemical and proteomic changes in the plasma of humans in response to long-term synthetic folic acid supplementation. J Proteome Res. 2010;9:1941–1950. doi: 10.1021/pr901103n. PubMed DOI

Parra Esteban J. Human pigmentation variation: Evolution, genetic basis, and implications for public health. American Journal of Physical Anthropology. 2007;134(S45):85–105. doi: 10.1002/ajpa.20727. PubMed DOI

Stover PJ. Physiology of folate and vitamin B-12 in health and disease. Nutr. Rev. 2004;62:S3–S12. doi: 10.1301/nr.2004.jun.S3-S12. PubMed DOI

Branda RF, Eaton JW. Skin color and nutrient photolysis - Evolutionary hypothesis. Science. 1978;201:625–626. doi: 10.1126/science.675247. PubMed DOI

Jones Patrice, Lucock Mark, Veysey Martin, Beckett Emma. The Vitamin D–Folate Hypothesis as an Evolutionary Model for Skin Pigmentation: An Update and Integration of Current Ideas. Nutrients. 2018;10(5):554. doi: 10.3390/nu10050554. PubMed DOI PMC

Papadimitriou DT. The big vitamin D mistake. J. Prev. Med. Public Health. 2017;50:278–281. doi: 10.3961/jpmph.16.111. PubMed DOI PMC

Prufer K, Veenstra TD, Jirikowski GF, Kumar R. Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J. Chem. Neuroanat. 1999;16:135–145. doi: 10.1016/S0891-0618(99)00002-2. PubMed DOI

Baas, D. et al. Rat oligodendrocytes express the vitamin D-3 receptor and respond to 1,25-dihydroxyvitamin D-3. Glia31, 59–68, doi:10.1002/(Sici)1098-1136(200007)31:1<59::Aid-Glia60>3.0.Co;2-Y (2000). PubMed

Slominski AT, et al. In vivo evidence for a novel pathway of vitamin D-3 metabolism initiated by P450scc and modified by CYP27B1. Faseb J. 2012;26:3901–3915. doi: 10.1096/fj.12-208975. PubMed DOI PMC

Slominski, A. T. et al. Detection of novel CYP11A1-derived secosteroids in the human epidermis and serum and pig adrenal gland. Sci Rep5, 10.1038/Srep14875 (2015). PubMed PMC

Slominski AT, Kim TK, Li W, Tuckey RC. Classical and non-classical metabolic transformation of vitamin D in dermal fibroblasts. Exp. Dermatol. 2016;25:231–232. doi: 10.1111/exd.12872. PubMed DOI PMC

Wang T, et al. Serum concentration of 25-hydroxyvitamin D in autism spectrum disorder: a systematic review and meta-analysis. Eur. Child Adolesc. Psychiatry. 2016;25:341–350. doi: 10.1007/s00787-015-0786-1. PubMed DOI

Mitri J, Pittas AG. Vitamin D and diabetes. Endocrinol. Metab. Clin. North Am. 2014;43:205–232. doi: 10.1016/j.ecl.2013.09.010. PubMed DOI PMC

Willer CJ, et al. Timing of birth and risk of multiple sclerosis: population based study. BMJ. 2005;330:120. doi: 10.1136/bmj.38301.686030.63. PubMed DOI PMC

Dean G, Elian M. Age at immigration to England of Asian and Caribbean immigrants and the risk of developing multiple sclerosis. J. Neurol. Neurosurg. Psychiatry. 1997;63:565–568. doi: 10.1136/jnnp.63.5.565. PubMed DOI PMC

Spedding S. Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients. 2014;6:1501–1518. doi: 10.3390/nu6041501. PubMed DOI PMC

Eyles DW. Vitamin D and autism: does skin colour modify risk? Acta Paediatr. 2010;99:645–647. doi: 10.1111/j.1651-2227.2010.01797.x. PubMed DOI

Saad K, et al. Vitamin D status in autism spectrum disorders and the efficacy of vitamin D supplementation in autistic children. Nutr. Neurosci. 2016;19:346–351. doi: 10.1179/1476830515Y.0000000019. PubMed DOI

Rimmelzwaan LM, van Schoor NM, Lips P, Berendse HW, Eekhoff EMW. Systematic review of the relationship between vitamin D and Parkinson’s disease. J. Parkinson Dis. 2016;6:29–37. doi: 10.3233/Jpd-150615. PubMed DOI PMC

Mattock C, Marmot M, Stern G. Could Parkinson’s disease follow intra-uterine influenza?: a speculative hypothesis. J. Neurol. Neurosurg. Psychiatry. 1988;51:753–756. doi: 10.1136/jnnp.51.6.753. PubMed DOI PMC

Sato Y, Kikuyama M, Oizumi K. High prevalence of vitamin D deficiency and reduced bone mass in Parkinson’s disease. Neurology. 1997;49:1273–1278. doi: 10.1212/WNL.49.5.1273. PubMed DOI

Saha S, Chant DC, Welham JL, McGrath JJ. The incidence and prevalence of schizophrenia varies with latitude. Acta Psychiatr. Scand. 2006;114:36–39. doi: 10.1111/j.1600-0447.2005.00742.x. PubMed DOI

McGrath J, Eyles D, Mowry B, Yolken R, Buka S. Low maternal vitamin D as a risk factor for schizophrenia: a pilot study using banked sera. Schizophr. Res. 2003;63:73–78. doi: 10.1016/S0920-9964(02)00435-8. PubMed DOI

Garcion, E. et al. Expression of inducible nitric oxide synthase during rat brain inflammation: Regulation by 1,25-dihydroxyvitamin D-3. Glia22, 282–294, doi:10.1002/(Sici)1098-1136(199803)22:3<282::Aid-Glia7>3.0.Co;2-7 (1998). PubMed

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell. 2010;140:918–934. doi: 10.1016/j.cell.2010.02.016. PubMed DOI PMC

Ko P, Burkert R, McGrath J, Eyles D. Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res. Dev. Brain Res. 2004;153:61–68. doi: 10.1016/j.devbrainres.2004.07.013. PubMed DOI

Jablonski NG, Chaplin G. Colloquium paper: human skin pigmentation as an adaptation to UV radiation. Proc. Natl. Acad. Sci. USA. 2010;107(Suppl 2):8962–8968. doi: 10.1073/pnas.0914628107. PubMed DOI PMC

Webb AR, Kline L, Holick MF. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab. 1988;67:373–378. doi: 10.1210/jcem-67-2-373. PubMed DOI

Elias PM, Williams ML. Re-appraisal of current theories for the development and loss of epidermal pigmentation in hominins and modern humans. J. Hum. Evol. 2013;64:687–692. doi: 10.1016/j.jhevol.2013.02.003. PubMed DOI PMC

Linos E, et al. Sun protective behaviors and vitamin D levels in the US population: NHANES 2003–2006. Canc. Caus.Contr. 2012;23:133–140. doi: 10.1007/s10552-011-9862-0. PubMed DOI PMC

Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol. Rev. 2004;84:1155–1228. doi: 10.1152/physrev.00044.2003. PubMed DOI

Slominski A, Postlethwaite AE. Skin under the sun: When melanin pigment meets vitamin D. Endocrinology. 2015;156:1–4. doi: 10.1210/en.2014-1918. PubMed DOI PMC

Marks R, et al. The effect of regular sunscreen use on vitamin-D levels in an Australian population - Results of a randomized controlled trial. Arch. Dermatol. 1995;131:415–421. doi: 10.1001/archderm.131.4.415. PubMed DOI

Kannan S, Lim HW. Photoprotection and vitamin D: a review. J. Prev. Med. Pub. Health. 2014;30:137–145. doi: 10.1111/phpp.12096. PubMed DOI

Clyson DE, Maughan MRC. Redheads and blonds: stereotypic images. Psychol. Rep. 1986;59:811–816. doi: 10.2466/pr0.1986.59.2.811. DOI

Gueguen N. Hair color and courtship: blond women received more courtship solicitations and redhead men received more refusals. Psychol. Stud. 2014;57:369–375. doi: 10.1007/s12646-012-0158-6. DOI

Kleisner K, Kocnar T, Rubesová A, Flegr J. Eye color predicts but does not directly influence perceived dominance in men. Pers. Individ. Diff. 2010;49:59–64. doi: 10.1016/j.paid.2010.03.011. DOI

Kleisner Karel, Priplatova Lenka, Frost Peter, Flegr Jaroslav. Trustworthy-Looking Face Meets Brown Eyes. PLoS ONE. 2013;8(1):e53285. doi: 10.1371/journal.pone.0053285. PubMed DOI PMC

Flegr J, Horacek J. Toxoplasma-infected subjects report an obsessive-compulsive disorder diagnosis more often and score higher in obsessive-compulsive inventory. Eur. Psychiat. 2017;40:82–87. doi: 10.1016/j.eurpsy.2016.09.001. PubMed DOI

Slominski A, Wortsman J. Neuroendocrinology of the skin. Endocr. Rev. 2000;21:457–487. doi: 10.1210/edrv.21.5.0410. PubMed DOI

Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids. 2015;103:72–88. doi: 10.1016/j.steroids.2015.04.006. PubMed DOI PMC

Slominski AT, Zmijewski MA, Plonka PM, Szaflarski JP, Paus R. How UV light touches the brain and endocrine system through skin, and why. Endocrinology. 2018;159:1992–2007. doi: 10.1210/en.2017-03230. PubMed DOI PMC

Slominski AT, et al. Melatonin: A cutaneous perspective on its production, metabolism, and functions. J. Invest. Dermatol. 2018;138:490–499. doi: 10.1016/j.jid.2017.10.025. PubMed DOI PMC

Skobowiat C, Postlethwaite AE, Slominski AT. Skin exposure to ultraviolet B rapidly activates systemic neuroendocrine and immunosuppressive responses. Photochem. Photobiol. 2017;93:1008–1015. doi: 10.1111/php.12642. PubMed DOI PMC

Skobowiat C, Slominski AT. UVB Activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. J. Invest. Dermatol. 2015;135:1638–1648. doi: 10.1038/jid.2014.450. PubMed DOI PMC

Skobowiat C, Dowdy JC, Sayre RM, Tuckey RC, Slominski A. Cutaneous hypothalamic-pituitary-adrenal axis homolog: regulation by ultraviolet radiation. Am. J. Physiol. Endocrinol. Metab. 2011;301:E484–493. doi: 10.1152/ajpendo.00217.2011. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...