Cryptic aberrations may allow more accurate prognostic classification of patients with myelodysplastic syndromes and clonal evolution

. 2020 Jul ; 59 (7) : 396-405. [epub] 20200325

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32170980

The karyotype of bone-marrow cells at the time of diagnosis is one of the most important prognostic factors in patients with myelodysplastic syndromes (MDS). In some cases, the acquisition of additional genetic aberrations (clonal evolution [CE]) associated with clinical progression may occur during the disease. We analyzed a cohort of 469 MDS patients using a combination of molecular cytogenomic methods to identify cryptic aberrations and to assess their potential role in CE. We confirmed CE in 36 (8%) patients. The analysis of bone-marrow samples with a combination of cytogenomic methods at diagnosis and after CE identified 214 chromosomal aberrations. The early genetic changes in the diagnostic samples were frequently MDS specific (17 MDS-specific/57 early changes). Most progression-related aberrations identified after CE were not MDS specific (131 non-MDS-specific/155 progression-related changes). Copy number neutral loss of heterozygosity (CN-LOH) was detected in 19% of patients. MDS-specific CN-LOH (4q, 17p) was identified in three patients, and probably pathogenic homozygous mutations were found in TET2 (4q24) and TP53 (17p13.1) genes. We observed a statistically significant difference in overall survival (OS) between the groups of patients divided according to their diagnostic cytogenomic findings, with worse OS in the group with complex karyotypes (P = .021). A combination of cytogenomic methods allowed us to detect many cryptic genomic changes and identify genes and genomic regions that may represent therapeutic targets in patients with progressive MDS.

Zobrazit více v PubMed

Bochtler T, Fröhling S, Krämer A. Role of chromosomal aberrations in clonal diversity and progression of acute myeloid leukemia. Leukemia. 2015;29:1243-1252. https://doi.org/10.1038/leu.2015.32.

de Souza FT, Ornellas MH, Otero de Carvalho L, Tabak D, Abdelhay E. Chromosomal alterations associated with evolution from myelodysplastic syndrome to acute myeloid leukemia. Leuk Res. 2000;24:839-848. https://doi.org/10.1016/S0145-2126(00)00056-4.

Bernasconi P, Klersy C, Boni M, et al. Does cytogenetic evolution have any prognostic relevance in myelodysplastic syndromes? A study on 153 patients from a single institution. Ann Hematol. 2010;89:545-551. https://doi.org/10.1007/s00277-010-0927-z.

Schanz J, Cevik N, Fonatsch C, et al. Detailed analysis of clonal evolution and cytogenetic evolution patterns in patients with myelodysplastic syndromes (MDS) and related myeloid disorders. Blood Cancer J. 2018;8:28. https://doi.org/10.1038/s41408-018-0061-z.

Poppe B, Vandesompele J, Schoch C, et al. Expression analyses identify MLL as a prominent target of 11q23 amplification and support an etiologic role for MLL gain of function in myeloid malignancies. Blood. 2004;103:229-235. https://doi.org/10.1182/blood-2003-06-2163.

Knudson AG, Hethcote HW, Brown BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Nat Acad Sci. 1975;72:5116-5120. https://doi.org/10.1073/pnas.72.12.5116.

Cavelier C, Didier C, Prade N, et al. Constitutive activation of the DNA damage signaling pathway in acute myeloid leukemia with complex karyotype: potential importance for checkpoint targeting therapy. Cancer Res. 2009;69(22):8652-8661. https://doi.org/10.1158/0008-5472.CAN-09-0939.

Neukirchen J, Lauseker M, Hildebrandt B, et al. Cytogenetic clonal evolution in myelodysplastic syndromes is associated with inferior prognosis. Cancer. 2017;123:4608-4616. https://doi.org/10.1002/cncr.30917.

Haase D, Germing U, Schanz J, et al. New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood. 2007;110:4385-4395. https://doi.org/10.1182/blood-2007-03-082404.

White AD, Hoy TG, Jacobs A. Extended cytogenetic follow-up and clinical progress in patients with myelodysplastic syndromes (MDS). Leuk Lymphoma. 1994;12:401-412. https://doi.org/10.3109/10428199409073781.

Horiike S, Taniwaki M, Misawa S, Abe T. Chromosome abnormalities and karyotypic evolution in 83 patients with myelodysplastic syndrome and predictive value for prognosis. Cancer. 1988;62(6):1129-1138. https://doi.org/10.1002/1097-0142(19880915)62:6<1129::AID-CNCR2820620616>3.0.CO;2-C.

Tien H-F, Wang C-H, Chuang S-M, et al. Acute leukemic transformation of myelodysplastic syndrome - immunophenotypic, genotypic, and cytogenetic studies. Leuk Res. 1995;19(9):595-603. https://doi.org/10.1016/0145-2126(95)00015-G.

Wang H, Wang X-Q, Xu X-P, Lin G-W. Cytogenetic evolution correlates with poor prognosis in myelodysplastic syndrome. Cancer Genet Cytogenet. 2010;196(2):159-166. https://doi.org/10.1016/j.cancergencyto.2009.09.015.

Marsden KA, Pearse AM, Collins GG, Ford DI, Heard S, Klimber RI. Acute leukemia with t(1;3)(p36;q21), and loss of red cell A and Leb antigens. Cancer Genet Cytogenet. 1992;64(1):80-85. https://doi.org/10.1016/0165-4608(92)90328-6.

Campiotti L, Appio L, Casalone R, et al. Acute myeloid leukemia with associated translocation t(15;17) and 11q23/MLL abnormality. Leuk Lymphoma. 2008;49(3):592-595. https://doi.org/10.1080/10428190701882153.

Mrozek K, Heinonen K, Bloomfield CD. Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol. 2001;14(1):19-47. https://doi.org/10.1053/beha.2000.0114.

Grimwade D, Walker H, Oliver F, et al. Importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the AML 10 trial. Blood. 1998;92(7):2322-2333. https://doi.org/10.1182/blood.V92.7.2322.

Solé F, Luno E, Sanzo C, et al. Identification of novel cytogenetic markers with prognostic significance in a series of 968 patients with primary myelodysplastic syndromes. Haematologica. 2005;90(9):1168-1178.

Fenaux P, Morel P, Lai JL. Cytogenetics of myelodysplastic syndromes. Semin Hematol. 1996;33(2):127-138.

Greenberg PL, Stone RM, Al-Kali A, et al. Myelodysplastic syndromes, version 2.2017: Clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15:60-87. https://doi.org/10.6004/jnccn.2017.0007.

Schanz J, Tüchler H, Solé F, et al. New comprehensive cytogenetic scoring system for primary myelodysplastic syndromes (MDS) and oligoblastic acute myeloid leukemia after MDS derived from an international database merge. J Clin Oncol. 2012;30:820-829. https://doi.org/10.1200/JCO.2011.35.6394.

Zemanova Z, Michalova K, Buryova H, et al. Involvement of deleted chromosome 5 in complex chromosomal aberrations in newly diagnosed myelodysplastic syndromes (MDS) is correlated with extremely adverse prognosis. Leuk Res. 2014;38:537-544. https://doi.org/10.1016/j.leukres.2014.01.012.

Davoli T, Xu AW, Mengwasser KE, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell. 2013;155:948-962. https://doi.org/10.1016/j.cell.2013.10.011.

Svobodova K, Zemanova Z, Lhotska H, et al. Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes. Leuk Res. 2016;42:7-12. https://doi.org/10.1016/j.leukres.2016.01.009.

Arber DA, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391-2405. https://doi.org/10.1182/blood-2016-03-643544.

McGowan-Jordan J, Simons A, Schmid M. An International System for Human Cytogenomic Nomenclature. Basel: S. Karger; 2016.

Landrum M, Lee JM, Benson M, et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 2018;46:D1062-D1067. https://doi.org/10.1093/nar/gkx1153.

Forbes SA, Beare D, Boutselakis H, et al. COSMIC: somatic cancer genetics at high-resolution. Nucleic Acids Res. 2017;45:D777-D783. https://doi.org/10.1093/nar/gkw1121.

Bouaoun L, Sonkin D, Ardin M, et al. TP53 variations in human cancers: New lessons from the IARC TP53 database and genomics data. Hum Mutat. 2016;37(9):865-876. https://doi.org/10.1002/humu.23035.

Hartmann L, Stephenson CF, Verkamp SR, et al. Detection of clonal evolution in hematopoietic malignancies by combining comparative genomic hybridization and single nucleotide polymorphism arrays. Clin Chem. 2014;60(12):1558-1568. https://doi.org/10.1373/clinchem.2014.227785.

Stevens-Kroef MJ, Weghuis DO, Elldrissi-Zaynoun N, et al. Genomic array as compared to karyotyping in myelodysplastic syndromes in a prospective clinical trial. Gene Chromosome Canc. 2017;56(7):524-534. https://doi.org/10.1002/gcc.22455.

Mohamedali AM, Gäken J, Ahmed M, et al. High concordance of genomic and cytogenetic aberrations between peripheral blood and bone marrow in myelodysplastic syndrome (MDS). Leukemia. 2015;29:1928-1938. https://doi.org/10.1038/leu.2015.110.

Gondek LP, Tiu R, O'Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood. 2008;111(3):1534-1542. https://doi.org/10.1182/blood-2007-05-092304.

Makishima H, Maciejewski JP. Pathogenesis and consequences of uniparental disomy in cancer. Clin Cancer Res. 2011;17:3913-3923. https://doi.org/10.1158/1078-0432.CCR-10-2900.

Tiu RV, Gondek LP, O'Keefe CL, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood. 2011;117:4552-4560. https://doi.org/10.1182/blood-2010-07-295857.

Simons A, Sikkema-Raddatz B, de Leeuw N, Konrad NC, Hastings RJ, Schoumans J. Genome-wide arrays in routine diagnostics of hematological malignancies. Hum Mutat. 2012;33(6):941-948. https://doi.org/10.1002/humu.22057.

Arenillas L, Mallo M, Ramos F, et al. Single nucleotide polymorphism array karyotyping: A diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Gene Chromosome Canc. 2013;52(12):1167-1177. https://doi.org/10.1002/gcc.22112.

Gronseth CM, McElhone SE, Storer BE, et al. Prognostic significance of acquired copy-neutral loss of heterozygosity in acute myeloid leukemia. Cancer. 2015;121:2900-2908. https://doi.org/10.1002/cncr.29475.

O'Keefe C, McDevitt MA, Maciejewski JP. Copy neutral loss of heterozygosity: a novel chromosomal lesion in myeloid malignancies. Blood. 2010;115(14):2731-2739. https://doi.org/10.1182/blood-2009-10-201848.

Dunbar AJ, Gondek LP, O'Keefe C, et al. 250K SNP array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res. 2008;68(24):10349-10357. https://doi.org/10.1158/0008-5472.CAN-08-2754.

Raghavan M, Lillington DM, Skoulakis S, et al. Genome-wide single nucleotide polymorphism analysis reveals frequent partial uniparental disomy due to somatic recombination in acute myeloid leukemias. Cancer Res. 2005;65:375-378.

Fitzgibbon J, Smith L-L, Raghavan M, et al. Association between acquired uniparental disomy and homozygous gene mutation in acute myeloid leukemias. Cancer Res. 2005;65:9152-9154. https://doi.org/10.1158/0008-5472.CAN-05-2017.

Szpurka H, Gondek LP, Mohan SR, Hsi ED, Theil KS, Maciejewski JP. UPD1p indicates the presence of MPL W515L mutation in RARS-T, a mechanism analogous to UPD9p and JAK2 V617F mutation. Leukemia. 2009;23:610-614. https://doi.org/10.1038/leu.2008.249.

Jankowska AM, Szpurka H, Tiu RV, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood. 2009;113(25):6403-6410. https://doi.org/10.1182/blood-2009-02-205690.

Langemeijer SMC, Kuiper RP, Berends M, et al. Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet. 2009;41(7):838-842. https://doi.org/10.1038/ng.391.

Ernst T, Chase AJ, Score J, et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet. 2010;42(8):722-726. https://doi.org/10.1038/ng.621.

Grand FH, Hidalgo-Curtis CE, Ernst T, et al. Frequent CBL mutations associated with 11q acquired uniparental disomy in myeloproliferative neoplasms. Blood. 2009;113(24):6182-6192. https://doi.org/10.1182/blood-2008-12-194548.

Jabbour E, Takahashi K, Wang X, et al. Acquisition of cytogenetic abnormalities in patients with IPSS defined lower-risk myelodysplastic syndrome is associated with poor prognosis and transformation to acute myelogenous leukemia. Am J Hematol. 2013;88:831-837. https://doi.org/10.1002/ajh.23513.

da Silva-Coelho P, Kroeze LI, Yoshida K, et al. Clonal evolution in myelodysplastic syndromes. Nat Commun. 2017;8:15099. https://doi.org/10.1038/ncomms15099.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...