Upper Rim-Bridged Calix[4]arenes via Cyclization of meta Alkynyl Intermediates with Diphenyl Diselenide
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
23-07154S
Czech Science Foundation
21-05926X
Czech Science Foundation
A2_FCHT_2022_073
Specific university research
PubMed
38542874
PubMed Central
PMC10975271
DOI
10.3390/molecules29061237
PII: molecules29061237
Knihovny.cz E-zdroje
- Klíčová slova
- 6-exo-dig and 5-endo-dig cyclization, Sonogashira coupling, X-ray analysis, alkyne cyclization, calixarene, diphenyl diselenide, electrochemistry, meta-substitution, regioselectivity,
- Publikační typ
- časopisecké články MeSH
A Sonogashira coupling of meta-iodocalix[4]arene with various terminal acetylenes confirmed that the meta position of calixarene is well addressable, and that both thermal and microwave protocols led to good yields of alkynylcalixarenes. Alkynes thus obtained were subjected to the ferric chloride and diphenyl diselenide-promoted electrophilic closure. It turns out that the calix[4]arenes give completely different bridging products than those described for the non-macrocyclic starting compounds. This can be demonstrated not only by the isolation of products with a six-membered ring (6-exo-dig), but mainly by the smooth formation of the 5-endo-dig cyclization, which has never been observed in the aliphatic series. An attempt at electrocyclization led to a high yield of the 1,2-diketone (oxidation of the starting alkyne), again in contrast to the reaction described for the acyclic derivatives. The structures of the unexpected products were unequivocally established by X-ray analysis and clearly demonstrate how the preorganized macrocyclic skeleton favors a completely different regioselectivity of cyclization reactions compared to common aliphatic compounds.
Zobrazit více v PubMed
Gutsche C.D. Calixarenes: An Introduction. Royal Society of Chemistry, RSC Publishing; Cambridge, UK: 2008.
Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes 2001. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001.
Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Switzerland: 2016. DOI
Mandolini L., Ungaro R. Calixarenes in Action. World Scientific Publishing Company; Singapore: 2000.
Lhoták P. Direct meta substitution of calix[4]arenes. Org. Biomol. Chem. 2022;20:7377–7390. doi: 10.1039/D2OB01437H. PubMed DOI
Slavik P., Dudic M., Flidrova K., Sykora J., Cisarova I., Bohm S., Lhotak P. Unprecedented Meta-Substitution of Calixarenes: Direct Way to Inherently Chiral Derivatives. Org. Lett. 2012;14:3628–3631. doi: 10.1021/ol301420t. PubMed DOI
Flidrova K., Slavik P., Eigner V., Dvorakova H., Lhotak P. meta-Bridged calix[4]arenes: A straightforward synthesis via organomercurial chemistry. Chem. Commun. 2013;49:6749–6751. doi: 10.1039/c3cc43284j. PubMed DOI
Tlusty M., Spalovska D., Kohout M., Eigner V., Lhotak P. Ketone transformation as a pathway to inherently chiral rigidified calix[4]arenes. Chem. Commun. 2020;56:12773–12776. doi: 10.1039/D0CC05352J. PubMed DOI
Tlusty M., Slavik P., Kohout M., Eigner V., Lhotak P. Inherently Chiral Upper-Rim-Bridged Calix[4]arenes Possessing a Seven Membered Ring. Org. Lett. 2017;19:2933–2936. doi: 10.1021/acs.orglett.7b01170. PubMed DOI
Gilmore K., Alabugin I.V. Cyclizations of Alkynes: Revisiting Baldwin’s Rules for Ring Closure. Chem. Rev. 2011;111:6513–6556. doi: 10.1021/cr200164y. PubMed DOI
Thomas A.M., Sujatha A., Anilkumar G. Recent advances and perspectives in copper-catalyzed Sonogashira coupling reactions. RSC Adv. 2014;4:21688–21698. doi: 10.1039/C4RA02529F. DOI
Karak M., Barbosa L.C., Hargaden G.C. Recent mechanistic developments and next generation catalysts for the Sonogashira coupling reaction. RSC Adv. 2014;4:53442–53466. doi: 10.1039/C4RA09105A. DOI
Dyker G., Mastalerz M., Müller I.M. Electron-Rich Cavitands via Fourfold Sonogashira Cross-Coupling Reaction of Calix[4]arenes and Bromopyridines—Effect of the Nitrogen Position on Complexation Abilities. Eur. J. Org. Chem. 2005;2005:3801–3812. doi: 10.1002/ejoc.200500362. DOI
Böhmer V., Brusko V., Rissanen K. Extended Calix[8]arenes by Sonogashira Cross-Coupling with Ethynylarenes. Synthesis. 2002;2002:1898–1902. doi: 10.1055/s-2002-33925. DOI
Boonkitpatarakul K., Yodta Y., Niamnont N., Sukwattanasinitt M. Fluorescent phenylethynylene calix[4]arenes for sensing TNT in aqueous media and vapor phase. RSC Adv. 2015;5:33306–33311. doi: 10.1039/C5RA02758F. DOI
Hennrich G., Murillo M.T., Prados P., Al-Saraierh H., El-Dali A., Thompson D.W., Collins J., Georghiou P.E., Teshome A., Asselberghs I., et al. Alkynyl Expanded Donor–Acceptor Calixarenes: Geometry and Second-Order Nonlinear Optical Properties. Chem. Eur. J. 2007;13:7753–7761. doi: 10.1002/chem.200700615. PubMed DOI
Al-Saraierh H., Miller D.O., Georghiou P.E. Narrow-rim functionalization of calix[4]arenes via Sonogashira coupling reactions. J. Org. Chem. 2005;70:8273–8280. doi: 10.1021/jo050488s. PubMed DOI
Prochnow T., Back D.F., Zeni G. Iron(III) Chloride and Diorganyl Diselenide-Promoted Nucleophilic Closures of 1-Benzyl-2-alkynylbenzenes in the Preparation of 9-(Organoselanyl)-5H-benzo[7]annulenes. Adv. Synth. Catal. 2016;358:1119–1129. doi: 10.1002/adsc.201501055. DOI
Goulart T.A.C., Kazmirski J.A.G., Back D.F., Zeni G. Iron(III)-Promoted Synthesis of 3-(Organoselanyl)-1,2-Dihydroquinolines from Diorganyl Diselenides and N-Arylpropargylamines by Sequential Carbon-Carbon and Carbon-Selenium Bond Formation. Adv. Synth. Catal. 2019;361:96–104. doi: 10.1002/adsc.201801097. DOI
Sperança A., Godoi B., Pinton S., Back D.F., Menezes P.H., Zeni G. Regioselective Synthesis of Isochromenones by Iron(III)/PhSeSePh-Mediated Cyclization of 2-Alkynylaryl Esters. J. Org. Chem. 2011;76:6789–6797. doi: 10.1021/jo201211s. PubMed DOI
Martinez C.R., Iverson B.L. Rethinking the term “pi-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI
Thakuria R., Nath N.K., Saha B.K. The Nature and Applications of π–π Interactions: A Perspective. Cryst. Growth Des. 2019;19:523–528. doi: 10.1021/acs.cgd.8b01630. DOI
Mukherjee N., Satyanarayana A.N., Singh P., Dixit M., Chatterjee T. Recyclable iodine-catalyzed radical selenylative annulation of 2-alkynyl biaryls with diselenides in water: A green approach to selanyl polycyclic aromatic hydrocarbons and polycyclic heteroaromatics. Green Chem. 2022;24:7029–7038. doi: 10.1039/D2GC02256G. DOI
An S., Zhang Z., Li P. Metal-Free Synthesis of Selenodihydronaphthalenes by Selenoxide—Mediated Electrophilic Cyclization of Alkynes. Eur. J. Org. Chem. 2021;2021:3059–3070. doi: 10.1002/ejoc.202100423. DOI
Zhang X., Campo M.A., Yao T., Larock R.C. Synthesis of Substituted Quinolines by Electrophilic Cyclization of N-(2-Alkynyl)anilines. Org. Lett. 2005;7:763–766. doi: 10.1021/ol0476218. PubMed DOI
Gabriele B., Mancuso R., Veltri L. Recent Advances in the Synthesis of Indanes and Indenes. Chem. Eur. J. 2016;22:5056–5094. doi: 10.1002/chem.201503933. PubMed DOI
Nahide P.D., Jiménez-Halla J.O.C., Wrobel K., Solorio-Alvarado C.R., Ortiz Alvarado R., Yahuaca-Juárez B. Gold(i)-catalysed high-yielding synthesis of indenes by direct Csp3–H bond activation. Org. Biomol. Chem. 2018;16:7330–7335. doi: 10.1039/C8OB02056F. PubMed DOI
Yang S., Li Z., Jian X., He C. Platinum(II)-Catalyzed Intramolecular Cyclization of o-Substituted Aryl Alkynes through sp3 C-H Activation. Angew. Chem. Int. Ed. 2009;48:3999–4001. doi: 10.1002/anie.200900368. PubMed DOI
Chen Y.-Y., Chen Z.-Y., Zhang N.-N., Chen J.-H., Zhang X.-J., Yan M. Intramolecular Addition of Triarylmethanes to Alkynes Promoted by KOtBu/DMF: A Synthetic Approach to Indene Derivatives. Eur. J. Org. Chem. 2016;2016:599–606. doi: 10.1002/ejoc.201501356. DOI
Sun L., Wang L., Alhumade H., Yi H., Cai H., Lei A. Electrochemical Radical Selenylation of Alkenes and Arenes via Se–Se Bond Activation. Org. Lett. 2021;23:7724–7729. doi: 10.1021/acs.orglett.1c02661. PubMed DOI
Mukherjee N., Chatterjee T. Highly Atom-Economic and Efficient Electrochemical Selenylative Annulation of 2-Alkynyl Biaryls. Adv. Synth. Catal. 2023;365:2255–2263. doi: 10.1002/adsc.202300333. DOI
Zhou J., Tao X.-Z., Dai J.-J., Li C.-G., Xu J., Xu H.-M., Xu H.-J. Electrochemical synthesis of 1,2-diketones from alkynes under transition-metal-catalyst-free conditions. Chem. Commun. 2019;55:9208–9211. doi: 10.1039/C9CC03996A. PubMed DOI
Bruker . APEX4, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2021.
Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIRPOW.92—A program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Crystallogr. 1994;27:435–436. doi: 10.1107/S0021889894000221. DOI
Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI
Rohlicek J., Husak M. MCE2005—A new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI