Upper Rim-Bridged Calix[4]arenes via Cyclization of meta Alkynyl Intermediates with Diphenyl Diselenide

. 2024 Mar 11 ; 29 (6) : . [epub] 20240311

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38542874

Grantová podpora
23-07154S Czech Science Foundation
21-05926X Czech Science Foundation
A2_FCHT_2022_073 Specific university research

A Sonogashira coupling of meta-iodocalix[4]arene with various terminal acetylenes confirmed that the meta position of calixarene is well addressable, and that both thermal and microwave protocols led to good yields of alkynylcalixarenes. Alkynes thus obtained were subjected to the ferric chloride and diphenyl diselenide-promoted electrophilic closure. It turns out that the calix[4]arenes give completely different bridging products than those described for the non-macrocyclic starting compounds. This can be demonstrated not only by the isolation of products with a six-membered ring (6-exo-dig), but mainly by the smooth formation of the 5-endo-dig cyclization, which has never been observed in the aliphatic series. An attempt at electrocyclization led to a high yield of the 1,2-diketone (oxidation of the starting alkyne), again in contrast to the reaction described for the acyclic derivatives. The structures of the unexpected products were unequivocally established by X-ray analysis and clearly demonstrate how the preorganized macrocyclic skeleton favors a completely different regioselectivity of cyclization reactions compared to common aliphatic compounds.

Zobrazit více v PubMed

Gutsche C.D. Calixarenes: An Introduction. Royal Society of Chemistry, RSC Publishing; Cambridge, UK: 2008.

Asfari Z., Böhmer V., Harrowfield J., Vicens J. Calixarenes 2001. Kluwer Academic Publishers; Dordrecht, The Netherlands: 2001.

Neri P., Sessler J.L., Wang M.X. Calixarenes and Beyond. Springer; Cham, Switzerland: 2016. DOI

Mandolini L., Ungaro R. Calixarenes in Action. World Scientific Publishing Company; Singapore: 2000.

Lhoták P. Direct meta substitution of calix[4]arenes. Org. Biomol. Chem. 2022;20:7377–7390. doi: 10.1039/D2OB01437H. PubMed DOI

Slavik P., Dudic M., Flidrova K., Sykora J., Cisarova I., Bohm S., Lhotak P. Unprecedented Meta-Substitution of Calixarenes: Direct Way to Inherently Chiral Derivatives. Org. Lett. 2012;14:3628–3631. doi: 10.1021/ol301420t. PubMed DOI

Flidrova K., Slavik P., Eigner V., Dvorakova H., Lhotak P. meta-Bridged calix[4]arenes: A straightforward synthesis via organomercurial chemistry. Chem. Commun. 2013;49:6749–6751. doi: 10.1039/c3cc43284j. PubMed DOI

Tlusty M., Spalovska D., Kohout M., Eigner V., Lhotak P. Ketone transformation as a pathway to inherently chiral rigidified calix[4]arenes. Chem. Commun. 2020;56:12773–12776. doi: 10.1039/D0CC05352J. PubMed DOI

Tlusty M., Slavik P., Kohout M., Eigner V., Lhotak P. Inherently Chiral Upper-Rim-Bridged Calix[4]arenes Possessing a Seven Membered Ring. Org. Lett. 2017;19:2933–2936. doi: 10.1021/acs.orglett.7b01170. PubMed DOI

Gilmore K., Alabugin I.V. Cyclizations of Alkynes: Revisiting Baldwin’s Rules for Ring Closure. Chem. Rev. 2011;111:6513–6556. doi: 10.1021/cr200164y. PubMed DOI

Thomas A.M., Sujatha A., Anilkumar G. Recent advances and perspectives in copper-catalyzed Sonogashira coupling reactions. RSC Adv. 2014;4:21688–21698. doi: 10.1039/C4RA02529F. DOI

Karak M., Barbosa L.C., Hargaden G.C. Recent mechanistic developments and next generation catalysts for the Sonogashira coupling reaction. RSC Adv. 2014;4:53442–53466. doi: 10.1039/C4RA09105A. DOI

Dyker G., Mastalerz M., Müller I.M. Electron-Rich Cavitands via Fourfold Sonogashira Cross-Coupling Reaction of Calix[4]arenes and Bromopyridines—Effect of the Nitrogen Position on Complexation Abilities. Eur. J. Org. Chem. 2005;2005:3801–3812. doi: 10.1002/ejoc.200500362. DOI

Böhmer V., Brusko V., Rissanen K. Extended Calix[8]arenes by Sonogashira Cross-Coupling with Ethynylarenes. Synthesis. 2002;2002:1898–1902. doi: 10.1055/s-2002-33925. DOI

Boonkitpatarakul K., Yodta Y., Niamnont N., Sukwattanasinitt M. Fluorescent phenylethynylene calix[4]arenes for sensing TNT in aqueous media and vapor phase. RSC Adv. 2015;5:33306–33311. doi: 10.1039/C5RA02758F. DOI

Hennrich G., Murillo M.T., Prados P., Al-Saraierh H., El-Dali A., Thompson D.W., Collins J., Georghiou P.E., Teshome A., Asselberghs I., et al. Alkynyl Expanded Donor–Acceptor Calixarenes: Geometry and Second-Order Nonlinear Optical Properties. Chem. Eur. J. 2007;13:7753–7761. doi: 10.1002/chem.200700615. PubMed DOI

Al-Saraierh H., Miller D.O., Georghiou P.E. Narrow-rim functionalization of calix[4]arenes via Sonogashira coupling reactions. J. Org. Chem. 2005;70:8273–8280. doi: 10.1021/jo050488s. PubMed DOI

Prochnow T., Back D.F., Zeni G. Iron(III) Chloride and Diorganyl Diselenide-Promoted Nucleophilic Closures of 1-Benzyl-2-alkynylbenzenes in the Preparation of 9-(Organoselanyl)-5H-benzo[7]annulenes. Adv. Synth. Catal. 2016;358:1119–1129. doi: 10.1002/adsc.201501055. DOI

Goulart T.A.C., Kazmirski J.A.G., Back D.F., Zeni G. Iron(III)-Promoted Synthesis of 3-(Organoselanyl)-1,2-Dihydroquinolines from Diorganyl Diselenides and N-Arylpropargylamines by Sequential Carbon-Carbon and Carbon-Selenium Bond Formation. Adv. Synth. Catal. 2019;361:96–104. doi: 10.1002/adsc.201801097. DOI

Sperança A., Godoi B., Pinton S., Back D.F., Menezes P.H., Zeni G. Regioselective Synthesis of Isochromenones by Iron(III)/PhSeSePh-Mediated Cyclization of 2-Alkynylaryl Esters. J. Org. Chem. 2011;76:6789–6797. doi: 10.1021/jo201211s. PubMed DOI

Martinez C.R., Iverson B.L. Rethinking the term “pi-stacking”. Chem. Sci. 2012;3:2191–2201. doi: 10.1039/c2sc20045g. DOI

Thakuria R., Nath N.K., Saha B.K. The Nature and Applications of π–π Interactions: A Perspective. Cryst. Growth Des. 2019;19:523–528. doi: 10.1021/acs.cgd.8b01630. DOI

Mukherjee N., Satyanarayana A.N., Singh P., Dixit M., Chatterjee T. Recyclable iodine-catalyzed radical selenylative annulation of 2-alkynyl biaryls with diselenides in water: A green approach to selanyl polycyclic aromatic hydrocarbons and polycyclic heteroaromatics. Green Chem. 2022;24:7029–7038. doi: 10.1039/D2GC02256G. DOI

An S., Zhang Z., Li P. Metal-Free Synthesis of Selenodihydronaphthalenes by Selenoxide—Mediated Electrophilic Cyclization of Alkynes. Eur. J. Org. Chem. 2021;2021:3059–3070. doi: 10.1002/ejoc.202100423. DOI

Zhang X., Campo M.A., Yao T., Larock R.C. Synthesis of Substituted Quinolines by Electrophilic Cyclization of N-(2-Alkynyl)anilines. Org. Lett. 2005;7:763–766. doi: 10.1021/ol0476218. PubMed DOI

Gabriele B., Mancuso R., Veltri L. Recent Advances in the Synthesis of Indanes and Indenes. Chem. Eur. J. 2016;22:5056–5094. doi: 10.1002/chem.201503933. PubMed DOI

Nahide P.D., Jiménez-Halla J.O.C., Wrobel K., Solorio-Alvarado C.R., Ortiz Alvarado R., Yahuaca-Juárez B. Gold(i)-catalysed high-yielding synthesis of indenes by direct Csp3–H bond activation. Org. Biomol. Chem. 2018;16:7330–7335. doi: 10.1039/C8OB02056F. PubMed DOI

Yang S., Li Z., Jian X., He C. Platinum(II)-Catalyzed Intramolecular Cyclization of o-Substituted Aryl Alkynes through sp3 C-H Activation. Angew. Chem. Int. Ed. 2009;48:3999–4001. doi: 10.1002/anie.200900368. PubMed DOI

Chen Y.-Y., Chen Z.-Y., Zhang N.-N., Chen J.-H., Zhang X.-J., Yan M. Intramolecular Addition of Triarylmethanes to Alkynes Promoted by KOtBu/DMF: A Synthetic Approach to Indene Derivatives. Eur. J. Org. Chem. 2016;2016:599–606. doi: 10.1002/ejoc.201501356. DOI

Sun L., Wang L., Alhumade H., Yi H., Cai H., Lei A. Electrochemical Radical Selenylation of Alkenes and Arenes via Se–Se Bond Activation. Org. Lett. 2021;23:7724–7729. doi: 10.1021/acs.orglett.1c02661. PubMed DOI

Mukherjee N., Chatterjee T. Highly Atom-Economic and Efficient Electrochemical Selenylative Annulation of 2-Alkynyl Biaryls. Adv. Synth. Catal. 2023;365:2255–2263. doi: 10.1002/adsc.202300333. DOI

Zhou J., Tao X.-Z., Dai J.-J., Li C.-G., Xu J., Xu H.-M., Xu H.-J. Electrochemical synthesis of 1,2-diketones from alkynes under transition-metal-catalyst-free conditions. Chem. Commun. 2019;55:9208–9211. doi: 10.1039/C9CC03996A. PubMed DOI

Bruker . APEX4, SAINT and SADABS. Bruker AXS Inc.; Madison, WI, USA: 2021.

Altomare A., Cascarano G., Giacovazzo C., Guagliardi A., Burla M.C., Polidori G., Camalli M. SIRPOW.92—A program for automatic solution of crystal structures by direct methods optimized for powder data. J. Appl. Crystallogr. 1994;27:435–436. doi: 10.1107/S0021889894000221. DOI

Betteridge P., Carruthers J., Cooper R., Prout K., Watkin D. CRYSTALS version 12: Software for guided crystal structure analysis. J. Appl. Crystallogr. 2003;36:1487. doi: 10.1107/S0021889803021800. DOI

Rohlicek J., Husak M. MCE2005—A new version of a program for fast interactive visualization of electron and similar density maps optimized for small molecules. J. Appl. Crystallogr. 2007;40:600–601. doi: 10.1107/S0021889807018894. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...