Recent developments and applications of polymer monolithic stationary phases
Status PubMed-not-MEDLINE Language English Country Germany Media electronic-ecollection
Document type Journal Article, Review
PubMed
38716453
PubMed Central
PMC10989662
DOI
10.1002/ansa.202100006
PII: ANSA202100006
Knihovny.cz E-resources
- Keywords
- bioanalysis, column technology, review, stationary phase,
- Publication type
- Journal Article MeSH
- Review MeSH
This review highlights the current trends and the most recent advances in the field of preparation and application of organic polymer-based monolithic materials and covers literature published in 2020. A short historical background is provided and protocols to anchor monoliths covalently to the wall of the column/separation device are discussed. Furthermore, advances in tuning the macroporous structure and establishing its link to separation performance are conferred. Finally, method development and key applications using novel monolithic columns are discussed.
See more in PubMed
Synge RLM, Mould DL. Electrokinetic ultrafiltration analysis of polysaccharides. Analyst. 1952;77:964‐969.
Mould DL, Synge RLM. Separations of polysaccharides related to starch by electrokinetic ultrafiltration in collodion membranes. Biochem J. 1954;58:571‐585. PubMed PMC
Kubín M, Špaček P, Chromeček R. Gel permeation chromatography on porous poly(ethylene glycol methacrylate). Collect Czech Chem Commun. 1967;32:3881‐3887.
Monich I, Vidyaikina L, Arzhakov S, Okladnov N, Razinskaya I. Study of monolith formation of polyvinylchloride. Polymer Sci. 1966:754‐758.
Monich I, Shtarkman BP. Monolithic body formation from the powder of plasticized polyvinyl chloride (PVC). Polymer Sci Symposia. 1974:772‐776.
Goldstein G. Liquid chromatographic separation of plant phenolics using polyethylene glycol dimethacrylate gel. J Chromatogr. 1976;129:466‐468.
Coupek J, Krivakova M, Pokorny S. New hydrophilic materials for chromatography: glycol methacrylates. J Polymer Sci Symposia. 1973;42:185‐190.
Ross WD, Jefferson RT. In situ‐formed open‐pore polyurethane as chromatography supports. J Chromatogr Sci. 1970;8:386‐389.
Hileman FD, Sievers RE, Hess GG, Ross WD. In situ preparation and evaluation of open pore polyurethane chromatographic columns. Anal Chem. 1973;45:1126‐1130.
Schnecko H, Bieber O. Foam filled columns in gas chromatography. Chromatographia. 1971;4:109‐112.
Hjertén S, Liu Z‐Q, Yang D. Some studies on the resolving power of agarose‐based high‐performance liquid chromatographic media for the separation of macromolecules. J Chromatogr A. 1984;296:115‐120.
Hjertén S, Liao JL, Zhang R. High‐performance liquid chromatography on continuous polymer beds. J Chromatogr A. 1989;473:273‐275.
Tennikova TB, Švec F, Belenkii BG. High‐performance membrane chromatography of proteins, a novel method of protein separation. J Liq Chromatogr. 1991;555:97‐107.
Belenkii BG, Podkladenko AM, Kurenbin OI, Mal'tsev VG, Nasledov DG, Trushin SA. Peculiarities of zone migration and band broadening in gradient reversed‐phase high‐performance liquid chromatography of proteins with respect to membrane chromatography. J Chromatogr A. 1993;645:1‐15. PubMed
Svec F, Fréchet JMJ. Continuous rods of macroporous polymer as high‐performance liquid chromatography separation media. Anal Chem. 1992;64:820‐822. PubMed
Wang QC, Švec F, Fréchet JMJ. Reversed‐phase chromatography of small molecules and peptides on a continuous rod of macroporous poly (styrene‐co‐divinylbenzene). J Chromatogr A. 1994;669:230‐235. PubMed
Xie S, Allington RW, Svec F, Fréchet JMJ. Rapid reversed‐phase separation of proteins and peptides using optimized ‘moulded’ monolithic poly(styrene‐co‐divinylbenzene) columns. J Chromatogr A. 1999;865:169‐174. PubMed
Peters EC, Petro M, Svec F, Fréchet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem. 1997;69:3646‐3649. PubMed
Peters EC, Petro M, Svec F, Fréchet JMJ. Molded rigid polymer monoliths as separation media for capillary electrochromatography. 1. Fine control of porous properties and surface chemistry. Anal Chem. 1998;70:2288‐2295. PubMed
Urban J, Jandera P. Polymethacrylate monolithic columns for capillary liquid chromatography. J Sep Sci. 2008;31:2521‐2540. PubMed
Eeltink S, Geiser L, Svec F, Fréchet JMJ. Optimization of the porous structure and polarity of polymethacrylate‐based monolithic capillary columns for the LC‐MS separation of enzymatic digests. J Sep Sci. 2007;30:2814‐2820. PubMed PMC
Ribeiro LF, Masini JC, Svec F. Use of thiol functionalities for the preparation of porous monolithic structures and modulation of their surface chemistry: a review. TrAC. 2019;118:606‐624.
Svec F. Preparation and HPLC applications of rigid macroporous organic polymer monoliths. J Sep Sci. 2004;27:747‐766. PubMed
Courtois J, Szumski M, Byström E, Iwasiewicz A, Shchukarev A, Irgum K. A study of surface modification and anchoring techniques used in the preparation of monolithic microcolumns in fused silica capillaries. J Sep Sci. 2006;29:14‐24. PubMed
Vaast A, Nováková L, Desmet G, De Haan B, Swart R, Eeltink S. High‐speed gradient separations of peptides and proteins using polymer‐monolithic poly(styrene‐co‐divinylbenzene) capillary columns at ultra‐high pressure. J Chromatogr A. 2013;1304:177‐182. PubMed
Vaast A, Terryn H, Svec F, Eeltink S. Nanostructured porous polymer monolithic columns for capillary liquid chromatography of peptides. J Chromatogr A. 2014;1374:171‐179. PubMed
Nesterenko EP, Nesterenko PN, Connolly D, Lacroix F, Paull B. Micro‐bore titanium housed polymer monoliths for reversed‐phase liquid chromatography of small molecules. J Chromatogr A. 2010;1217:2138‐2146. PubMed
Stachowiak TB, Mair DA, Holden TG, Lee LJ, Svec F, Fréchet JMJ. Hydrophilic surface modification of cyclic olefin copolymer microfluidic chips using sequential photografting. J Sep Sci. 2007;30:1088‐1093. PubMed
do Nascimento FH, Moraes AH, Trazzi CRL, Velasques CM, Masini JC. Fast construction of polymer monolithic columns inside fluorinated ethylene propylene (FEP) tubes for separation of proteins by reversed‐phase liquid chromatography. Talanta. 2020;217:121063. PubMed
Henrique Do Nascimento F, Trazzi CRL, Moraes AH, Velasques CM, Costa DMDeS, Masini JC. Construction of polymer monolithic columns in polypropylene ink‐pen tubes for separation of proteins by cation‐exchange chromatography. J Sep Sci. 2020;43:4123‐4130. PubMed
Torres‐Cartas S, Meseguer‐Lloret S, Gómez‐Benito C, Catalá‐Icardo M, Simó‐Alfonso EF, Herrero‐Martínez JM. Preparation of monolithic polymer‐magnetite nanoparticle composites into poly(ethylene‐co‐tetrafluoroethylene) tubes for uses in micro‐bore hplc separation and extraction of phosphorylated compounds. Talanta. 2020;224:121806. PubMed
Abdulhussain N, Nawada S, Currivan S, Passamonti M, Schoenmakers P. Fabrication of polymer monoliths within the confines of non‐transparent 3D‐printed polymer housings. J Chromatogr A. 2020;1623:461159. PubMed
Carrasco‐Correa EJ, Cocovi‐Solberg DJ, Herrero‐Martínez JM, Simó‐Alfonso EF, Miró M. 3D printed fluidic platform with in‐situ covalently immobilized polymer monolithic column for automatic solid‐phase extraction. Anal Chim Acta. 2020;1111:40‐48. PubMed
Peng S, Bai L, Shi X, et al. A rapid method for on‐line solid‐phase extraction and determination of dioscin in human plasma using a homemade monolithic sorbent combined with high‐performance liquid chromatography. Anal Bioanal Chem. 2020;412:473‐480. PubMed
Svec F, Fréchet JMJ. Temperature, a simple and efficient tool for the control of pore size distribution in macroporous polymers. Macromolecules. 1995;28:7580‐7582.
Svec F, Frechet JMJ. Kinetic control of pore formation in macroporous polymers. formation of ‘molded’ porous materials with high flow characteristics for separations or catalysis. Chem Mater. 1995;7:707‐715.
Viklund C, Svec F, Fréchet JMJ, Irgum K. Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid‐phase chemistry: control of porous properties during polymerization. Chem Mater. 1996;8:744‐750.
Viklund C, Pontén E, Glad B, Irgum K, Hörstedt P, Svec F. Molded’ macroporous poly(glycidyl methacrylate‐co‐trimethylolpropane trimethacrylate) materials with fine controlled porous properties: preparation of monoliths using photoinitiated polymerization. Chem Mater. 1997;9:463‐471.
Dores‐Sousa JL, Fernández‐Pumarega A, De Vos J, Lämmerhofer M, Desmet G, Eeltink S. Guidelines for tuning the macropore structure of monolithic columns for high‐performance liquid chromatography. J Sep Sci. 2019;42:522‐533. PubMed
Mansour FR, Waheed S, Paull B, Maya F. Porogens and porogen selection in the preparation of porous polymer monoliths. J Sep Sci. 2020;43:56‐69. PubMed
Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Design and preparation of porous polymers. Chem Rev. 2012;112:3959‐4015. PubMed
Jiang X, Ruan G, Zhang W, Zhang Y, Du F, Chen Z. Preparation of porous polymers based on high internal phase emulsion for enrichment of estrogens in urine. J Sep Sci. 2020:1‐8. PubMed
Catalá‐Icardo M, Torres‐Cartas S, Simó‐Alfonso EFF, Herrero‐Martínez JMM. Influence of photo‐initiators in the preparation of methacrylate monoliths into poly(ethylene‐co‐tetrafluoroethylene) tubing for microbore hplc. Anal Chim Acta. 2020;1093:160‐167. PubMed
Courtois J, Szumski M, Georgsson F, Irgum K. Assessing the macroporous structure of monolithic columns by transmission electron microscopy. Anal Chem. 2007;79:335‐344. PubMed
Müllner T, Zankel A, Lv Y, Svec F, Höltzel A, Tallarek U. Assessing structural correlations and heterogeneity length scales in functional porous polymers from physical reconstructions. Adv Mater. 2015;27:6009‐6013. PubMed
Wouters S, Hauffman T, Mittelmeijer‐Hazeleger MC, et al. Comprehensive study of the macropore and mesopore size distributions in polymer monoliths using complementary physical characterization techniques and liquid chromatography. J Sep Sci. 2016;39:4492‐4501. PubMed
Huo Y, Schoenmakers PJ, Kok WT. Efficiency of methacrylate monolithic columns in reversed‐phase liquid chromatographic separations. J Chromatogr A. 2007;1175:81‐88. PubMed
Urban J. Current trends in the development of porous polymer monoliths for the separation of small molecules. J Sep Sci. 2016;39:51‐68. PubMed
Fernández‐Pumarega A, Dores‐Sousa JL, Eeltink S. A comprehensive investigation of the peak capacity for the reversed‐phase gradient liquid‐chromatographic analysis of intact proteins using a polymer‐monolithic capillary column. J Chromatogr A. 2020;1609:460462. PubMed
Dores‐Sousa JL, Terryn H, Eeltink S. Morphology optimization and assessment of the performance limits of high‐porosity nanostructured polymer monolithic capillary columns for proteomics analysis. Anal Chim Acta. 2020;1124:176‐183. PubMed
Fee C, Nawada S, Dimartino S. 3D printed porous media columns with fine control of column packing morphology. J Chromatogr A. 2014;1333:18‐24. PubMed
Simon U, Scorza LCT, Teworte S, McCormick AJ, Dimartino S. Demonstration of protein capture and separation using three‐dimensional printed anion exchange monoliths fabricated in one‐step. J Sep Sci. 2020:1‐11. PubMed
De Malsche W, Matheuse F, Broeckhoven K, Desmet G, Cabooter D, Eeltink S. Current and future chromatographic columns: is one column enough to rule them all?. LCGC. 2018;36:9‐17.
Alharthi S, El Rassi Z. Various strategies in post‐polymerization functionalization of organic polymer‐based monoliths used in liquid phase separation techniques. Molecules. 2020;25:1323. PubMed PMC
Fresco‐Cala B, Gálvez‐Vergara A, Cárdenas S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine‐modified carbon nanotubes for the determination of anti‐inflammatory drugs in urine samples. Talanta. 2020;218:121124. PubMed
Ganewatta N, El Rassi Z. Organic polymer monolithic columns with incorporated bare and cyano‐modified fumed silica nanoparticles for use in hydrophilic interaction liquid chromatography. JAST. 2020;11:1‐12.
Urban J. Are we approaching a post‐monolithic era?. J Sep Sci. 2020;43:1628‐1633. PubMed
Nischang I. Porous polymer monoliths: morphology, porous properties, polymer nanoscale gel structure and their impact on chromatographic performance. J Chromatogr A. 2013;1287:39‐58. PubMed
Nischang I, Teasdale I, Brüggemann O. Porous polymer monoliths for small molecule separations: advancements and limitations. Anal Bioanal Chem. 2011;400:2289‐2304. PubMed
Zajickova Z, Nováková L, Svec F. Monolithic poly(styrene‐co‐divinylbenzene) columns for supercritical fluid chromatography–mass spectrometry analysis of polypeptides. Anal Chem. 2020;92:11525‐11529. PubMed
Komendová M, Urban J. Dual‐retention mechanism of dopamine‐related compounds on monolithic stationary phase with zwitterion functionality. J Chromatogr A. 2020;1618:460893. PubMed
Dolman S, Eeltink S, Vaast A, Pelzing M. Investigation of carryover of peptides in nano‐liquid chromatography/mass spectrometry using packed and monolithic capillary columns. J Chromatogr B. 2013;912:56‐63. PubMed
Zhang X, Chai M‐H, Wei Z‐H, Chen WJ, Liu ZS, Huang YP. Deep eutectic solvents‐based polymer monolith incorporated with titanium dioxide nanotubes for specific recognition of proteins. Anal Chim Acta. 2020;1139:27‐35. PubMed
Qin Z, Chen X, Yu Q, Ding J, Feng Y. Preparation of zirconium arsenate‐modified monolithic column for selective enrichment of phosphopeptides. J Sep Sci. 2020:1‐9. PubMed
Bickham AV, Pang C, George BQ, et al. 3D printed microfluidic devices for solid‐phase extraction and on‐chip fluorescent labeling of preterm birth risk biomarkers. Anal Chem. 2020;92:12322‐12329. PubMed PMC
Qi FF, Ma TY, Fan YM, Chu LL, Liu Y, Yu Y. Nanoparticle‐based polyacrylonitrile monolithic column for highly efficient micro solid‐phase extraction of carotenoids and vitamins in human serum. J Chromatogr A. 2021;1635:461755. PubMed
Zhang M, Liu H, Han Y, Bai L, Yan H. On‐line enrichment and determination of aristolochic acid in medicinal plants using a mof‐based composite monolith as adsorbent. J Chromatogr B. 2020;1159:122343. PubMed
Jiang L‐P, Li N, Liu L‐Q, Zheng X, Du F‐Y, Ruan GH. Preparation and application of polymerized high internal phase emulsion monoliths for the preconcentration and determination of malachite green and leucomalachite green in water samples. J Anal Test. 2020;4:264‐272.
Mompó‐Roselló O, Vergara‐Barberán M, Simó‐Alfonso EF, Herrero‐Martínez JM. In syringe hybrid monoliths modified with gold nanoparticles for selective extraction of glutathione in biological fluids prior to its determination by hplc. Talanta. 2020;209:120566. PubMed
Zheng C, Huang Y, Liu Z. Recent developments and applications of molecularly imprinted monolithic column for HPLC and CEC. J Sep Sci. 2011;34:1988‐2002. PubMed
Pichon V, Delaunay N, Combès A. Sample preparation using molecularly imprinted polymers. Anal Chem. 2020;92:16‐33. PubMed
Liu M, Tran TM, Abbas Elhaj AA, et al. Molecularly imprinted porous monolithic materials from melamine‐ formaldehyde for selective trapping of phosphopeptides molecularly imprinted porous monolithic materials from melamine‐ formaldehyde for selective trapping of phosphopeptides. Anal Chem. 2017;89:9491‐9501. PubMed
Feng X, Cai J, Zhao H, Chen X. Rapid separation and screening of mycophenolate mofetil and mycophenolic acid with a novel (vinyl ester) resin molecular imprinted monolithic column. Chromatographia. 2020;83:749‐755.
Marchioni C, Vieira TM, Miller Crotti AE, Crippa JA, Costa Queiroz ME. In‐tube solid‐phase microextraction with a dummy molecularly imprinted monolithic capillary coupled to ultra‐performance liquid chromatography‐tandem mass spectrometry to determine cannabinoids in plasma samples. Anal Chim Acta. 2020;1099:145‐154. PubMed
Fang S, Liu Y, He J, et al. Determination of aldehydes in water samples by coupling magnetism‐reinforced molecular imprinting monolith microextraction and non‐aqueous capillary electrophoresis. J Chromatogr A. 2020;1632:461602. PubMed
Mehta R, Van Beek TA, Tetala KKR. A micro‐solid phase extraction device to prepare a molecularly imprinted porous monolith in a facile mode for fast protein separation. J Chromatogr A. 2020;1627:461415. PubMed
Svec F. Less common applications of monoliths: i. microscale protein mapping with proteolytic enzymes immobilized on monolithic supports. Electrophoresis. 2006;27:947‐961. PubMed
Ma J, Zhang L, Liang Z, Zhang W, Zhang Y. Monolith‐based immobilized enzyme reactors: recent developments and applications for proteome analysis. J Sep Sci. 2007;30:3050‐3059. PubMed
Safdar M, Sproß J, Jänis J. Microscale immobilized enzyme reactors in proteomics: latest developments. J Chromatogr A. 2014;1324:1‐10. PubMed
Wei Z, Fan P, Jiao Y, Wang Y, Huang Y, Liu Z. Integrated microfluidic chip for on‐line proteome analysis with combination of denaturing and rapid digestion of protein. Anal Chim Acta. 2020;1102:1‐10. PubMed
Zhao X, Fan P, Mo C, Huang Y, Liu Z. Green synthesis of monolithic enzyme microreactor based on thiol‐ene click reaction for enzymatic hydrolysis of protein. J Chromatogr A. 2020;1611:460618. PubMed
Fan P‐R, Zhao X, Wei Z‐H, Huang Y‐P, Liu Z‐S. Robust immobilized enzyme reactor based on trimethylolpropane trimethacrylate organic monolithic matrix through “thiol‐ene” click reaction. Eur Polym J. 2020;124:109456.
Wei Z‐H, Zhang X, Zhao X, Jiao Y‐J, Huang YP, Liu ZS. Construction of a microfluidic platform integrating online protein fractionation, denaturation, digestion, and peptide enrichment. Talanta. 2020;224:121810. PubMed
Jiao Y‐J, Yuan F‐F, Fan P‐R, Wei Z‐H, Huang Y‐P, Liu ZS. Macroporous monolithic enzyme microreactor based on high internal phase emulsion functionalized with gold nanorods for enzymatic hydrolysis of protein. Chem Eng J. 2021;407:127061.
Current trends in the development of polymer-based monolithic stationary phases