• This record comes from PubMed

Variations of Histone Modification Patterns: Contributions of Inter-plant Variability and Technical Factors

. 2017 ; 8 () : 2084. [epub] 20171207

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

Inter-individual variability of conspecific plants is governed by differences in their genetically determined growth and development traits, environmental conditions, and adaptive responses under epigenetic control involving histone post-translational modifications. The apparent variability in histone modifications among plants might be increased by technical variation introduced in sample processing during epigenetic analyses. Thus, to detect true variations in epigenetic histone patterns associated with given factors, the basal variability among samples that is not associated with them must be estimated. To improve knowledge of relative contribution of biological and technical variation, mass spectrometry was used to examine histone modification patterns (acetylation and methylation) among Arabidopsis thaliana plants of ecotypes Columbia 0 (Col-0) and Wassilewskija (Ws) homogenized by two techniques (grinding in a cryomill or with a mortar and pestle). We found little difference in histone modification profiles between the ecotypes. However, in comparison of the biological and technical components of variability, we found consistently higher inter-individual variability in histone mark levels among Ws plants than among Col-0 plants (grown from seeds collected either from single plants or sets of plants). Thus, more replicates of Ws would be needed for rigorous analysis of epigenetic marks. Regarding technical variability, the cryomill introduced detectably more heterogeneity in the data than the mortar and pestle treatment, but mass spectrometric analyses had minor apparent effects. Our study shows that it is essential to consider inter-sample variance and estimate suitable numbers of biological replicates for statistical analysis for each studied organism when investigating changes in epigenetic histone profiles.

See more in PubMed

Aebersold R., Mann M. (2016). Mass-spectrometric exploration of proteome structure and function. Nature 537 347–355. 10.1038/nature19949 PubMed DOI

Al Shweiki M. R., Mönchgesang S., Majovsky P., Thieme D., Trutschel D., Hoehenwarter W. (2017). Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J. Proteome Res. 16 1410–1424. 10.1021/acs.jproteome.6b00645 PubMed DOI

Bates D., Mächler M., Bolker B., Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 1–48. 10.18637/jss.v067.i01 DOI

Bennett K. L., Wang X., Bystrom C. E., Chambers M. C., Andacht T. M., Dangott L. J., et al. (2015). The 2012/2013 ABRF proteomic research group study: assessing longitudinal intralaboratory variability in routine peptide liquid chromatography tandem mass spectrometry analyses. Mol. Cell. Proteomics 14 3299–3309. 10.1074/mcp.O115.051888 PubMed DOI PMC

Birney E., Stamatoyannopoulos J. A., Dutta A., Guigó R., Gingeras T. R., Margulies E. H., et al. (2007). Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447 799–816. 10.1038/nature05874 PubMed DOI PMC

Butt R. H., Coorssen J. R. (2006). Pre-extraction sample handling by automated frozen disruption significantly improves subsequent proteomic analyses. J. Proteome Res. 5 437–448. 10.1021/pr0503634 PubMed DOI

Chalancon G., Ravarani C. N., Balaji S., Martinez-Arias A., Aravind L., Jothi R., et al. (2012). Interplay between gene expression noise and regulatory network architecture. Trends Genet. 28 221–232. 10.1016/j.tig.2012.01.006 PubMed DOI PMC

de Jesus T. C., Nunes V. S., Lopes M. E. C., Martil D. E., Iwai L. K., Moretti N. S., et al. (2016). Chromatin proteomics reveals variable histone modifications during the life cycle of Trypanosoma cruzi. J. Proteome Res. 15 2039–2051. 10.1021/acs.jproteome.6b00208 PubMed DOI

Drury G. E., Dowle A. A., Ashford D. A., Waterworth W. M., Thomas J., West C. E. (2012). Dynamics of plant histone modifications in response to DNA damage. Biochem. J. 445 393–401. 10.1042/BJ20111956 PubMed DOI

Eldar A., Elowitz M. B. (2010). Functional roles for noise in genetic circuits. Nature 467 167–173. 10.1038/nature09326 PubMed DOI PMC

Elowitz M. B., Levine A. J., Siggia E. D., Swain P. S. (2002). Stochastic gene expression in a single cell. Science 297 1183–1186. 10.1126/science.1070919 PubMed DOI

Filion G. J., van Bemmel J. G., Braunschweig U., Talhout W., Kind J., Ward L. D., et al. (2010). Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell 143 212–224. 10.1016/j.cell.2010.09.009 PubMed DOI PMC

Fisher R. A. (1925). Statistical Methods for Research Workers Vol. 4 14th Edn. Edinburgh: Oliver and Boyd.

Govaert E., Van Steendam K., Scheerlinck E., Vossaert L., Meert P., Stella M., et al. (2016). Extracting histones for the specific purpose of label-free MS. Proteomics 16 2937–2944. 10.1002/pmic.201600341 PubMed DOI PMC

Henry R. A., Singh T., Kuo Y. M., Biester A., O’Keefe A., Lee S., et al. (2016). Quantitative measurement of histone tail acetylation reveals stage-specific regulation and response to environmental changes during Drosophila development. Biochemistry 55 1663–1672. 10.1021/acs.biochem.5b01070 PubMed DOI PMC

Kharchenko P. V., Alekseyenko A. A., Schwartz Y. B., Minoda A., Riddle N. C., Ernst J., et al. (2011). Comprehensive analysis of the chromatin landscape in Drosophila melanogaster. Nature 471 480–485. 10.1038/nature09725 PubMed DOI PMC

Koroleva O.A., Bindschedler L.V. (2011). “Efficient strategies for analysis of low abundance proteins in plant proteomics,” in Sample Preparation in Biological Mass Spectrometry, ed. Ivanov A. R., Lazarev A. V. (New York, NY: Springer; ), 381–409.

Krejčí J., Stixová L., Pagáčová E., Legartová S., Kozubek S., Lochmanová G., et al. (2015). Post-translational modifications of histones in human sperm. J. Cell. Biochem. 116 2195–2209. 10.1002/jcb.25170 PubMed DOI

Lestas I., Vinnicombe G., Paulsson J. (2010). Fundamental limits on the suppression of molecular fluctuations. Nature 467 174–178. 10.1038/nature09333. PubMed DOI PMC

Levin Y. (2011). The role of statistical power analysis in quantitative proteomics. Proteomics 11(12), 2565–2567. 10.1002/pmic.201100033. PubMed DOI

Moraes I., Yuan Z. F., Liu S., Souza G. M., Garcia B. A., Casas-Mollano J. A. (2015). Analysis of histones H3 and H4 reveals novel and conserved post-translational modifications in sugarcane. PLOS ONE 10:e0134586. 10.1371/journal.pone.0134586 PubMed DOI PMC

Mouradov A., Cremer F., Coupland G. (2002). Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14(Suppl.), S111–S130. 10.1105/tpc001362 PubMed DOI PMC

Novick A., Weiner M. (1957). Enzyme induction as an all-or-none phenomenon. Proc. Natl. Acad. Sci. U.S.A. 43 553–566. 10.1073/pnas.43.7.553 PubMed DOI PMC

Piehowski P. D., Petyuk V. A., Orton D. J., Xie F., Moore R. J., Ramirez-Restrepo M., et al. (2013). Sources of technical variability in quantitative LC-MS proteomics: human brain tissue sample analysis. J. Proteome Res. 12 2128–2137. 10.1021/pr301146m PubMed DOI PMC

Plazas-Mayorca M. D., Zee B. M., Young N. L., Fingerman I. M., LeRoy G., Briggs S. D., et al. (2009). One-pot shotgun quantitative mass spectrometry characterization of histones. J. Proteome Res. 8 5367–5374. 10.1021/pr900777e PubMed DOI PMC

R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.

Raj A., van Oudenaarden A. (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2), 216–226. 10.1016/j.cell.2008.09.050 PubMed DOI PMC

Raser J. M., O’Shea E. K. (2004). Control of stochasticity in eukaryotic gene expression. Science 304 1811–1814. 10.1126/science.1098641 PubMed DOI PMC

Roudier F., Ahmed I., Bérard C., Sarazin A., Mary-Huard T., Cortijo S., et al. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30 1928–1938. 10.1038/emboj.2011.103 PubMed DOI PMC

Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S. E., et al. (2014). The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26 2351–2366. 10.1105/tpc.114.124578 PubMed DOI PMC

Shakirov E. V., Shippen D. E. (2004). Length regulation and dynamics of individual telomere tracts in wild-type Arabidopsis. Plant Cell 16 1959–1967. 10.1105/tpc.104.023093 PubMed DOI PMC

Sidoli S., Bhanu N. V., Karch K. R., Wang X., Garcia B. A. (2016). Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 111:54112. 10.3791/54112 PubMed DOI PMC

Spudich J. L., Koshland D. E. (1976). Non-genetic individuality: chance in the single cell. Nature 262 467–471. 10.1038/262467a0 PubMed DOI

The 1001 Genomes Consortium (2016). 1,135 genomes reveal a global pattern of polymorphism in Arabidopsis thaliana. Cell 166 481–491. 10.1016/j.cell.2016.05.063 PubMed DOI PMC

Trutschel D., Schmidt S., Grosse I., Neumann S. (2015). Experiment design beyond gut feeling: statistical tests and power to detect differential metabolites in mass spectrometry data. Metabolomics 11 851–860. 10.1007/s11306-014-0742-y DOI

Tweedie-Cullen R. Y., Brunner A. M., Grossmann J., Mohanna S., Sichau D., Nanni P., et al. (2012). Identification of combinatorial patterns of post-translational modifications on individual histones in the mouse brain. PLOS ONE 7:e36980. 10.1371/journal.pone.0036980 PubMed DOI PMC

Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6 359–362. 10.1038/nmeth.1322 PubMed DOI

Zheng Y., Huang X., Kelleher N. L. (2016). Epiproteomics: quantitative analysis of histone marks and codes by mass spectrometry. Curr. Opin. Chem. Biol. 33 142–150. 10.1016/j.cbpa.2016.06.007 PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...