Filter-Aided Sample Preparation Procedure for Mass Spectrometric Analysis of Plant Histones
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30283482
PubMed Central
PMC6156276
DOI
10.3389/fpls.2018.01373
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, epigenetics, filter-aided sample preparation, histone derivatization, mass spectrometry, post-translational modifications,
- Publikační typ
- časopisecké články MeSH
Characterization of histone post-translational modifications (PTMs) is still challenging, and robust histone sample preparation is essential for convincing evaluation of PTMs by mass spectrometry. An effective protocol for extracting plant histone proteins must also avoid excessive co-extraction of the numerous potential interfering compounds, including those related to secondary metabolism. Currently, the co-existence of histone marks is addressed mostly by shotgun proteomic analysis following chemical derivatization of histone lysine residues. Here, we report a straightforward approach for plant histone sample preparation for mass spectrometry, based on filter-aided sample preparation coupled with histone propionylation. The approach offers savings in sample handling and preparation time, enables removal of interfering compounds from the sample, and does not require either precipitation or dialysis of histone extract. We show the comparison of two protocol variants for derivatization of histone proteins, in-solution propionylation in the vial and propionylation on the filter unit. For both protocols, we obtained identical abundances of post-translationally modified histone peptides. Although shorter time is required for histone protein labeling on the filter unit, in-solution derivatization slightly outweighed filter-based variant by lower data variability. Nevertheless, both protocol variants appear to be efficient and convenient approach for preparation of plant histones for mass spectrometric analysis.
Zobrazit více v PubMed
Baulcombe D. C., Dean C. (2014). Epigenetic regulation in plant responses to the environment. Cold Spring Harb. Perspect. Biol. 6:a019471. 10.1101/cshperspect.a019471 PubMed DOI PMC
Bergmüller E., Gehrig P. M., Gruissem W. (2007). Characterization of post-translational modifications of histone H2B-variants isolated from Arabidopsis thaliana. J. Proteome Res. 6 3655–3668. 10.1021/pr0702159 PubMed DOI
Blasi T., Feller C., Feigelman J., Hasenauer J., Imhof A., Theis F. J., et al. (2016). Combinatorial histone acetylation patterns are generated by motif-specific reactions. Cell Syst. 2 49–58. 10.1016/j.cels.2016.01.002 PubMed DOI
Brabencová S., Ihnatová I., Potěšil D., Fojtová M., Fajkus J., Zdráhal Z., et al. (2017). Variations of histone modification patterns: contributions of inter-plant variability and technical factors. Front. Plant Sci. 8:2084. 10.3389/fpls.2017.02084 PubMed DOI PMC
Chen J., Gao J., Peng M., Wang Y., Yu Y., Yang P., et al. (2015). In-gel NHS-propionate derivatization for histone post-translational modifications analysis in Arabidopsis thaliana. Anal. Chim. Acta 886 107–113. 10.1016/j.aca.2015.06.019 PubMed DOI
El Kennani S., Crespo M., Govin J., Pflieger D. (2018). Proteomic analysis of histone variants and their ptms: strategies and pitfalls. Proteomes 6:29. 10.3390/proteomes6030029 PubMed DOI PMC
Feller C., Forné I., Imhof A., Becker P. B. (2015). Global and specific responses of the histone acetylome to systematic perturbation. Mol. Cell 57 559–571. 10.1016/j.molcel.2014.12.008 PubMed DOI
Ha M., Ng D. W., Li W. H., Chen Z. J. (2011). Coordinated histone modifications are associated with gene expression variation within and between species. Genome Res. 21 590–598. 10.1101/gr.116467.110 PubMed DOI PMC
Garcia B. A., Mollah S., Ueberheide B., Busby S. A., Muratore T. L., Shabanowitz J., et al. (2007). Chemical derivatization of histones for facilitated analysis by mass spectrometry. Nat. Protoc. 2 933–938. 10.1038/nprot.2007.106 PubMed DOI PMC
Gardner K. E., Zhou L., Parra M. A., Chen X., Strahl B. D. (2011). Identification of lysine 37 of histone h2b as a novel site of methylation. PLoS One 6:e16244. 10.1371/journal.pone.0016244 PubMed DOI PMC
Jackson J. P., Johnson L., Jasencakova Z., Zhang X., PerezBurgos L., Singh P. B., et al. (2004). Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana. Chromosoma 112 308–315. 10.1007/s00412-004-0275-7 PubMed DOI
Johnson L., Mollah S., Garcia B. A., Muratore T. L., Shabanowitz J., Hunt D. F., et al. (2004). Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res. 32 6511–6518. 10.1093/nar/gkh992 PubMed DOI PMC
Kotliński M., Rutowicz K., Kniżewski Ł., Palusiński A., Olędzki J., Fogtman A., et al. (2016). Histone H1 variants in Arabidopsis are subject to numerous post-translational modifications, both conserved and previously unknown in histones, suggesting complex functions of H1 in plants. PLoS One 11:e0147908. 10.1371/journal.pone.0147908 PubMed DOI PMC
Liao R., Wu H., Deng H., Yu Y., Hu M., Zhai H., et al. (2013). Specific and efficient N-propionylation of histones with propionic acid N-hydroxysuccinimide ester for histone marks characterization by LC-MS. Anal. Chem. 85 2253–2259. 10.1021/ac303171h PubMed DOI
Lin S., Garcia B. A. (2012). Examining histone posttranslational modification patterns by high-resolution mass spectrometry. Methods Enzymol. 512 3–28. 10.1016/B978-0-12-391940-3.00001-9 PubMed DOI PMC
Mahrez W., Arellano M. S., Moreno-Romero J., Nakamura M., Shu H., Nanni P., et al. (2016). H3K36ac is an evolutionary conserved plant histone modification that marks active genes. Plant Physiol. 170 1566–1577. 10.1104/pp.15.01744 PubMed DOI PMC
Maile T. M., Izrael-Tomasevic A., Cheung T., Guler G. D., Tindell C., Masselot A., et al. (2015). Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol. Cell Proteomics 14 1148–1158. 10.1074/mcp.O114.046573 PubMed DOI PMC
Meert P., Govaert E., Scheerlinck E., Dhaenens M., Deforce D. (2015). Pitfalls in histone propionylation during bottom-up mass spectrometry analysis. Proteomics 15 2966–2971. 10.1002/pmic.201400569 PubMed DOI PMC
Meert P., Dierickx S., Govaert E., De Clerck L., Willems S., Dhaenens M., et al. (2016). Tackling aspecific side reactions during histone propionylation: the promise of reversing overpropionylation. Proteomics 16 1970–1974. 10.1002/pmic.201600045 PubMed DOI PMC
Moradian A., Kalli A., Sweredoski M. J., Hess S. (2014). The top-down, middle-down, and bottom-up mass spectrometry approaches for characterization of histone variants and their post-translational modifications. Proteomics 14 489–497. 10.1002/pmic.201300256 PubMed DOI
Moraes I., Yuan Z. F., Liu S., Souza G. M., Garcia B. A., Casas-Mollano J. A. (2015). Analysis of histones H3 and H4 reveals novel and conserved post-translational modifications in sugarcane. PLoS One 10:e0134586. 10.1371/journal.pone.0134586 PubMed DOI PMC
Nakayasu E. S., Wu S., Sydor M. A., Shukla A. K., Weitz K. K., Moore R. J., et al. (2014). A method to determine lysine acetylation stoichiometries. Int. J. Proteomics 2014:730725. 10.1155/2014/730725 PubMed DOI PMC
Ouvry-Patat S. A., Schey K. L. (2007). Characterization of antimicrobial histone sequences and posttranslational modifications by mass spectrometry. J. Mass Spectrom. 42 664–674. 10.1002/jms.1200 PubMed DOI
Pikaard C. S., Mittelsten Scheid O. (2014). Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 6:a019315. 10.1101/cshperspect.a019315 PubMed DOI PMC
Plazas-Mayorca M. D., Zee B. M., Young N. L., Fingerman I. M., LeRoy G., Briggs S. D., et al. (2009). One-pot shotgun quantitative mass spectrometry characterization of histones. J. Proteome Res. 8 5367–5374. 10.1021/pr900777e PubMed DOI PMC
Roudier F., Ahmed I., Bérard C., Sarazin A., Mary-Huard T., Cortijo S., et al. (2011). Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J. 30 1928–1938. 10.1038/emboj.2011.103 PubMed DOI PMC
Sequeira-Mendes J., Aragüez I., Peiró R., Mendez-Giraldez R., Zhang X., Jacobsen S. E., et al. (2014). The functional topography of the Arabidopsis genome is organized in a reduced number of linear motifs of chromatin states. Plant Cell 26 2351–2366. 10.1105/tpc.114.124578 PubMed DOI PMC
Sidoli S., Bhanu N. V., Karch K. R., Wang X., Garcia B. A. (2016). Complete workflow for analysis of histone post-translational modifications using bottom-up mass spectrometry: from histone extraction to data analysis. J. Vis. Exp. 111:e54112. 10.3791/54112 PubMed DOI PMC
Sidoli S., Yuan Z. F., Lin S., Karch K., Wang X., Bhanu N., et al. (2015). Drawbacks in the use of unconventional hydrophobic anhydrides for histone derivatization in bottom-up proteomics PTM analysis. Proteomics 15 1459–1469. 10.1002/pmic.201400483 PubMed DOI PMC
Smith C. M. (2005). Quantification of acetylation at proximal lysine residues using isotopic labeling and tandem mass spectrometry. Methods 36 395–403. 10.1016/j.ymeth.2005.03.007 PubMed DOI
Strahl B. D., Briggs S. D., Brame C. J., Caldwell J. A., Koh S. S., Ma H., et al. (2001). Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11 996–1000. PubMed
Vitko D., Májek P., Schirghuber E., Kubicek S., Bennett K. L. (2016). FASIL-MS: an integrated proteomic and bioinformatic workflow to universally quantitate in vivo-acetylated positional isomers. J. Proteome Res. 15 2579–2594. 10.1021/acs.jproteome.6b00130 PubMed DOI
Vizcaíno J. A., Csordas A., del-Toro N., Dianes J. A., Griss J., Lavidas I., et al. (2016). 2016 update of the PRIDE database and related tools. Nucleic Acids Res. 44 D447–D456. PubMed PMC
Waterborg J. H., Winicov I., Harrington R. E. (1987). Histone variants and acetylated species from the alfalfa plant medicago sativa. Arch. Biochem. Biophys. 256 167–178. PubMed
Wiśniewski J. R., Pruś G. (2015). Homogenous phase enrichment of cysteine-containing peptides for improved proteome coverage. Anal. Chem. 87 6861–6867. 10.1021/acs.analchem.5b01215 PubMed DOI
Wiśniewski J. R., Zougman A., Nagaraj N., Mann M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6 359–362. 10.1038/nmeth.1322 PubMed DOI
Zhang W., Garcia N., Feng Y., Zhao H., Messing J. (2015). Genome-wide histone acetylation correlates with active transcription in maize. Genomics 106 214–220. 10.1016/j.ygeno.2015.05.005 PubMed DOI
Unraveling Epigenetic Changes in A. thaliana Calli: Impact of HDAC Inhibitors
Quantitative Analysis of Posttranslational Modifications of Plant Histones