Desmoplastic tumor priming using clinical-stage corticosteroid liposomes
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
PubMed
40276304
PubMed Central
PMC12014906
DOI
10.1016/j.celbio.2025.100051
PII: S3050-5623(25)00042-X
Knihovny.cz E-zdroje
- Klíčová slova
- cancer-associated fibroblasts, corticosteroids, drug targeting, liposomes, nanomedicine, tumor microenvironment, tumor priming, tumor-associated macrophages,
- Publikační typ
- časopisecké články MeSH
Inflammation is a hallmark of cancer. It contributes to a heterogeneous, hyperpermeable, and poorly perfused tumor vasculature, as well as to a dense and disorganized extracellular matrix, which together negatively affect drug delivery. Reasoning that glucocorticoids have pleiotropic effects, we use clinical-stage dexamethasone liposomes (LipoDex) to prime the tumor microenvironment for improved drug delivery and enhanced treatment efficacy. We show that LipoDex priming improves tumor vascular function and reduces extracellular matrix deposition. Single-cell sequencing corroborates LipoDex-mediated inhibition of pro-inflammatory, pro-angiogenic, and pro-fibrogenic gene expression in mononuclear cells, tumor-associated macrophages, and cancer-associated fibroblasts. Multimodal optical imaging illustrates that LipoDex pre-treatment increases the tumor accumulation and intratumoral distribution of subsequently administered polymeric and liposomal drug delivery systems. Using Doxil as a prototypic nanodrug, we finally show that LipoDex priming promotes antitumor treatment efficacy. Altogether, our findings demonstrate that desmoplastic tumors can be primed for improved drug targeting and therapy using clinical-stage glucocorticoid liposomes.
Department of Nephrology and Clinical Immunology RWTH Aachen University Clinic 52074 Aachen Germany
Institute for Experimental Molecular Imaging RWTH Aachen University Clinic 52074 Aachen Germany
Institute for Pathology RWTH Aachen University Clinic 52074 Aachen Germany
Zobrazit více v PubMed
De Lázaro I., Mooney D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021;20:1469–1479. doi: 10.1038/s41563-021-01047-7. PubMed DOI
Nia H.T., Munn L.L., Jain R.K. Physical traits of cancer. Science. 2020;370 doi: 10.1126/science.aaz0868. PubMed DOI PMC
Sutherland T.E., Dyer D.P., Allen J.E. The extracellular matrix and the immune system: A mutually dependent relationship. Science. 2023;379 doi: 10.1126/science.abp8964. PubMed DOI
Nguyen L.N.M., Ngo W., Lin Z.P., Sindhwani S., MacMillan P., Mladjenovic S.M., Chan W.C.W. The mechanisms of nanoparticle delivery to solid tumours. Nat Rev Bioeng. 2024;2:201–213. doi: 10.1038/s44222-024-00154-9. DOI
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC
Stylianopoulos T., Munn L.L., Jain R.K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4:292–319. doi: 10.1016/j.trecan.2018.02.005. PubMed DOI PMC
Ojha T., Pathak V., Shi Y., Hennink W.E., Moonen C.T.W., Storm G., Kiessling F., Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017;119:44–60. doi: 10.1016/j.addr.2017.07.007. PubMed DOI PMC
Colotta F., Allavena P., Sica A., Garlanda C., Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–1081. doi: 10.1093/carcin/bgp127. PubMed DOI
Khatami M. Chronic inflammation: Synergistic interactions of recruiting macrophages (TAMs) and eosinophils (Eos) with host mast cells (MCs) and tumorigenesis in CALTs. M-CSF, suitable biomarker for cancer diagnosis! Cancers (Basel) 2014;6:297–322. doi: 10.3390/cancers6010297. PubMed DOI PMC
Hu W., Li X., Zhang C., Yang Y., Jiang J., Wu C. Tumor-associated macrophages in cancers. Clin. Transl. Oncol. 2016;18:251–258. doi: 10.1007/s12094-015-1373-0. PubMed DOI
Liguori M., Solinas G., Germano G., Mantovani A., Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel) 2011;3:3740–3761. doi: 10.3390/cancers3043740. PubMed DOI PMC
Finkernagel F., Reinartz S., Lieber S., Adhikary T., Wortmann A., Hoffmann N., Bieringer T., Nist A., Stiewe T., Jansen J.M., et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget. 2016;7:75339–75352. doi: 10.18632/oncotarget.12180. PubMed DOI PMC
Afik R., Zigmond E., Vugman M., Klepfish M., Shimshoni E., Pasmanik-Chor M., Shenoy A., Bassat E., Halpern Z., Geiger T., et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 2016;213:2315–2331. doi: 10.1084/jem.20151193. PubMed DOI PMC
Trinh H.K.T., Nguyen T.V.T., Kim S.-H., Cao T.B.T., Luu Q.Q., Kim S.-H., Park H.-S. Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients. Exp. Mol. Med. 2020;52:253–265. doi: 10.1038/s12276-020-0376-2. PubMed DOI PMC
Hoeft K., Schaefer G.J.L., Kim H., Schumacher D., Bleckwehl T., Long Q., Klinkhammer B.M., Peisker F., Koch L., Nagai J., et al. Platelet-instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.112131. PubMed DOI PMC
Qi J., Sun H., Zhang Y., Wang Z., Xun Z., Li Z., Ding X., Bao R., Hong L., Jia W., et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-29366-6. PubMed DOI PMC
MacDonald L., Alivernini S., Tolusso B., Elmesmari A., Somma D., Perniola S., Paglionico A., Petricca L., Bosello S.L., Carfì A., et al. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes. JCI Insight. 2021;6 doi: 10.1172/jci.insight.147413. PubMed DOI PMC
Aldea M., Orillard E., Mansi L., Marabelle A., Scotte F., Lambotte O., Michot J.-M. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur. J. Cancer. 2020;141:239–251. doi: 10.1016/j.ejca.2020.09.032. PubMed DOI
Roth P., Happold C., Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol. Pract. 2015;2:6–12. doi: 10.1093/nop/npu029. PubMed DOI PMC
Reeder C.B., Reece D.E., Kukreti V., Mikhael J.R., Chen C., Trudel S., Laumann K., Vohra H., Fonseca R., Bergsagel P.L., et al. Long-term survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. Br. J. Haematol. 2014;167:563–565. doi: 10.1111/bjh.13004. PubMed DOI
van de Donk N.W.C.J., Richardson P.G., Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29. doi: 10.1182/blood-2017-06-740944. PubMed DOI
Adami G., Saag K.G. Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos. Int. 2019;30:1145–1156. doi: 10.1007/s00198-019-04906-x. PubMed DOI
Cutroneo K.R., Sterling K.M., Jr. How do glucocorticoids compare to oligo decoys as inhibitors of collagen synthesis and potential toxicity of these therapeutics? J. Cell. Biochem. 2004;92:6–15. doi: 10.1002/jcb.20030. PubMed DOI
Schafer-Korting M., Kleuser B., Ahmed M., Holtje H.-D., Korting H.C. Glucocorticoids for human skin: new aspects of the mechanism of action. Skin Pharmacol. Physiol. 2005;18:103–114. doi: 10.1159/000084907. PubMed DOI
Ozbakir B., Crielaard B.J., Metselaar J.M., Storm G., Lammers T. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J. Control. Release. 2014;190:624–636. doi: 10.1016/j.jconrel.2014.05.039. PubMed DOI
Granot D., Addadi Y., Kalchenko V., Harmelin A., Kunz-Schughart L.A., Neeman M. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res. 2007;67:9180–9189. doi: 10.1158/0008-5472.CAN-07-0684. PubMed DOI PMC
Ehling J., Theek B., Gremse F., Baetke S., Möckel D., Maynard J., Ricketts S.-A., Grüll H., Neeman M., Knuechel R., et al. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. Am. J. Pathol. 2014;184:431–441. doi: 10.1016/j.ajpath.2013.10.014. PubMed DOI PMC
May J.-N., Moss J.I., Mueller F., Golombek S.K., Biancacci I., Rizzo L., Elshafei A.S., Gremse F., Pola R., Pechar M., et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. 2024;8:1366–1378. doi: 10.1038/s41551-024-01197-4. PubMed DOI PMC
Metselaar J., Lammers T., Boquoi A., Fenk R., Testaquadra F., Schemionek M., Kiessling F., Isfort S., Wilop S., Crysandt M. A phase I first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone in patients with progressive multiple myeloma. Drug Deliv. Transl. Res. 2023;13:915–923. doi: 10.1007/s13346-022-01268-6. PubMed DOI PMC
Deshantri A.K., Fens M.H., Ruiter R.W.J., Metselaar J.M., Storm G., van Bloois L., Varela-Moreira A., Mandhane S.N., Mutis T., Martens A.C.M., et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J. Control. Release. 2019;296:232–240. doi: 10.1016/j.jconrel.2019.01.028. PubMed DOI
Kroon J., Buijs J.T., van der Horst G., Cheung H., van der Mark M., van Bloois L., Rizzo L.Y., Lammers T., Pelger R.C., Storm G., et al. Liposomal delivery of dexamethasone attenuates prostate cancer bone metastatic tumor growth in vivo. Prostate. 2015;75:815–824. doi: 10.1002/pros.22963. PubMed DOI PMC
Lammers T., Sofias A.M., van der Meel R., Schiffelers R., Storm G., Tacke F., Koschmieder S., Brümmendorf T.H., Kiessling F., Metselaar J.M. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 2020;15:622–624. doi: 10.1038/s41565-020-0752-z. PubMed DOI PMC
Banciu M., Schiffelers R.M., Metselaar J.M., Storm G. Utility of targeted glucocorticoids in cancer therapy. J. Liposome Res. 2008;18:47–57. doi: 10.1080/08982100801893978. PubMed DOI
Banciu M., Metselaar J.M., Schiffelers R.M., Storm G. Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J. Steroid Biochem. Mol. Biol. 2008;111:101–110. doi: 10.1016/j.jsbmb.2008.05.004. PubMed DOI
Gauthier A., Fisch A., Seuwen K., Baumgarten B., Ruffner H., Aebi A., Rausch M., Kiessling F., Bartneck M., Weiskirchen R., et al. Glucocorticoid-loaded liposomes induce a pro-resolution phenotype in human primary macrophages to support chronic wound healing. Biomaterials. 2018;178:481–495. doi: 10.1016/j.biomaterials.2018.04.006. PubMed DOI
Anderson R., Franch A., Castell M., Perez-Cano F.J., Bräuer R., Pohlers D., Gajda M., Siskos A.P., Katsila T., Tamvakopoulos C., et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res. Ther. 2010;12 doi: 10.1186/ar3089. PubMed DOI PMC
Sang X., Wang Y., Xue Z., Qi D., Fan G., Tian F., Zhu Y., Yang J. Macrophage-targeted lung delivery of dexamethasone improves pulmonary fibrosis therapy via regulating the immune microenvironment. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.613907. PubMed DOI PMC
Kwon J.W., Quan H., Song J., Chung H., Jung D., Hong J.J., Na Y.R., Seok S.H. Liposomal dexamethasone reduces A/H1N1 influenza-associated morbidity in mice. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.845795. PubMed DOI PMC
Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology. 2017;222:75–81. doi: 10.1016/j.imbio.2015.11.016. PubMed DOI
Patel N.K., Nunez J.H., Sorkin M., Marini S., Pagani C.A., Strong A.L., Hwang C.D., Li S., Padmanabhan K.R., Kumar R., et al. Macrophage TGF-β signaling is critical for wound healing with heterotopic ossification after trauma. JCI Insight. 2022;7 doi: 10.1172/jci.insight.144925. PubMed DOI PMC
Kunjachan S., Gremse F., Theek B., Koczera P., Pola R., Pechar M., Etrych T., Ulbrich K., Storm G., Kiessling F., et al. Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano. 2013;7:252–262. doi: 10.1021/nn303955n. PubMed DOI PMC
Quan L., Zhang Y., Crielaard B.J., Dusad A., Lele S.M., Rijcken C.J.F., Metselaar J.M., Kostková H., Etrych T., Ulbrich K., et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8:458–466. doi: 10.1021/nn4048205. PubMed DOI PMC
Metselaar J.M., Middelink L.M., Wortel C.H., Bos R., van Laar J.M., Vonkeman H.E., Westhovens R., Lammers T., Yao S.-L., Kothekar M., et al. Intravenous pegylated liposomal prednisolone outperforms intramuscular methylprednisolone in treating rheumatoid arthritis flares: A randomized controlled clinical trial. J. Control. Release. 2022;341:548–554. doi: 10.1016/j.jconrel.2021.12.007. PubMed DOI
Moreau P., Masszi T., Grzasko N., Bahlis N.J., Hansson M., Pour L., Sandhu I., Ganly P., Baker B.W., Jackson S.R., et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016;374:1621–1634. doi: 10.1056/NEJMoa1516282. PubMed DOI
Palumbo A., Chanan-Khan A., Weisel K., Nooka A.K., Masszi T., Beksac M., Spicka I., Hungria V., Munder M., Mateos M.V., et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038. PubMed DOI
Huang Y., Stylianopoulos T., Duda D.G., Fukumura D., Jain R.K. Benefits of vascular normalization are dose and time dependent--letter. Cancer Res. 2013;73:7144–7146. doi: 10.1158/0008-5472.CAN-13-1989. PubMed DOI PMC
Tolaney S.M., Boucher Y., Duda D.G., Martin J.D., Seano G., Ancukiewicz M., Barry W.T., Goel S., Lahdenrata J., Isakoff S.J., et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl. Acad. Sci. USA. 2015;112:14325–14330. doi: 10.1073/pnas.1518808112. PubMed DOI PMC
Van der Veldt A.A.M., Lubberink M., Bahce I., Walraven M., de Boer M.P., Greuter H.N.J.M., Hendrikse N.H., Eriksson J., Windhorst A.D., Postmus P.E., et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21:82–91. doi: 10.1016/j.ccr.2011.11.023. PubMed DOI
Kabbinavar F., Hurwitz H.I., Fehrenbacher L., Meropol N.J., Novotny W.F., Lieberman G., Griffing S., Bergsland E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003;21:60–65. doi: 10.1200/JCO.2003.10.066. PubMed DOI
Heiss J.D., Papavassiliou E., Merrill M.J., Nieman L., Knightly J.J., Walbridge S., Edwards N.A., Oldfield E.H. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J. Clin. Invest. 1996;98:1400–1408. doi: 10.1172/JCI118927. PubMed DOI PMC
Neuwelt E.A., Barnett P.A., Bigner D.D., Frenkel E.P. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc. Natl. Acad. Sci. USA. 1982;79:4420–4423. doi: 10.1073/pnas.79.14.4420. PubMed DOI PMC
van der Veldt A.A.M., Lubberink M., Greuter H.N., Comans E.F.I., Herder G.J.M., Yaqub M., Schuit R.C., van Lingen A., Rizvi S.N., Mooijer M.P.J., et al. Absolute quantification of [(11)C]docetaxel kinetics in lung cancer patients using positron emission tomography. Clin. Cancer Res. 2011;17:4814–4824. doi: 10.1158/1078-0432.CCR-10-2933. PubMed DOI
Lampi M.C., Reinhart-King C.A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aao0475. PubMed DOI
Theek B., Baues M., Gremse F., Pola R., Pechar M., Negwer I., Koynov K., Weber B., Barz M., Jahnen-Dechent W., et al. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J. Control. Release. 2018;282:25–34. doi: 10.1016/j.jconrel.2018.05.002. PubMed DOI PMC
Gremse F., Stärk M., Ehling J., Menzel J.R., Lammers T., Kiessling F. Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics. 2016;6:328–341. doi: 10.7150/thno.13624. PubMed DOI PMC
Meurer S.K., Tezcan O., Lammers T., Weiskirchen R. Differential regulation of lipocalin 2 (LCN2) in doxorubicin-resistant 4T1 triple negative breast cancer cells. Cell. Signal. 2020;74 doi: 10.1016/j.cellsig.2020.109731. PubMed DOI
Chen X., Nadiarynkh O., Plotnikov S., Campagnola P.J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 2012;7:654–669. doi: 10.1038/nprot.2012.009. PubMed DOI PMC
Korsunsky I., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.-R., Raychaudhuri S. Fast, sensitive, and accurate integration of single cell data with Harmony. bioRxiv. 2018 doi: 10.1101/461954. Preprint at. PubMed DOI PMC
Harris M.A., Clark J., Ireland A., Lomax J., Ashburner M., Foulger R., Eilbeck K., Lewis S., Marshall B., Mungall C., et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32:D258–D261. doi: 10.1093/nar/gkh036. PubMed DOI PMC