Desmoplastic tumor priming using clinical-stage corticosteroid liposomes

. 2025 Apr 22 ; 1 (3) : None. [epub] 20250422

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40276304
Odkazy

PubMed 40276304
PubMed Central PMC12014906
DOI 10.1016/j.celbio.2025.100051
PII: S3050-5623(25)00042-X
Knihovny.cz E-zdroje

Inflammation is a hallmark of cancer. It contributes to a heterogeneous, hyperpermeable, and poorly perfused tumor vasculature, as well as to a dense and disorganized extracellular matrix, which together negatively affect drug delivery. Reasoning that glucocorticoids have pleiotropic effects, we use clinical-stage dexamethasone liposomes (LipoDex) to prime the tumor microenvironment for improved drug delivery and enhanced treatment efficacy. We show that LipoDex priming improves tumor vascular function and reduces extracellular matrix deposition. Single-cell sequencing corroborates LipoDex-mediated inhibition of pro-inflammatory, pro-angiogenic, and pro-fibrogenic gene expression in mononuclear cells, tumor-associated macrophages, and cancer-associated fibroblasts. Multimodal optical imaging illustrates that LipoDex pre-treatment increases the tumor accumulation and intratumoral distribution of subsequently administered polymeric and liposomal drug delivery systems. Using Doxil as a prototypic nanodrug, we finally show that LipoDex priming promotes antitumor treatment efficacy. Altogether, our findings demonstrate that desmoplastic tumors can be primed for improved drug targeting and therapy using clinical-stage glucocorticoid liposomes.

Zobrazit více v PubMed

De Lázaro I., Mooney D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021;20:1469–1479. doi: 10.1038/s41563-021-01047-7. PubMed DOI

Nia H.T., Munn L.L., Jain R.K. Physical traits of cancer. Science. 2020;370 doi: 10.1126/science.aaz0868. PubMed DOI PMC

Sutherland T.E., Dyer D.P., Allen J.E. The extracellular matrix and the immune system: A mutually dependent relationship. Science. 2023;379 doi: 10.1126/science.abp8964. PubMed DOI

Nguyen L.N.M., Ngo W., Lin Z.P., Sindhwani S., MacMillan P., Mladjenovic S.M., Chan W.C.W. The mechanisms of nanoparticle delivery to solid tumours. Nat Rev Bioeng. 2024;2:201–213. doi: 10.1038/s44222-024-00154-9. DOI

Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20:101–124. doi: 10.1038/s41573-020-0090-8. PubMed DOI PMC

Stylianopoulos T., Munn L.L., Jain R.K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer. 2018;4:292–319. doi: 10.1016/j.trecan.2018.02.005. PubMed DOI PMC

Ojha T., Pathak V., Shi Y., Hennink W.E., Moonen C.T.W., Storm G., Kiessling F., Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017;119:44–60. doi: 10.1016/j.addr.2017.07.007. PubMed DOI PMC

Colotta F., Allavena P., Sica A., Garlanda C., Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–1081. doi: 10.1093/carcin/bgp127. PubMed DOI

Khatami M. Chronic inflammation: Synergistic interactions of recruiting macrophages (TAMs) and eosinophils (Eos) with host mast cells (MCs) and tumorigenesis in CALTs. M-CSF, suitable biomarker for cancer diagnosis! Cancers (Basel) 2014;6:297–322. doi: 10.3390/cancers6010297. PubMed DOI PMC

Hu W., Li X., Zhang C., Yang Y., Jiang J., Wu C. Tumor-associated macrophages in cancers. Clin. Transl. Oncol. 2016;18:251–258. doi: 10.1007/s12094-015-1373-0. PubMed DOI

Liguori M., Solinas G., Germano G., Mantovani A., Allavena P. Tumor-associated macrophages as incessant builders and destroyers of the cancer stroma. Cancers (Basel) 2011;3:3740–3761. doi: 10.3390/cancers3043740. PubMed DOI PMC

Finkernagel F., Reinartz S., Lieber S., Adhikary T., Wortmann A., Hoffmann N., Bieringer T., Nist A., Stiewe T., Jansen J.M., et al. The transcriptional signature of human ovarian carcinoma macrophages is associated with extracellular matrix reorganization. Oncotarget. 2016;7:75339–75352. doi: 10.18632/oncotarget.12180. PubMed DOI PMC

Afik R., Zigmond E., Vugman M., Klepfish M., Shimshoni E., Pasmanik-Chor M., Shenoy A., Bassat E., Halpern Z., Geiger T., et al. Tumor macrophages are pivotal constructors of tumor collagenous matrix. J. Exp. Med. 2016;213:2315–2331. doi: 10.1084/jem.20151193. PubMed DOI PMC

Trinh H.K.T., Nguyen T.V.T., Kim S.-H., Cao T.B.T., Luu Q.Q., Kim S.-H., Park H.-S. Osteopontin contributes to late-onset asthma phenotypes in adult asthma patients. Exp. Mol. Med. 2020;52:253–265. doi: 10.1038/s12276-020-0376-2. PubMed DOI PMC

Hoeft K., Schaefer G.J.L., Kim H., Schumacher D., Bleckwehl T., Long Q., Klinkhammer B.M., Peisker F., Koch L., Nagai J., et al. Platelet-instructed SPP1+ macrophages drive myofibroblast activation in fibrosis in a CXCL4-dependent manner. Cell Rep. 2023;42 doi: 10.1016/j.celrep.2023.112131. PubMed DOI PMC

Qi J., Sun H., Zhang Y., Wang Z., Xun Z., Li Z., Ding X., Bao R., Hong L., Jia W., et al. Single-cell and spatial analysis reveal interaction of FAP+ fibroblasts and SPP1+ macrophages in colorectal cancer. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-29366-6. PubMed DOI PMC

MacDonald L., Alivernini S., Tolusso B., Elmesmari A., Somma D., Perniola S., Paglionico A., Petricca L., Bosello S.L., Carfì A., et al. COVID-19 and RA share an SPP1 myeloid pathway that drives PD-L1+ neutrophils and CD14+ monocytes. JCI Insight. 2021;6 doi: 10.1172/jci.insight.147413. PubMed DOI PMC

Aldea M., Orillard E., Mansi L., Marabelle A., Scotte F., Lambotte O., Michot J.-M. How to manage patients with corticosteroids in oncology in the era of immunotherapy? Eur. J. Cancer. 2020;141:239–251. doi: 10.1016/j.ejca.2020.09.032. PubMed DOI

Roth P., Happold C., Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol. Pract. 2015;2:6–12. doi: 10.1093/nop/npu029. PubMed DOI PMC

Reeder C.B., Reece D.E., Kukreti V., Mikhael J.R., Chen C., Trudel S., Laumann K., Vohra H., Fonseca R., Bergsagel P.L., et al. Long-term survival with cyclophosphamide, bortezomib and dexamethasone induction therapy in patients with newly diagnosed multiple myeloma. Br. J. Haematol. 2014;167:563–565. doi: 10.1111/bjh.13004. PubMed DOI

van de Donk N.W.C.J., Richardson P.G., Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29. doi: 10.1182/blood-2017-06-740944. PubMed DOI

Adami G., Saag K.G. Glucocorticoid-induced osteoporosis: 2019 concise clinical review. Osteoporos. Int. 2019;30:1145–1156. doi: 10.1007/s00198-019-04906-x. PubMed DOI

Cutroneo K.R., Sterling K.M., Jr. How do glucocorticoids compare to oligo decoys as inhibitors of collagen synthesis and potential toxicity of these therapeutics? J. Cell. Biochem. 2004;92:6–15. doi: 10.1002/jcb.20030. PubMed DOI

Schafer-Korting M., Kleuser B., Ahmed M., Holtje H.-D., Korting H.C. Glucocorticoids for human skin: new aspects of the mechanism of action. Skin Pharmacol. Physiol. 2005;18:103–114. doi: 10.1159/000084907. PubMed DOI

Ozbakir B., Crielaard B.J., Metselaar J.M., Storm G., Lammers T. Liposomal corticosteroids for the treatment of inflammatory disorders and cancer. J. Control. Release. 2014;190:624–636. doi: 10.1016/j.jconrel.2014.05.039. PubMed DOI

Granot D., Addadi Y., Kalchenko V., Harmelin A., Kunz-Schughart L.A., Neeman M. In vivo imaging of the systemic recruitment of fibroblasts to the angiogenic rim of ovarian carcinoma tumors. Cancer Res. 2007;67:9180–9189. doi: 10.1158/0008-5472.CAN-07-0684. PubMed DOI PMC

Ehling J., Theek B., Gremse F., Baetke S., Möckel D., Maynard J., Ricketts S.-A., Grüll H., Neeman M., Knuechel R., et al. Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization. Am. J. Pathol. 2014;184:431–441. doi: 10.1016/j.ajpath.2013.10.014. PubMed DOI PMC

May J.-N., Moss J.I., Mueller F., Golombek S.K., Biancacci I., Rizzo L., Elshafei A.S., Gremse F., Pola R., Pechar M., et al. Histopathological biomarkers for predicting the tumour accumulation of nanomedicines. Nat. Biomed. Eng. 2024;8:1366–1378. doi: 10.1038/s41551-024-01197-4. PubMed DOI PMC

Metselaar J., Lammers T., Boquoi A., Fenk R., Testaquadra F., Schemionek M., Kiessling F., Isfort S., Wilop S., Crysandt M. A phase I first-in-man study to investigate the pharmacokinetics and safety of liposomal dexamethasone in patients with progressive multiple myeloma. Drug Deliv. Transl. Res. 2023;13:915–923. doi: 10.1007/s13346-022-01268-6. PubMed DOI PMC

Deshantri A.K., Fens M.H., Ruiter R.W.J., Metselaar J.M., Storm G., van Bloois L., Varela-Moreira A., Mandhane S.N., Mutis T., Martens A.C.M., et al. Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. J. Control. Release. 2019;296:232–240. doi: 10.1016/j.jconrel.2019.01.028. PubMed DOI

Kroon J., Buijs J.T., van der Horst G., Cheung H., van der Mark M., van Bloois L., Rizzo L.Y., Lammers T., Pelger R.C., Storm G., et al. Liposomal delivery of dexamethasone attenuates prostate cancer bone metastatic tumor growth in vivo. Prostate. 2015;75:815–824. doi: 10.1002/pros.22963. PubMed DOI PMC

Lammers T., Sofias A.M., van der Meel R., Schiffelers R., Storm G., Tacke F., Koschmieder S., Brümmendorf T.H., Kiessling F., Metselaar J.M. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 2020;15:622–624. doi: 10.1038/s41565-020-0752-z. PubMed DOI PMC

Banciu M., Schiffelers R.M., Metselaar J.M., Storm G. Utility of targeted glucocorticoids in cancer therapy. J. Liposome Res. 2008;18:47–57. doi: 10.1080/08982100801893978. PubMed DOI

Banciu M., Metselaar J.M., Schiffelers R.M., Storm G. Liposomal glucocorticoids as tumor-targeted anti-angiogenic nanomedicine in B16 melanoma-bearing mice. J. Steroid Biochem. Mol. Biol. 2008;111:101–110. doi: 10.1016/j.jsbmb.2008.05.004. PubMed DOI

Gauthier A., Fisch A., Seuwen K., Baumgarten B., Ruffner H., Aebi A., Rausch M., Kiessling F., Bartneck M., Weiskirchen R., et al. Glucocorticoid-loaded liposomes induce a pro-resolution phenotype in human primary macrophages to support chronic wound healing. Biomaterials. 2018;178:481–495. doi: 10.1016/j.biomaterials.2018.04.006. PubMed DOI

Anderson R., Franch A., Castell M., Perez-Cano F.J., Bräuer R., Pohlers D., Gajda M., Siskos A.P., Katsila T., Tamvakopoulos C., et al. Liposomal encapsulation enhances and prolongs the anti-inflammatory effects of water-soluble dexamethasone phosphate in experimental adjuvant arthritis. Arthritis Res. Ther. 2010;12 doi: 10.1186/ar3089. PubMed DOI PMC

Sang X., Wang Y., Xue Z., Qi D., Fan G., Tian F., Zhu Y., Yang J. Macrophage-targeted lung delivery of dexamethasone improves pulmonary fibrosis therapy via regulating the immune microenvironment. Front. Immunol. 2021;12 doi: 10.3389/fimmu.2021.613907. PubMed DOI PMC

Kwon J.W., Quan H., Song J., Chung H., Jung D., Hong J.J., Na Y.R., Seok S.H. Liposomal dexamethasone reduces A/H1N1 influenza-associated morbidity in mice. Front. Microbiol. 2022;13 doi: 10.3389/fmicb.2022.845795. PubMed DOI PMC

Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology. 2017;222:75–81. doi: 10.1016/j.imbio.2015.11.016. PubMed DOI

Patel N.K., Nunez J.H., Sorkin M., Marini S., Pagani C.A., Strong A.L., Hwang C.D., Li S., Padmanabhan K.R., Kumar R., et al. Macrophage TGF-β signaling is critical for wound healing with heterotopic ossification after trauma. JCI Insight. 2022;7 doi: 10.1172/jci.insight.144925. PubMed DOI PMC

Kunjachan S., Gremse F., Theek B., Koczera P., Pola R., Pechar M., Etrych T., Ulbrich K., Storm G., Kiessling F., et al. Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano. 2013;7:252–262. doi: 10.1021/nn303955n. PubMed DOI PMC

Quan L., Zhang Y., Crielaard B.J., Dusad A., Lele S.M., Rijcken C.J.F., Metselaar J.M., Kostková H., Etrych T., Ulbrich K., et al. Nanomedicines for inflammatory arthritis: head-to-head comparison of glucocorticoid-containing polymers, micelles, and liposomes. ACS Nano. 2014;8:458–466. doi: 10.1021/nn4048205. PubMed DOI PMC

Metselaar J.M., Middelink L.M., Wortel C.H., Bos R., van Laar J.M., Vonkeman H.E., Westhovens R., Lammers T., Yao S.-L., Kothekar M., et al. Intravenous pegylated liposomal prednisolone outperforms intramuscular methylprednisolone in treating rheumatoid arthritis flares: A randomized controlled clinical trial. J. Control. Release. 2022;341:548–554. doi: 10.1016/j.jconrel.2021.12.007. PubMed DOI

Moreau P., Masszi T., Grzasko N., Bahlis N.J., Hansson M., Pour L., Sandhu I., Ganly P., Baker B.W., Jackson S.R., et al. Oral Ixazomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016;374:1621–1634. doi: 10.1056/NEJMoa1516282. PubMed DOI

Palumbo A., Chanan-Khan A., Weisel K., Nooka A.K., Masszi T., Beksac M., Spicka I., Hungria V., Munder M., Mateos M.V., et al. Daratumumab, bortezomib, and dexamethasone for multiple myeloma. N. Engl. J. Med. 2016;375:754–766. doi: 10.1056/NEJMoa1606038. PubMed DOI

Huang Y., Stylianopoulos T., Duda D.G., Fukumura D., Jain R.K. Benefits of vascular normalization are dose and time dependent--letter. Cancer Res. 2013;73:7144–7146. doi: 10.1158/0008-5472.CAN-13-1989. PubMed DOI PMC

Tolaney S.M., Boucher Y., Duda D.G., Martin J.D., Seano G., Ancukiewicz M., Barry W.T., Goel S., Lahdenrata J., Isakoff S.J., et al. Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients. Proc. Natl. Acad. Sci. USA. 2015;112:14325–14330. doi: 10.1073/pnas.1518808112. PubMed DOI PMC

Van der Veldt A.A.M., Lubberink M., Bahce I., Walraven M., de Boer M.P., Greuter H.N.J.M., Hendrikse N.H., Eriksson J., Windhorst A.D., Postmus P.E., et al. Rapid decrease in delivery of chemotherapy to tumors after anti-VEGF therapy: implications for scheduling of anti-angiogenic drugs. Cancer Cell. 2012;21:82–91. doi: 10.1016/j.ccr.2011.11.023. PubMed DOI

Kabbinavar F., Hurwitz H.I., Fehrenbacher L., Meropol N.J., Novotny W.F., Lieberman G., Griffing S., Bergsland E. Phase II, randomized trial comparing bevacizumab plus fluorouracil (FU)/leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J. Clin. Oncol. 2003;21:60–65. doi: 10.1200/JCO.2003.10.066. PubMed DOI

Heiss J.D., Papavassiliou E., Merrill M.J., Nieman L., Knightly J.J., Walbridge S., Edwards N.A., Oldfield E.H. Mechanism of dexamethasone suppression of brain tumor-associated vascular permeability in rats. Involvement of the glucocorticoid receptor and vascular permeability factor. J. Clin. Invest. 1996;98:1400–1408. doi: 10.1172/JCI118927. PubMed DOI PMC

Neuwelt E.A., Barnett P.A., Bigner D.D., Frenkel E.P. Effects of adrenal cortical steroids and osmotic blood-brain barrier opening on methotrexate delivery to gliomas in the rodent: the factor of the blood-brain barrier. Proc. Natl. Acad. Sci. USA. 1982;79:4420–4423. doi: 10.1073/pnas.79.14.4420. PubMed DOI PMC

van der Veldt A.A.M., Lubberink M., Greuter H.N., Comans E.F.I., Herder G.J.M., Yaqub M., Schuit R.C., van Lingen A., Rizvi S.N., Mooijer M.P.J., et al. Absolute quantification of [(11)C]docetaxel kinetics in lung cancer patients using positron emission tomography. Clin. Cancer Res. 2011;17:4814–4824. doi: 10.1158/1078-0432.CCR-10-2933. PubMed DOI

Lampi M.C., Reinhart-King C.A. Targeting extracellular matrix stiffness to attenuate disease: from molecular mechanisms to clinical trials. Sci. Transl. Med. 2018;10 doi: 10.1126/scitranslmed.aao0475. PubMed DOI

Theek B., Baues M., Gremse F., Pola R., Pechar M., Negwer I., Koynov K., Weber B., Barz M., Jahnen-Dechent W., et al. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J. Control. Release. 2018;282:25–34. doi: 10.1016/j.jconrel.2018.05.002. PubMed DOI PMC

Gremse F., Stärk M., Ehling J., Menzel J.R., Lammers T., Kiessling F. Imalytics preclinical: interactive analysis of biomedical volume data. Theranostics. 2016;6:328–341. doi: 10.7150/thno.13624. PubMed DOI PMC

Meurer S.K., Tezcan O., Lammers T., Weiskirchen R. Differential regulation of lipocalin 2 (LCN2) in doxorubicin-resistant 4T1 triple negative breast cancer cells. Cell. Signal. 2020;74 doi: 10.1016/j.cellsig.2020.109731. PubMed DOI

Chen X., Nadiarynkh O., Plotnikov S., Campagnola P.J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 2012;7:654–669. doi: 10.1038/nprot.2012.009. PubMed DOI PMC

Korsunsky I., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.-R., Raychaudhuri S. Fast, sensitive, and accurate integration of single cell data with Harmony. bioRxiv. 2018 doi: 10.1101/461954. Preprint at. PubMed DOI PMC

Harris M.A., Clark J., Ireland A., Lomax J., Ashburner M., Foulger R., Eilbeck K., Lewis S., Marshall B., Mungall C., et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res. 2004;32:D258–D261. doi: 10.1093/nar/gkh036. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...