Histopathological biomarkers for predicting the tumour accumulation of nanomedicines
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
864121
European Research Council - International
331065168
Deutsche Forschungsgemeinschaft (German Research Foundation)
864121
EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
PubMed
38589466
PubMed Central
PMC7616664
DOI
10.1038/s41551-024-01197-4
PII: 10.1038/s41551-024-01197-4
Knihovny.cz E-zdroje
- MeSH
- biologické markery metabolismus MeSH
- doxorubicin * terapeutické užití analogy a deriváty MeSH
- lidé MeSH
- makrofágy spojené s nádory metabolismus MeSH
- myši MeSH
- nádorové biomarkery metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory * patologie metabolismus farmakoterapie MeSH
- nanomedicína * metody MeSH
- polyethylenglykoly MeSH
- strojové učení MeSH
- xenogenní modely - testy protinádorové aktivity MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biologické markery MeSH
- doxorubicin * MeSH
- liposomal doxorubicin MeSH Prohlížeč
- nádorové biomarkery MeSH
- polyethylenglykoly MeSH
The clinical prospects of cancer nanomedicines depend on effective patient stratification. Here we report the identification of predictive biomarkers of the accumulation of nanomedicines in tumour tissue. By using supervised machine learning on data of the accumulation of nanomedicines in tumour models in mice, we identified the densities of blood vessels and of tumour-associated macrophages as key predictive features. On the basis of these two features, we derived a biomarker score correlating with the concentration of liposomal doxorubicin in tumours and validated it in three syngeneic tumour models in immunocompetent mice and in four cell-line-derived and six patient-derived tumour xenografts in mice. The score effectively discriminated tumours according to the accumulation of nanomedicines (high versus low), with an area under the receiver operating characteristic curve of 0.91. Histopathological assessment of 30 tumour specimens from patients and of 28 corresponding primary tumour biopsies confirmed the score's effectiveness in predicting the tumour accumulation of liposomal doxorubicin. Biomarkers of the tumour accumulation of nanomedicines may aid the stratification of patients in clinical trials of cancer nanomedicines.
Advanced Drug Delivery Pharmaceutical Sciences R and D AstraZeneca Macclesfield UK
Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf Aachen Germany
Department of Biomaterials Science and Technology University of Twente Enschede the Netherlands
Department of Pharmaceutics Utrecht University Utrecht the Netherlands
Early TDE Discovery Oncology R and D AstraZeneca Cambridge UK
Fraunhofer Institute for Digital Medicine MEVIS Aachen Germany
Institute for Experimental Molecular Imaging University Hospital RWTH Aachen Aachen Germany
Institute of Macromolecular Chemistry Czech Academy of Sciences Prague Czech Republic
Institute of Pathology University Hospital RWTH Aachen Aachen Germany
Zobrazit více v PubMed
Shi, J., Kantoff, P. W., Wooster, R. & Farokhzad, O. C. Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer17, 20–37 (2017). PubMed PMC
de Lázaro, I. & Mooney, D. J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater.20, 1469–1479 (2021). PubMed
Bhatia, S. N., Chen, X., Dobrovolskaia, M. A. & Lammers, T. Cancer nanomedicine. Nat. Rev. Cancer22, 550–556 (2022). PubMed PMC
van der Meel, R. et al. Smart cancer nanomedicine. Nat. Nanotechnol.14, 1007–1017 (2019). PubMed PMC
Wolfram, J. & Ferrari, M. Clinical cancer nanomedicine. Nano Today25, 85–98 (2019). PubMed PMC
Slamon, D. J. et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med.344, 783–792 (2001). PubMed
Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science304, 1497–1500 (2004). PubMed
Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt (IV) pro-drug. Nat. Commun.6, 1–13 (2015). PubMed PMC
Pérez-Medina, C. et al. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy. Nat. Commun.7, 11838 (2016). PubMed PMC
Ramanathan, R. K. et al. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res.23, 3638–3648 (2017). PubMed
Ravi, H. et al. Pretherapy ferumoxytol-enhanced MRI to predict response to liposomal irinotecan in metastatic breast cancer. Radiol. Imaging Cancer5, e220022 (2023). PubMed PMC
Lee, H. et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients with metastatic breast cancer. Clin. Cancer Res.23, 4190–4202 (2017). PubMed PMC
Miedema, I. H. et al. PET–CT imaging of polymeric nanoparticle tumor accumulation in patients. Adv. Mater.34, 2201043 (2022). PubMed
Biancacci, I. et al. Monitoring EPR effect dynamics during nanotaxane treatment with theranostic polymeric micelles. Adv. Sci. (Weinh.)9, e2103745 (2022). PubMed PMC
Lammers, T. et al. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today5, 197–212 (2010).
Kunjachan, S. et al. Noninvasive optical imaging of nanomedicine biodistribution. ACS Nano7, 252–262 (2013). PubMed PMC
Theek, B. et al. Characterizing EPR-mediated passive drug targeting using contrast-enhanced functional ultrasound imaging. J. Control. Release182, 83–89 (2014). PubMed PMC
Matsumara, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res.46, 6387–6392 (1986). PubMed
Heldin, C.-H., Rubin, K., Pietras, K. & Östman, A. High interstitial fluid pressure—an obstacle in cancer therapy. Nat. Rev. Cancer4, 806–813 (2004). PubMed
Lin, Z. P. et al. Macrophages actively transport nanoparticles in tumors after extravasation. ACS Nano16, 6080–6092 (2022). PubMed
Kotsiantis, S. B. Decision trees: a recent overview. Artif. Intell. Rev.39, 261–283 (2013).
Natekin, A. & Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot.7, 21 (2013). PubMed PMC
Friedman, J. H. Greedy function approximation: a gradient boosting machine. Ann. Stat.29, 1189–1232 (2001).
Smith, N. R. et al. Tumor stromal architecture can define the intrinsic tumor response to VEGF-targeted therapy. Clin. Cancer Res.19, 6943–6956 (2013). PubMed
Barenholz, Y. Doxil(R) the first FDA-approved nano-drug: lessons learned. J. Control. Release160, 117–134 (2012). PubMed
Xia, J., Broadhurst, D. I., Wilson, M. & Wishart, D. S. Translational biomarker discovery in clinical metabolomics: an introductory tutorial. Metabolomics9, 280–299 (2013). PubMed PMC
Harrington, K. J. et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin. Cancer Res.7, 243–254 (2001). PubMed
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep.7, 1–7 (2017). PubMed PMC
Stapleton, S., Allen, C., Pintilie, M. & Jaffray, D. A. Tumor perfusion imaging predicts the intra-tumoral accumulation of liposomes. J. Control. Release172, 351–357 (2013). PubMed
Moss, J. I. et al. High-resolution 3D visualization of nanomedicine distribution in tumors. Theranostics10, 880–897 (2020). PubMed PMC
Kingston, B. R., Syed, A. M., Ngai, J., Sindhwani, S. & Chan, W. C. Assessing micrometastases as a target for nanoparticles using 3D microscopy and machine learning. Proc. Natl Acad. Sci. USA116, 14937–14946 (2019). PubMed PMC
Ngai, J. et al. Delineating the tumour microenvironment response to a lipid nanoparticle formulation. J. Control Release353, 988–1001 (2023). PubMed
Farren, M. et al. Expression of stromal genes associated with the angiogenic response are not differentiated between human tumour xenografts with divergent vascular morphologies. Angiogenesis15, 555–568 (2012). PubMed
Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med.7, 314ra183 (2015). PubMed PMC
Strittmatter, N. et al. Multi-modal molecular imaging maps the correlation between tumor microenvironments and nanomedicine distribution. Theranostics12, 2162 (2022). PubMed PMC
Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010). PubMed PMC
Dai, Q. et al. Quantifying the ligand-coated nanoparticle delivery to cancer cells in solid tumors. ACS Nano12, 8423–8435 (2018). PubMed
Choi, C. H., Alabi, C. A., Webster, P. & Davis, M. E. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl Acad. Sci. USA107, 1235–1240 (2010). PubMed PMC
Hare, J. I. et al. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev.108, 25–38 (2017). PubMed
Theek, B. et al. Histidine-rich glycoprotein-induced vascular normalization improves EPR-mediated drug targeting to and into tumors. J. Control Release282, 25–34 (2018). PubMed PMC
Gremse, F. et al. Hybrid µCT–FMT imaging and image analysis. J.Vis. Exp.100, e52770 (2015). PubMed PMC
Nguyen, H. M. et al. LuCaP prostate cancer patient-derived xenografts reflect the molecular heterogeneity of advanced disease and serve as models for evaluating cancer therapeutics. Prostate77, 654–671 (2017). PubMed PMC
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods9, 676–682 (2012). PubMed PMC
Chen, T. & Guestrin, C. Xgboost: a scalable tree boosting system. Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (2016).
Müller, F., Schug, D., Hallen, P., Grahe, J. & Schulz, V. Gradient tree boosting-based positioning method for monolithic scintillator crystals in positron emission tomography. IEEE Trans. Radiat. Plasma Med. Sci.2, 411–421 (2018).