Dynamic learning and memory, synaptic plasticity and neurogenesis: an update
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
24744707
PubMed Central
PMC3978286
DOI
10.3389/fnbeh.2014.00106
Knihovny.cz E-zdroje
- Klíčová slova
- adult neurogenesis, behavior, hippocampus, learning, memory, synaptic plasticity,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mammalian memory is the result of the interaction of millions of neurons in the brain and their coordinated activity. Candidate mechanisms for memory are synaptic plasticity changes, such as long-term potentiation (LTP). LTP is essentially an electrophysiological phenomenon manifested in hours-lasting increase on postsynaptic potentials after synapse tetanization. It is thought to ensure long-term changes in synaptic efficacy in distributed networks, leading to persistent changes in the behavioral patterns, actions and choices, which are often interpreted as the retention of information, i.e., memory. Interestingly, new neurons are born in the mammalian brain and adult hippocampal neurogenesis is proposed to provide a substrate for dynamic and flexible aspects of behavior such as pattern separation, prevention of interference, flexibility of behavior and memory resolution. This work provides a brief review on the memory and involvement of LTP and adult neurogenesis in memory phenomena.
Zobrazit více v PubMed
Aimone J. B., Deng W., Gage F. H. (2011). Resolving new memories: a critical look at the dentate gyrus, adult neurogenesis and pattern separation. Neuron 70, 589–596 10.1016/j.neuron.2011.05.010 PubMed DOI PMC
Altman J. (1963). Autoradiographic investigation of cell proliferation in the brains of rats and cats. Anat. Rec. 145, 573–591 10.1002/ar.1091450409 PubMed DOI
Altman J., Das G. D. (1965). Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319–335 10.1002/cne.901240303 PubMed DOI
Amaral D. G., Witter M. P. (1989). The three-dimensional organization of the hippocampal formation: a review of anatomical data. Neuroscience 31, 571–591 10.1016/0306-4522(89)90424-7 PubMed DOI
Bast T., da Silva B. M., Morris R. G. M. (2005). Distinct contributions of hippocampal NMDA and AMPA receptors to encoding and retrieval of one-trial place memory. J. Neurosci. 25, 5845–5856 10.1523/jneurosci.0698-05.2005 PubMed DOI PMC
Benington J. H., Frank M. G. (2003). Cellular and molecular connections between sleep and synaptic plasticity. Prog. Neurobiol. 69, 71–101 10.1016/S0301-0082(03)00018-2 PubMed DOI
Bliss T. V., Lomo T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol. 232, 331–356 PubMed PMC
Brown T. H., Kairiss E. W., Keenan C. L. (1990). Hebbian synapses: biophysical mechanisms and algorithms. Annu. Rev. Neurosci. 13, 475–511 10.1146/annurev.neuro.13.1.475 PubMed DOI
Buresová O., Aleksanyan Z. A., Bures J. (1979). Electrophysiological analysis of retrieval of conditioned taste aversion in rats. Unit activity changes in critical brain regions. Physiol. Bohemoslov. 28, 525–536 PubMed
Burghardt N. S., Park E. H., Hen R., Fenton A. A. (2012). Adult-born hippocampal neurons promote cognitive flexibility in mice. Hippocampus 22, 1795–1808 10.1002/hipo.22013 PubMed DOI PMC
Cohen Y., Avramoav S., Barkai E., Maroun M. (2011). Olfactory learning-induced enhancement of the predisposition for LTP induction. Learn. Mem. 18, 594–597 10.1101/lm.2231911 PubMed DOI
Déry N., Pilgrim M., Gibala M., Gillen J., Wojtowicz J. M., Macqueen G., et al. (2013). Adult hippocampal neurogenesis reduces memory interference in humans: opposing effects of aerobic exercise and depression. Front. Neurosci. 7:66 10.3389/fnins.2013.00066 PubMed DOI PMC
Doeller C. F., King J. A., Burgess N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc. Natl. Acad. Sci. U S A 105, 5915–5920 10.1073/pnas.0801489105 PubMed DOI PMC
Dudai Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annu. Rev. Psychol. 55, 51–86 10.1146/annurev.psych.55.090902.142050 PubMed DOI
Eichenbaum H. (2001). The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav. Brain Res. 127, 199–207 10.1016/s0166-4328(01)00365-5 PubMed DOI
Frey S., Frey J. U. (2008). ‘Synaptic tagging’ and ‘cross-tagging’ and related associative reinforcement processes of functional plasticity as the cellular basis for memory formation. Prog. Brain Res. 169, 117–143 10.1016/s0079-6123(07)00007-6 PubMed DOI
Garthe A., Behr J., Kempermann G. (2009). Adult-generated hippocampal neurons allow the flexible use of spatially precise learning strategies. PLoS One 4:e5464 10.1371/journal.pone.0005464 PubMed DOI PMC
Glanzman D. L. (2013). PKM and the maintenance of memory. F1000 Biol. Rep. 5:4 10.3410/B5-4 PubMed DOI PMC
Gu Y., Arruda-Carvalho M., Wang J., Janoschka S. R., Josselyn S. A., Frankland P. W., et al. (2012). Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat. Neurosci. 15, 1700–1706 10.1038/nn.3260 PubMed DOI PMC
Hanson J. E., Madison D. V. (2010). Imbalanced pattern completion vs. separation in cognitive disease: network simulations of synaptic pathologies predict a personalized therapeutics strategy. BMC Neurosci. 11:96 10.1186/1471-2202-11-96 PubMed DOI PMC
Harris K. D., Csicsvari J., Hirase H., Dragoi G. (2003). Organization of cell assemblies in the hippocampus. Nature 424, 552–556 10.1038/nature01834 PubMed DOI
Hebb D. (1949). The Organization of Behavior. New York: Wiley;
Ikrar T., Guo N., He K., Besnard A., Levinson S., Hill A., et al. (2013). Adult neurogenesis modifies excitability of the dentate gyrus. Front. Neural Circuits 7:204 10.3389/fncir.2013.00204 PubMed DOI PMC
Izquierdo L. A., Barros D. M., Vianna M. R., Coitinho A., deDavid e Silva T., Choi H., et al. (2002). Molecular pharmacological dissection of short- and long-term memory. Cell. Mol. Neurobiol. 22, 269–287 10.1023/A:1020715800956 PubMed DOI PMC
Kandel E. R. (2012). The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2 and CPEB. Mol. Brain 5:14 10.1186/1756-6606-5-14 PubMed DOI PMC
Kemp A., Manahan-Vaughan D. (2007). Hippocampal long-term depression: master or minion in declarative memory processes? Trends Neurosci. 30, 111–118 10.1016/j.tins.2007.01.002 PubMed DOI
Kempermann G. (2012). New neurons for ‘survival of the fittest’. Nat. Rev. Neurosci. 13, 727–736 10.1038/nrn3319 PubMed DOI
Kempermann G., Kuhn H. G., Gage F. H. (1997). More hippocampal neurons in adult mice living in an enriched environment. Nature 386, 493–495 10.1038/386493a0 PubMed DOI
Kenney J., Manahan-Vaughan D. (2013). Learning-facilitated synaptic plasticity occurs in the intermediate hippocampus in association with spatial learning. Front. Synaptic Neurosci. 29:10 10.3389/fnsyn.2013.00010 PubMed DOI PMC
Kim E. Y., Mahmoud G. S., Grover L. M. (2005). REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci. Lett. 388, 163–167 10.1016/j.neulet.2005.06.057 PubMed DOI
Kubík S., Fenton A. A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. J. Neurosci. 25, 9205–9212 10.1523/jneurosci.1707-05.2005 PubMed DOI PMC
Kwapis J. L., Helmstetter F. J. (2013). Does PKM(zeta) maintain memory? Brain Res. Bull. [Epub ahead of print]. 10.1016/j.brainresbull.2013.09.005 PubMed DOI PMC
Lee A. M., Kanter B. R., Wang D., Lim J. P., Zou M. E., Qiu C., et al. (2013). Prkcz null mice show normal learning and memory. Nature 493, 416–419 10.1038/nature11803 PubMed DOI PMC
Lee A. S., Duman R. S., Pittenger C. (2008). A double dissociation revealing bidirectional competition between striatum and hippocampus during learning. Proc. Natl. Acad. Sci. U S A 105, 17163–17168 10.1073/pnas.0807749105 PubMed DOI PMC
Ling D. S. F., Benardo L. S., Serrano P. A., Blace N., Kelly M. T., Crary J. F., et al. (2002). Protein kinase Mzeta is necessary and sufficient for LTP maintenance. Nat. Neurosci. 5, 295–296 10.1038/nn829 PubMed DOI
Lithfous S., Dufour A., Despres O. (2013). Spatial navigation in normal aging and the prodromal stage of Alzheimer’s disease: insights from imaging and behavioral studies. Ageing Res. Rev. 12, 201–213 10.1016/j.arr.2012.04.007 PubMed DOI
Luu P., Sill O. C., Gao L., Becker S., Wojtowicz J. M., Smith D. M. (2012). The role of adult hippocampal neurogenesis in reducing interference. Behav. Neurosci. 126, 381–391 10.1037/a0028252 PubMed DOI PMC
McCoy J. G., Christie M. A., Kim Y., Brennan R., Poeta D. L., McCarley R. W., et al. (2013). Chronic sleep restriction impairs spatial memory in rats. Neuroreport 24, 91–95 10.1097/wnr.0b013e32835cd97a PubMed DOI PMC
Morris R. G. M. (1981). Spatial localization does not require presence of local cues. Learn. Mot. 260, 239–260 10.1016/0023-9690(81)90020-5 DOI
Moser E. I., Moser M. B. (1999). Is learning blocked by saturation of synaptic weights in the hippocampus? Neurosci. Biobehav. Rev. 23, 661–672 10.1016/s0149-7634(98)00060-8 PubMed DOI
Moser M., Moser E. I. (1998). Distributed encoding and retrieval of spatial memory in the hippocampus. J. Neurosci. 18, 7535–7542 PubMed PMC
Mueller A. D., Meerlo P., McGinty D., Mistlberger R. E. (2013). Sleep and adult neurogenesis: implications for cognition and mood. Curr. Top. Behav. Neurosci. [Epub ahead of Print]. 10.1007/7854_2013_251 PubMed DOI
Nakashiba T., Cushman J. D., Pelkeym K. A., Renaudineau S., Buhl D. L., McHugh T. J., et al. (2012). Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149, 188–201 10.1016/j.cell.2012.01.046 PubMed DOI PMC
Nilsson M., Perfilieva E., Johansson U., Orwar O., Eriksson P. S. (1999). Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J. Neurobiol. 39, 569–578 10.1002/(sici)1097-4695(19990615)39:4<569::aid-neu10>3.0.co;2-f PubMed DOI
Otnæss M. K., Brun V. H., Moser M. B., Moser E. I. (1999). Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation. J. Neurosci. 19, RC49 PubMed PMC
Pastalkova E., Serrano P., Pinkhasova D., Wallace E., Fenton A., Sacktor T. C. (2006). Storage of spatial information by the maintenance mechanism of LTP. Science 313, 1141–1144 10.1126/science.1128657 PubMed DOI
Pauli W. M., Clark A. D., Guenther H. J., O’Reilly R. C., Rudy J. W. (2012). Inhibiting PKMζ reveals dorsal lateral and dorsal medial striatum store the different memories needed to support adaptive behavior. Learn. Mem. 19, 307–314 10.1101/lm.025148.111 PubMed DOI
Pevzner A., Miyashita T., Schiffman A. J., Guzowski J. F. (2012). Temporal dynamics of Arc gene induction in hippocampus: relationship to context memory formation. Neurobiol. Learn. Mem. 97, 313–320 10.1016/j.nlm.2012.02.004 PubMed DOI
Prince T. M., Wimmer M., Choi J., Havekes R., Aton S., Abel T. (2014). Sleep deprivation during a specific 3-hour time window post-training impairs hippocampal synaptic plasticity and memory. Neurobiol. Learn. Mem. 109, 122–130 10.1016/j.nlm.2013.11.021 PubMed DOI PMC
Qureshi I. A., Mehler M. F. (2013). Towards a “systems”-level understanding of the nervous system and its disorders. Trends Neurosci. 36, 674–684 10.1016/j.tins.2013.07.003 PubMed DOI PMC
Rodríguez-Durán L. F., Castillo D. V., Moguel-González M., Escobar M. L. (2011). Conditioned taste aversion modifies persistently the subsequent induction of neocortical long-term potentiation in vivo. Neurobiol. Learn. Mem. 95, 519–526 10.1016/j.nlm.2011.03.003 PubMed DOI
Rolls E. T. (2013). The mechanisms for pattern completion and pattern separation in the hippocampus. Front. Syst. Neurosci. 7:74 10.3389/fnsys.2013.00074 PubMed DOI PMC
Sahay A., Scobie K. N., Hill A. S., O’Carroll C. M., Kheirbek M. A., Burghardt N. S., et al. (2011). Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472, 466–470 10.1038/nature09817 PubMed DOI PMC
Schwabe L. (2013). Stress and the engagement of multiple memory systems: integration of animal and human studies. Hippocampus 23, 1035–1043 10.1002/hipo.22175 PubMed DOI
Selbie L. A., Schmitz-Peiffer C., Sheng Y., Biden T. J. (1993). Molecular cloning and characterization of PKC iota, an atypical isoform of protein kinase C derived from insulin-secreting cells. J. Biol. Chem. 268, 24296–24302 PubMed
Semon R. (1921). The Mneme. London: Allen and Unwin
Serrano P., Friedman E. L., Kenney J., Taubenfeld S. M., Zimmerman J. M., Hanna J., et al. (2008). PKMzeta maintains spatial, instrumental, and classically conditioned long-term memories. PLoS Biol. 6:60318 10.1371/journal.pbio.0060318 PubMed DOI PMC
Shema R., Haramati S., Ron S., Hazvi S., Chen A., Sacktor T. C., et al. (2011). Enhancement of consolidated long-term memory by overexpression of protein kinase Mzeta in the neocortex. Science 331, 1207–1210 10.1126/science.1200215 PubMed DOI
Shema R., Sacktor T. C., Dudai Y. (2007). Rapid erasure of long-term memory associations in the cortex by an inhibitor of PKM zeta. Science 317, 951–953 10.1126/science.1144334 PubMed DOI
Snyder J. S., Kee N., Wojtowicz J. M. (2001). Effects of adult neurogenesis on synaptic plasticity in the rat dentate gyrus. J. Neurophysiol. 85, 2423–2431 PubMed
Squire L. R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiol. Learn. Mem. 82, 171–177 10.1016/j.nlm.2004.06.005 PubMed DOI
Steele R. J., Morris R. G. (1999). Delay-dependent impairment of a matching-to-place task with chronic and intrahippocampal infusion of the NMDA-antagonist D-AP5. Hippocampus 9, 118–136 10.1002/(sici)1098-1063(1999)9:2<118::aid-hipo4>3.0.co;2-8 PubMed DOI
Stuchlik A., Petrasek T., Prokopova I., Holubova K., Hatalova H., Vales K., et al. (2013). Place avoidance tasks as tools in the behavioral neuroscience of learning and memory. Physiol. Res. 62, S1–S19 PubMed
Van der Borght K., Havekes R., Bos T., Eggen B. J., Van der Zee E. A. (2007). Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav. Neurosci. 121, 324–334 10.1037/0735-7044.121.2.324 PubMed DOI
van Praag H., Christie B. R., Sejnowski T. J., Gage F. H. (1999). Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc. Natl. Acad. Sci. U S A 96, 13427–13431 10.1073/pnas.96.23.13427 PubMed DOI PMC
Voineskos D., Rogasch N. C., Rajji T. K., Fitzgerald P. B., Daskalakis Z. J. (2013). A review of evidence linking disrupted neural plasticity to schizophrenia. Can. J. Psychiatry 58, 86–92 PubMed
Volk L. J., Bachman J. L., Johnson R., Yu Y., Huganir R. L. (2013). PKM-ζ is not required for hippocampal synaptic plasticity, learning, and memory. Nature 493, 420–423 10.1038/nature11802 PubMed DOI PMC
Wang J., Gallagher D., DeVito L. M., Cancino G. I., Tsui D., He L., et al. (2012). Metformin activates an atypical PKC-CBP pathway to promote neurogenesis and enhance spatial memory formation. Cell Stem Cell 11, 23–35 10.1016/j.stem.2012.03.016 PubMed DOI
Wesierska M., Dockery C., Fenton A. A. (2005). Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus-dependent cognitive coordination in the rat. J. Neurosci. 25, 2413–2419 10.1523/jneurosci.3962-04.2005 PubMed DOI PMC
Whitlock J. R., Heynen A. J., Shuler M. G., Bear M. F. (2006). Learning induces long-term potentiation in the hippocampus. Science 313, 1093–1097 10.1126/science.1128134 PubMed DOI
Winocur G., Becker S., Luu P., Rosenzweig S., Wojtowicz J. M. (2012). Adult hippocampal neurogenesis and memory interference. Behav. Brain Res. 227, 464–469 10.1016/j.bbr.2011.05.032 PubMed DOI
Wiskott L., Rasch M. J., Kempermann G. (2006). A functional hypothesis for adult hippocampal neurogenesis: avoidance of catastrophic interference in the dentate gyrus. Hippocampus 16, 329–343 10.1002/hipo.20167 PubMed DOI
Wohlgemuth S., Ronacher B., Wehner R. (2001). Ant odometry in the third dimension. Nature 411, 795–798 10.1038/35081069 PubMed DOI
Xia Z., Storm D. R. (2012). Role of signal transduction crosstalk between adenylyl cyclase and MAP kinase in hippocampus-dependent memory. Learn. Mem. 19, 369–374 10.1101/lm.027128.112 PubMed DOI PMC
Zhang Y., Barres B. A. (2013). A smarter mouse with human astrocytes. Bioessays 35, 876–880 10.1002/bies.201300070 PubMed DOI
Influence of Prenatal Methamphetamine Abuse on the Brain