Influence of Prenatal Methamphetamine Abuse on the Brain
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
18-03806S
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007444
OP VVV, PharmaBrain
PROGRES Q35 and 260533/SVV/2020
the research programme of Charles University
PubMed
34968287
PubMed Central
PMC8594709
DOI
10.3390/epigenomes4030014
PII: epigenomes4030014
Knihovny.cz E-zdroje
- Klíčová slova
- dopamine, drug addiction, hippocampus, methamphetamine, prefrontal cortex, prenatal, serotonin, striatum,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.
Zobrazit více v PubMed
Segal B., Morral A.R., Stevens S.J. Adolescent Substance Abuse Treatment in the United States: Exemplary Models from a National Evaluation Study. Routledge; Abingdon, UK: 2014. DOI
Office of the Government of the Czech Republic . Annual Report on the State of the Drugs Problem for the European Monitoring Center for Drugs and Drug Addiction: Czech Republic. Office of the Government of the Czech Republic; Prague, Czech Republic: 2018.
Staeheli S.N., Veloso V.P., Bovens M., Bissig C., Kraemer T., Poetzsch M. LC-MS/MS Screening Method Using Information-Dependent Acquisition of Enhanced Product Ion Mass Spectra for Synthetic Cannabinoids Including Metabolites in Urine. Drug Test. Anal. 2019 doi: 10.1002/dta.2664. PubMed DOI
NIDA Methamphetamine. [(accessed on 5 November 2019)]; Retrieved. Available online: https://www.drugabuse.gov/drugs-abuse/methamphetamine.
Walsh N. Harm Reduction: Focal Point for Viral Hepatitis. World Health Organization; København, Denmark: 2019. [(accessed on 9 May 2019)]. Available online: https://www.who.int/hepatitis/news-events/03_prevention-preventing-infection.pdf?ua=1.
Vindenes V., Yttredal B., Øiestad E.L., Waal H., Bernard J.P., Mørland J.G., Christophersen A.S. Oral fluid is a viable alternative for monitoring drug abuse: Detection of drugs in oral fluid by liquid chromatography-tandem mass spectrometry and comparison to the results from urine samples from patients treated with methadone or buprenorphine. J. Anal. Toxicol. 2011;35:32–39. doi: 10.1093/anatox/35.1.32. PubMed DOI
Lindsay M.K., Burnett E. The use of narcotics and street drugs during pregnancy. Clin. Obstet. Gynekol. 2013;56:133–141. doi: 10.1097/GRF.0b013e31827fb6ad. PubMed DOI
Sobell L.C., Sobell M.B., Ward E. Evaluating Alcohol and Drug Abuse Treatment Effectiveness: Recent Advances. Pergamon Press; New York, NY, USA: 1980.
Švestka J., Češková E., Náhunek K. Psychofarmaka V Klinické Praxi. Grada Publishing; Prague, Czech Republic: 1995.
Weiss R.D., Potter J.S., Griffin M.L., Provost S.E., Fitzmaurice G.M., McDermott K.A., Carroll K.M. Long-Term outcomes from the national drug abuse treatment clinical trials network prescription opioid addiction treatment study. Drug Alcohol Depend. 2015;150:112–119. doi: 10.1016/j.drugalcdep.2015.02.030. PubMed DOI PMC
McKetin R., Dawe S., Burns R.A., Hides L., Kavanagh D.J., Teesson M., Saunders J.B. The profile of psychiatric symptoms exacerbated by methamphetamine use. Drug Alcohol Depend. 2016;161:104–109. doi: 10.1016/j.drugalcdep.2016.01.018. PubMed DOI
Birbaumer N., Veit R., Lotze M., Erb M., Hermann C., Grodd W., Flor H. Deficient fear conditioning in psychopathy: A functional magnetic resonance imaging study. Arch. Gen. Psychiatry. 2005;62:799–805. doi: 10.1001/archpsyc.62.7.799. PubMed DOI
Hebb D.O. Textbook of Psychology. 3rd ed. W.B. Saunders Company; Philadelphia, PA, USA: 1972.
McCusker J., Bigelow C., Vickers-Lahi M., Spotts D., Garfield F., Frost R. Planned duration of residential drug abuse treatment: Efficasy versus effectiveness. Addiction. 1997;92:1467–1478. doi: 10.1111/j.1360-0443.1997.tb02868.x. PubMed DOI
Štefunková M. Metamfetamin (Pervitin): Situace v eu a Její Globální Kontext. Centrum adiktologie, Psychiatrická klinika 1. LF UK a VFN v Praze; Praha, Czech Republic: 2010.
Zhang Y., Mayer-Blackwell B., Schlussman S.D., Randesi M., Butelman E.R., Ho A., Kreek M.J. Extended access oxycodone self-administration and neurotransmitter receptor gene expression in the dorsal striatum of adult C57BL/6 J mice. Psychopharmacology. 2014;231:1277–1287. doi: 10.1007/s00213-013-3306-3. PubMed DOI PMC
Fumagalli F., Gainetdinov R.R., Valenzano K.J., Caron M.G. Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter. J. Neurosci. 1998;18:4861–4869. doi: 10.1523/JNEUROSCI.18-13-04861.1998. PubMed DOI PMC
Plessinger M.A. Prenatal exposure to amphetamines. Risks and adverse outcomes in pregnancy. Obstet. Gynecol. Clin. N. Am. 1998;25:119–138. doi: 10.1016/S0889-8545(05)70361-2. PubMed DOI
Dubertret C., Gorwood P., Ades J., Feingold J., Schwartz J.C., Sokoloff P. Meta-Analysis of DRD3 gene and schizophrenia: Ethnic heterogeneity and significant association in caucasians. Am. J. Med. Genet. Part A. 1998;81:318–322. doi: 10.1002/(SICI)1096-8628(19980710)81:4<318::AID-AJMG8>3.0.CO;2-P. PubMed DOI
da Silva Santos A.M., Kelly J.P., Doyle K.M. Dose-Dependent effects of binge-like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology. 2017;75:63–71. doi: 10.1159/000480513. PubMed DOI
Camp D.M., Browman K.E., Robinson T.E. The effects of methamphetamine and cocaine on motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 344 rats. Brain Res. 1994;668:180–193. doi: 10.1016/0006-8993(94)90523-1. PubMed DOI
Numachi N., Ohara A., Yamashita M., Fukushima S., Kobayashi K., Hata H., Watanabe H., Hall F.S., Lesch K.P., Murphy D.L., et al. Methamphetamine-Induced hyperthermia and lethal toxicity: Role of the dopamine and serotonin transporters. Eur. J. Pharmacol. 2007;572:120–128. doi: 10.1016/j.ejphar.2007.06.022. PubMed DOI
Šlamberová R. Drug in pregnancy: The Effects on mother and her progeny. Physiol. Res. 2012;61:123–135. PubMed
Cho B.I. Methamphetamine abuse: Epidemiologic issues and implications. NIDA Res. Monogr. 1991;115:99–106. PubMed
Thrash B., Thiruchelvan K., Ahuja M., Suppiramaniam V., Dhanasekaran M. Methamphetamine-Induced neurotoxicity: The road to Parkinson’s disease. Pharmacol. Rep. 2009;61:966–977. doi: 10.1016/S1734-1140(09)70158-6. PubMed DOI
Lampert S.M., Kaye A.D., Urman R.D., Manchikanti L. Substance Abuse. Springer; New York, NY, USA: 2015. Drug testing and adherence monitoring in substance abuse patients; pp. 621–631. DOI
Yui K., Ikemoto S., Goto K., Nishijima K., Yoshino T., Ishiguro T. Spontaneous Recurrence of Methamphetamine-Lnduced Paranoid-Hallucinatory States in Female Subjects: Susceptibility to Psychotic States and Implications for Relapse of Schizophrenia. Pharmacopsychiatry. 2002;35:62–71. doi: 10.1055/s-2002-25067. PubMed DOI
Vavříková B., Binder T., Živný J. Characteristics of a population of drug dependent pregnant women in Czech Republic. Čes. Gynekol. 2001;66:285–291. PubMed
Sipes T.E., Geyer M.A. DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav. Pharnmacol. 1995;6:839–842. doi: 10.1097/00008877-199512000-00010. PubMed DOI
Vavříková B., Binder T., Živný J., Vítková I. Placental and umbilical cord changes in drug-addicted women. Čes. Gynekol. 2001;66:345–349. PubMed
Bauer C.R., Shankaran S., Bada H.S., Lester B., Wright L.L., Krause-Steinrauf H., Smeriglio V.L., Finnegan L.P., Maza P.L., Verter J. The Maternal Lifestyle Study: Drug exposure during pregnancy and short-term maternal outcomes. Am. J. Obstet. Gynecol. 2002;186:487–495. doi: 10.1067/mob.2002.121073. PubMed DOI
Chang L., Alicata D., Ernst T., Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addict. Soc. Study Addict. 2007;102:16–32. doi: 10.1111/j.1360-0443.2006.01782.x. PubMed DOI
Anckarsater H. Central nervous changes in social dysfunction: Autism, aggression, and psychopathy. Brain Res. Bull. 2006;69:259–265. doi: 10.1016/j.brainresbull.2006.01.008. PubMed DOI
Ma F., Xie H., Dong Z.Q., Wang Y.Q., Wu G.C. Expression of ORL 1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res. 2005;1043:214–217. doi: 10.1016/j.brainres.2005.01.037. PubMed DOI
Mena J.C., Cuellar H., Vargas D., Riascos R. PET and SPECT in drug and substance abuse. Top. Magn. Reson. Imaging. 2005;16:253–256. doi: 10.1097/01.rmr.0000192177.01789.c0. PubMed DOI
Raine A., Yang Y. The neuroanatomical bases of psychopathy: A review of brain imaging findings. In: Patrick C.J., editor. Handbook of Psychopathy. Guilford; New York, NY, USA: 2004.
Bechara A. The role of emotion in decision making: Evidence from neurological patients with orbitofrontal damage. Brain Cognit. 2004;55:30–40. doi: 10.1016/j.bandc.2003.04.001. PubMed DOI
Amen D.G., Stubblefield M., Carmicheal B., Thisted R. Brain SPECT findings and aggressiveness. Ann. Clin. Psychiatry. 1996;8:129–137. doi: 10.3109/10401239609147750. PubMed DOI
Bayer S.A., Altman J., Russo R.J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14:83. PubMed
Rolls E.T., Treves A. Neural Networks and Brain Function. Oxford University Press; Oxford, UK: 1998.
Bullmore E., Sporns O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186. doi: 10.1038/nrn2575. PubMed DOI
Maren S., Phan K.L., Liberzon I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013;14:417–428. doi: 10.1038/nrn3492. PubMed DOI PMC
Li H., Scholl J.L., Tu W., Hassell J.E., Watt M.J., Forster G.L., Renner K.J. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. Eur. J. Neurosci. 2014;40:3684–3692. doi: 10.1111/ejn.12735. PubMed DOI PMC
Krugel L.K., Biele G., Mohr P.N.C., Li S.C., Heekeren H.R. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc. Natl. Acad. Sci. USA. 2009;106:17951–17956. doi: 10.1073/pnas.0905191106. PubMed DOI PMC
Mansour A., Meador-Woodruff J.H., Bunzow J.R., Civelli O., Akil H., Watson S.J. Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: An in situ hybridization-receptor autoradiographic analysis. J. Neurosci. 1990;10:2587–2600. doi: 10.1523/JNEUROSCI.10-08-02587.1990. PubMed DOI PMC
Bourque M., Liu B., Dluzen D.E., Di Paolo T. Sex differences in methamphetamine toxicity in mice: Effect on brain dopamine signalling pathways. Psychoneuroendocrinology. 2011;36:955–969. doi: 10.1016/j.psyneuen.2010.12.007. PubMed DOI
Drago J., Padungchaichot P., Accili D., Fuchs S. Dopamine receptors and dopamine transporter in brain function and addictive behaviors: Insights from targeted mouse mutants. Dev. Neurosci. 1998;20:188–203. doi: 10.1159/000017313. PubMed DOI
Hollerman J.R., Schultz W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1998;1:304–309. doi: 10.1038/1124. PubMed DOI
Holick K.A., Lee D.C., Hen R., Dulawa S.C. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology. 2008;33:406–417. doi: 10.1038/sj.npp.1301399. PubMed DOI
Frankle W.G., Lombardo I., New A.S., Goodman M., Talbot P.S., Huang Y., Hwang D., Slifstein M., Curry S., Abi-Dargham A., et al. Brain serotonin transporter distribution in subjects with impulsive aggressivity: A positron emission study with [11C] McN 5652. Am. J. Psychiatry. 2005;162:915–923. doi: 10.1176/appi.ajp.162.5.915. PubMed DOI
Won L., Bubula N., McCoy H., Heller A. Methamphetamine concentrations in fetal and maternal brain following prenatal exposure. Neurotoxicol. Teratol. 2001;23:349–354. doi: 10.1016/S0892-0362(01)00151-9. PubMed DOI
Barrett K.E., Barman S.M., Boitano S., Brooks H.L. Ganong’s Review of Medical Physiology. 23rd ed. McGraw-Hill Medical; New York, NY, USA: 2009.
Guyton A.C., Hall J.E. Textbook of Medical Physiology. 11th ed. Elsevier; Amsterdam, The Netherlands: 2006.
Campbell T.G. The best of a bas bunch: The ventromedial prefrontal cortex and dorsal anterior cingulate cortex in decision-making. J. Neurosci. 2007;27:447–448. doi: 10.1523/JNEUROSCI.4967-06.2007. PubMed DOI PMC
Waberžinek G., Krajíčková D. Základy Speciální Neurologie. Karolinum; Praha, Czech Republic: 2006.
Apergis-Schoute A.M., Gillan C.M., Fineberg N.A., Fernandez-Egea E., Sahakian B.J., Robbins T.W. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc. Natl. Acad. Sci. USA. 2017;114:3216–3221. doi: 10.1073/pnas.1609194114. PubMed DOI PMC
Gillan C.M., Apergis-Schoute A.M., Morein-Zamir S., Urcelay C.P., Sule A., Fineberg Sahakian B.J., Robbins T.W. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry. 2015;172:284–293. doi: 10.1176/appi.ajp.2014.14040525. PubMed DOI PMC
Blair R.J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry. 2001;71:727–731. doi: 10.1136/jnnp.71.6.727. PubMed DOI PMC
Brower M.C., Price B.H. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behavior: A critical review. J. Neurol. Neurosurg. Psychiatry. 2001;71:720–726. doi: 10.1136/jnnp.71.6.720. PubMed DOI PMC
Burgess N., Maguire E.A., O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641. doi: 10.1016/S0896-6273(02)00830-9. PubMed DOI
Stuchlik A. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update. Front. Behav. Neurosci. 2014;8:106. doi: 10.3389/fnbeh.2014.00106. PubMed DOI PMC
Nakazawa K., Quirk M.C., Chitwood R.A., Watanabe M., Yeckel M.F., Sun L.D., Tonegawa S. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–218. doi: 10.1126/science.1071795. PubMed DOI PMC
Kesner R.P., Gilbert P.E., Barua L.A. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci. 2002;116:286–290. doi: 10.1037/0735-7044.116.2.286. PubMed DOI
Bannerman D.M., Sprengel R., Sanderson D.J., McHugh S.B., Rawlins J.N.P., Monyer H., Seeburg P.H. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 2014;15:181. doi: 10.1038/nrn3677. PubMed DOI
Simões P.F., Silva A.P., Pereira F.C., Grade S., Milhazes N., Borges F., Ribeiro C.F., Macedo T.R. Methamphetamine induces alternations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience. 2007;150:433–434. doi: 10.1016/j.neuroscience.2007.09.044. PubMed DOI
Honey R.C., Good M. Associative modulation of the orienting response: Distinct effects revealed by hippocampal lesions. J. Exp. Psychol. Anim. Behav. Process. 2000;26:3–14. doi: 10.1037/0097-7403.26.1.3. PubMed DOI
Bannerman D.M., Rawlins J.N.P., Good M.A. The drugs don’t work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology. 2006;188:552–566. doi: 10.1007/s00213-006-0403-6. PubMed DOI
McCutcheon J.E., Marinelli M. Age matters. Eur. J. Neurosci. 2009;29:997–1014. doi: 10.1111/j.1460-9568.2009.06648.x. PubMed DOI PMC
Squire L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992;99:195. doi: 10.1037/0033-295X.99.2.195. PubMed DOI
Caputi A., Fuchs E.C., Allen K., Le Magueresse C., Monyer H. Selective reduction of AMPA currents onto hippocampal interneurons impairs network oscillatory activity. PLoS ONE. 2012;7:e37318. doi: 10.1371/journal.pone.0037318. PubMed DOI PMC
O’Keefe J., Nadel L. The Hippocampus as a Cognitive Map. Oxford University Press; Oxford, UK: 1978.
Rawlins J.N., Olton D.S. The septo-hippocampal system and cognitive mapping. Behav. Brain Res. 1982;5:331–358. doi: 10.1016/0166-4328(82)90039-0. PubMed DOI
O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–175. doi: 10.1016/0006-8993(71)90358-1. PubMed DOI
Mariano T.Y., Bannerman D.M., McHugh S.B., Preston T.J., Rudebeck P.H., Rudebeck S.R., Campbell T.G. Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur. J. Neurosci. 2009;30:472–484. doi: 10.1111/j.1460-9568.2009.06837.x. PubMed DOI PMC
Pothuizen H.H., Zhang W.N., Jongen-Relo A.L., Feldon J., Yee B.K. Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: A within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci. 2004;19:705–712. doi: 10.1111/j.0953-816X.2004.03170.x. PubMed DOI
Stuchlik A., Rehakova L., Rambousek L., Svoboda J., Vales K. Manipulation of D2 receptors with quinpirole and sulpiride affects locomotor activity before spatial behavior of rats in an active place avoidance task. Neurosci. Res. 2007;58:133–139. doi: 10.1016/j.neures.2007.02.006. PubMed DOI
Taube J.S., Muller R.U., Ranck J.B. Head-Direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. PubMed DOI PMC
Stuchlik A., Rezacova L., Vales K., Bubenikova V., Kubik S. Application of a novel Active Allothetic Place Avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: Comparison with the Morris Water Maze. Neurosci. Lett. 2004;366:162–166. doi: 10.1016/j.neulet.2004.05.037. PubMed DOI
Barkus C., McHugh S.B., Sprengel R., Seeburg P.H., Rawlins J.N.P., Bannerman D.M. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. Eur. J. Pharmacol. 2010;626:49–56. doi: 10.1016/j.ejphar.2009.10.014. PubMed DOI PMC
Pentkowski N.S., Blanchard D.C., Lever C., Litvin Y., Blanchard R.J. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur. J. Neurosci. 2006;23:2185–2196. doi: 10.1111/j.1460-9568.2006.04754.x. PubMed DOI
Deacon R.M., Bannerman D.M., Rawlins J.N. Anxiolytic effects of cytotoxic hippocampal lesions in rats. Behav. Neurosci. 2002;116:494–497. doi: 10.1037/0735-7044.116.3.494. PubMed DOI
Nicolini H., Cruz C., Camarena B., Orozco B., Kennedy J.L., King N., Sidenberg D. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder. Mol. Psychiatry. 1996;1:461–465. PubMed
Macúchová M., Šlamberová R. Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine. Behav. Brain Res. 2014;270:8–17. doi: 10.1016/j.bbr.2014.04.040. PubMed DOI
Šlamberová R., Charousová P., Pometlová M. Methamphetamine Administration during Gestation Impairs Maternal Behavior. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 2005;46:57–65. doi: 10.1002/dev.20042. PubMed DOI
Behnke M., Smith V.C. Committee on Substance Abuse; Committee on Fetus and Newborn. Prenatal Substance Abuse: Short- and Long-term Effects on the Exposed Fetus. Pediatrics. 2013;131:1009–1024. doi: 10.1542/peds.2012-3931. PubMed DOI PMC
Kuczkowski K.M. The effects of drug abuse on pregnancy. Curr. Opin. Obstet. Gynecol. 2007;19:578–585. doi: 10.1097/GCO.0b013e3282f1bf17. PubMed DOI
Plotka J., Narkowicz S., Polkowska Z., Biziuk M., Namiesnik J. Reviews of Environmental Contamination and Toxicology. Volume 227. Springer; Cham, Switzerland: 2014. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials: Reviews; pp. 55–77. PubMed DOI
Rambousek L., Kacer P., Syslová K., Bumba J., Bubeníková-Valesová V., Šlamberová R. Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend. 2014;139:138–144. doi: 10.1016/j.drugalcdep.2014.03.023. PubMed DOI
Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Arria A., Fallone M. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol. 2008;30:20–28. doi: 10.1016/j.ntt.2007.09.005. PubMed DOI PMC
Dattel B.J. Substance abuse in pregnancy. Semin. Perinatol. 1990;14:179–187. PubMed
Neri M., Bello S., Turillazzi E., Riezzo I. Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit? Curr. Pharmaceutical Design. 2015;21:1358–1368. doi: 10.2174/1381612821666150105124510. PubMed DOI
Wells P.G., Bhatia S., Drake D.M., Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res. Part C Embryo Today Rev. 2016;108:108–130. doi: 10.1002/bdrc.21134. PubMed DOI
Cui C., Sakata-Haga H., Ohta K.I., Nishida M., Yashiki M., Sawada K., Fukui Y. Histological brain alterations following prenatal methamphetamine exposure in rats. Congenit. Anomalies. 2006;46:180–187. doi: 10.1111/j.1741-4520.2006.00126.x. PubMed DOI
Golub M., Costa L., Crofton K., Frank D., Fried P., Gladen B., Rowland A. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of amphetamine and methamphetamine. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2005;74:471–584. doi: 10.1002/bdrb.20048. PubMed DOI
Brown J., Hohman M. The impact of methamphetamine use on parenting. J. Soc. Work Pract Addict. 2006;6:63–88. doi: 10.1300/J160v06n01_04. DOI
Ackerman J.P., Llorente A.M., Black M.M., Ackerman C.S., Mayes L.A., Nair P. The effect of prenatal drug exposure and caregiving context on children’s performance on a task of susteined visual attention. J. Dev. Behav. Pediatr. 2008;29:467–474. doi: 10.1097/DBP.0b013e3181903168. PubMed DOI PMC
Šlamberová R., Macúchová E., Nohejlová K., Štofková A., Juroviová J. Effect of amphetamine on adult male and female rats prenatally exposed to methamphetamine. Prague Med. Rep. 2014;115:43–59. doi: 10.14712/23362936.2014.5. PubMed DOI
Šlamberová R., Pometlová M., Charousová P. Postnatal development of rat pups is altered by prenatal mathamphetamine exposure. Prog. Neuro-Psychopharmacol. A Biol. Psychiatr. 2006;30:82–88. doi: 10.1016/j.pnpbp.2005.06.006. PubMed DOI
Šlamberová R., Charousová P., Pometlová M. Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation. Reprod. Toxicol. 2005;20:103–110. doi: 10.1016/j.reprotox.2004.11.010. PubMed DOI
Vrajová M., Schutová B., Klaschka J., Štěpánková H., Řípová D., Šlamberová R. Age-Related differences in NMDA receptor subunits of prenatally MA—Exposed male rats. Neurochem. Res. 2014;39:2040–2046. doi: 10.1007/s11064-014-1381-4. PubMed DOI
Schutová B., Hrubá L., Rokyta R., Šlamberová R. Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev. Psychobiol. 2013;55:232–242. doi: 10.1002/dev.21016. PubMed DOI
Kinsley C.H., Turco D., Bauer A., Beverly M., Wellman J., Graham A.L. Cocaine alters the onset and maintenance of maternal behavior in lactating rats. Pharmacol. Biochem. Behav. 1994;47:857–864. doi: 10.1016/0091-3057(94)90288-7. PubMed DOI
Vassoler F.M., Byrnes E.M., Pierce R.C. The impact of exposure to addictive drugs on future generations: Physiological and behavioral effects. Neuropharmacology. 2014;76:269–275. doi: 10.1016/j.neuropharm.2013.06.016. PubMed DOI PMC
Bagheri J., Rajabzadeh A., Baei F., Jalayeri Z., Ebrahimzadeh-Bideskan A. The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. Toxin Rev. 2017;36:194–203. doi: 10.1080/15569543.2017.1288141. DOI
Steiner E., Villen T., Hallberg M., Rane A. Amphetamine secretion in breast milk. Eur. J. Clin. Pharmacol. 1984;27:123–124. doi: 10.1007/BF02395219. PubMed DOI
Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Arria A., Liu J. The infant development, environment, and lifestyle study: Effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics. 2006;118:1149–1156. doi: 10.1542/peds.2005-2564. PubMed DOI
Smith L.M., Yonekura M.L., Wallace T., Berman N., Kuo J., Berkowitz C. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J. Dev. Behav. Pediatri. 2003;24:17–23. doi: 10.1097/00004703-200302000-00006. PubMed DOI
Eyler F.D., Behnke M. Early development of infants exposed to drug prenataly. Clin. Perinatol. 1999;26:107–150. doi: 10.1016/S0095-5108(18)30075-7. PubMed DOI
van Baar A.L., Fleury P., Soepatmi S., Ultee C.A., Wesselman P.J.M. Neonatal behaviour after drug dependent pregnancy. Arch. Dis. Child. 1989;64:235–240. doi: 10.1136/adc.64.2.235. PubMed DOI PMC
Little B.B., Snell L.M., Gilstrap L.C. Methamphetamine abuse during pregnancy: Outcome and fetal effects. Obstetri. Gynecol. 1988;72:541–544. PubMed
Eze N., Smith L.M., LaGasse L.L., Derauf C., Newman E., Arria A., Lester B.M. School-Aged outcomes following prenatal methamphetamine exposure: 7.5-year follow-up from the infant development, environment, and lifestyle study. J. Pediatri. 2016;170:34–38. doi: 10.1016/j.jpeds.2015.11.070. PubMed DOI PMC
Nguyen D., Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Della Grotta S. Intrauterine growth of infants exposed to prenatal methamphetamine: Results from the infant development, environment, and lifestyle study. J. Pediatri. 2010;157:337–339. doi: 10.1016/j.jpeds.2010.04.024. PubMed DOI PMC
Shah R., Diaz S.D., Arria A. Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes. Am. J. Perinatol. 2012;29:391–400. doi: 10.1055/s-0032-1304818. PubMed DOI PMC
Šlamberová R. Review of Long-Term Consequences of Maternal Methamphetamine Exposure. Physiol. Res. 2019;68:S219–S231. doi: 10.33549/physiolres.934360. PubMed DOI
Behnke M., Eyler F.D. The Consequences of Prenatal Substance Use for the Developing Fetus, Newborn, and Young Child. Int. J. Addict. 1993;28:1341–1391. doi: 10.3109/10826089309062191. PubMed DOI
Derauf C., LaGasse L., Smith L., Newman E., Shah R., Arria A., Dansereau L. Infant temperament and high risk environment relate to behavior problems and language in toddlers. J. Dev. Behav. Pediatri. JDBP. 2011;32:125. doi: 10.1097/DBP.0b013e31820839d7. PubMed DOI PMC
Covington S.S. Women and addiction: A trauma-informed approach. J. Psychoact. Drugs. 2008;40:377–385. doi: 10.1080/02791072.2008.10400665. PubMed DOI
Kiblawi Z.N., Smith L.M., LaGasse L.L., Diaz S.D., Derauf C., Newman E., Strauss A. Prenatal methamphetamine exposureand neonatal and infant neurobehavioral outcome: Results from the IDEAL study. Subst. Abus. 2014;35:68–73. doi: 10.1080/08897077.2013.814614. PubMed DOI PMC
Chakraborty A., Anstice N.S., Jacobs R.J., LaGasse L.L., Lester B.M., Wouldes T.A., Thompson B. Prenatal exposure to recreational drugs affects global motion perception in preschool children. Sci. Rep. 2015;5:16921. doi: 10.1038/srep16921. PubMed DOI PMC
Zabaneh R., Smith L.M., LaGasse L.L., Derauf C., Newman E., Shah R., Della Grotta S. The effects of prenatal methamphetamine exposure on childhood growth patterns from birth to 3 years of age. Am. J. Perinatol. 2012;29:203–210. doi: 10.1055/s-0031-1285094. PubMed DOI PMC
Cernerud L., Eriksson M., Jonsson B., Steneroth G., Zetterstrom R. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance. Acta Paediatr. 1996;85:204–208. doi: 10.1111/j.1651-2227.1996.tb13993.x. PubMed DOI
Smith L.M., Santos L.C. Prenatal exposure: The effects of prenatal cocaine and methamphetamine exposure on the developing child. Birth Defects Res. Part C Embryo Today Rev. 2016;108:142–146. doi: 10.1002/bdrc.21131. PubMed DOI
Jablonski S.A., Williams M.T., Vorhees C.V. Neurotoxin Modeling of Brain Disorders—Life-Long Outcomes in Behavioral Teratology. Springer; Cham, Switzerland: 2015. Neurobehavioral effects from developmental methamphetamine exposure; pp. 183–230. PubMed DOI
Chang L., Smith L.M., LoPresti C., Yonekura M.L., Kuo J., Walot I., Ernst T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphet-amine exposure. Psychiatry Res. Neuroimaging. 2004;132:95–106. doi: 10.1016/j.pscychresns.2004.06.004. PubMed DOI
Williams J.H., Ross L. Consequences of prenatal toxin exposure for mental health in children and adolescents. Eur. Child Adolesc. Psychiatry. 2007;16:243–253. doi: 10.1007/s00787-006-0596-6. PubMed DOI
Smith A.M., Chen A. Neonatal amphetamine exposure and hippocampus-mediated behaviors. Neurobiol. Learn. Mem. 2009;91:207–217. doi: 10.1016/j.nlm.2008.12.005. PubMed DOI PMC
Jablonski S.A., Williams M.T., Vorhees C.V. Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure. Birth Defects Res. Part C Embryo Today Rev. 2016;108:131–141. doi: 10.1002/bdrc.21130. PubMed DOI
Billing L., Eriksson M., Jonsson B., Steneroth G., Zetterström R. The influence of environmental factors on behavioural problems in 8-year-old children exposed to amphetamine during fetal life. Child Abus. Negl. 1994;18:3–9. doi: 10.1016/0145-2134(94)90091-4. PubMed DOI
Kiblawi Z.N., Smith L.M., LaGasse L.L., Diaz S.D., Newman E., Shah R., Neal C. The effect of prenatal methamphetamine exposure on attention as assessed by continuous performance tests: Results from the infant development, environment, and lifestyle (IDEAL) study. J. Dev. Behav. Pediatr. JDBP. 2013;34:31. doi: 10.1097/DBP.0b013e318277a1c5. PubMed DOI PMC
Abar B., LaGasse L.L., Derauf C., Newman E., Shah R., Smith L.M., Arria A., Huestis M., Della G.S., Dansereau L.M., et al. Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychol. Addict. Behav. 2013;27:662. doi: 10.1037/a0030157. PubMed DOI PMC
Spurlock G., Williams J., McGuffin P., Aschauer H.N., Lenzinger E., Fuchs K., Mallet J. European Multicentre Association Study of Schizophrenia: A study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am. J. Med. Genet. 1998;81:24–28. doi: 10.1002/(SICI)1096-8628(19980207)81:1<24::AID-AJMG5>3.0.CO;2-N. PubMed DOI
Raine A., Yang Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cognit. Affect. Neurosci. 2006;1:203–213. doi: 10.1093/scan/nsl033. PubMed DOI PMC
Holmes S.E., Slaughter J.R., Kashani J. Risk factors in childhood that lead to the development of conduct disorder and antisocial personality disorder. Child Psychiatry Human Dev. 2001;31:183–193. doi: 10.1023/A:1026425304480. PubMed DOI
Raine A., Lencz T., Bihrle S., LaCasse L., Colletti P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry. 2000;57:119–127. doi: 10.1001/archpsyc.57.2.119. PubMed DOI
Leech S.L., Richardson G.A., Goldschmidt L., Day N.L. Prenatal substance exposure: Effects on attention and impulsivity of 6-year-olds. Neurotoxicol. Teratol. 1999;21:109–118. doi: 10.1016/S0892-0362(98)00042-7. PubMed DOI
Davidson R.J., Putnam K.M., Larson C.L. Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science. 2000;289:591–594. doi: 10.1126/science.289.5479.591. PubMed DOI
Irner T.B. Substance exposure in utero and developmental consequences in adolescence: A systematic review. Child Neuropsychol. 2012;18:521–549. doi: 10.1080/09297049.2011.628309. PubMed DOI
Shilling P.D., Kuczenski R., Segal D.S., Barrett T.B., Kelsoe J.R. Differential regulation of immediate-early gene expression in the prefrontal cortex of rat with a high vs. low behavioral response to methamphetamine. Neuropsychopharm. 2006;31:2359–2367. doi: 10.1038/sj.npp.1301162. PubMed DOI
Fujáková-Lipski M., Kaping D., Sirová J., Šlamberová R. Transgenerational neurobiochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol. 2017;91:3373–3384. doi: 10.1007/s00204-017-1969-y. PubMed DOI
Šlamberová R., Pometlová M., Rokyta R. Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol. 2007;49:312–322. doi: 10.1002/dev.20203. PubMed DOI
Westerga J., Gramsbergen A. The development of locomotion in the rat. Dev. Brain Res. 1990;57:163–174. doi: 10.1016/0165-3806(90)90042-W. PubMed DOI
Altman J., Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim. Behav. 1975;23:896–920. doi: 10.1016/0003-3472(75)90114-1. PubMed DOI
Vinay L., Ben-Mabrouk F., Brocard F., Clarac F., Jean-Xavier C., Pearlstein E., Pflieger J.F. Perinatal development of the motor systems involved in postural control. Neural Plast. 2005;12:131–139. doi: 10.1155/NP.2005.131. PubMed DOI PMC
Sengupta P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med. 2013;4:624. PubMed PMC
Petríková I., Šlamberová R. Critical neurodevelopmental periods for the effect of methamphetamine. Cesk. Fysiol. 2018;67:1–9.
Rice D., Baron S. Critical periods of vulnerability for the developing nervous systém: Evidence from humans and animal models. Environ. Healt Perspect. 2000;108:511–533. doi: 10.1289/ehp.00108s3511. PubMed DOI PMC
Křeček J. Effect of ovarectomy of females and oestrogen administration to males during the neonatal critical period on salt intake in adulthood in rats. Physiol. Bohemoslov. 1978;27:1–5. PubMed
Křeček J. The theory of critical developmental periods and postnatal development of endocrine functions. Biopsychol. Dev. 1971:233–248.
Spear N.E., Miller R.R., editors. Information Processing in Animals: Memory Mechanisms. Psychology Press; New Brunswick, NJ, USA: 2014. pp. 5–47.
Wiltgen B.J., Royle G.A., Gray E.E., Abdipranoto A., Thangthaeng N., Jacobs N., Fanselow M.S. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS ONE. 2010;5:e12818. doi: 10.1371/journal.pone.0012818. PubMed DOI PMC
Wells P.G., McCallum G.P., Chen C.S., Henderson J.T., Lee C.J., Perstin J., Wong A.W. Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicol. Sci. 2009;108:4–18. doi: 10.1093/toxsci/kfn263. PubMed DOI
Silva A.J. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J. Neurobiol. 2003;54:224–237. doi: 10.1002/neu.10169. PubMed DOI
Quinton M.S., Yamamoto B.K. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J. 2006;8:337. doi: 10.1007/BF02854904. PubMed DOI PMC
Pometlová M., Hrubá L., Slamberová R., Rokyta R. Cross-Fostering effect on postnatal development of rat pups exposed to methamphetamine during gestation and preweaning periods. Int. J. Dev. Neurosci. 2009;27:149–155. doi: 10.1016/j.ijdevneu.2008.11.006. PubMed DOI
Acuff-Smith K.D., Schilling M.A., Fisher J.E., Vorhees C.V. Stage-Specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol. Teratol. 1996;18:199–215. doi: 10.1016/0892-0362(95)02015-2. PubMed DOI
Martin J.C., Ellinwood E.H. Conditioned aversion in spatial paradigms following methamphetamine injection. Psychopharmacology. 1974;36:323–335. doi: 10.1007/BF00422564. PubMed DOI
Šlamberová R., Vrajová M., Schutová B., Mertlová M., Macúchová E., Nohejlová K., Hrubá L., Puskarčíková J., Bubeníková-Valešová V., Yamamotová A. Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol. Res. 2014;63 PubMed
Yamamotová A., Šlamberová R. Behavioral and antinoticeptive effects of different psychostimulant drugs in parentally methamphetamine-exposed rats. Physiol. Res. 2012;61:139–147. PubMed
Fowler J.S., Volkow N.D., Logan J. Fast uptake and long-lasting binding of methamphetamine in the human brain: Comparison with cocaine. NeuroImage. 2008;43:756–763. doi: 10.1016/j.neuroimage.2008.07.020. PubMed DOI PMC
Volkow N.D., Fowler J.S., Wang G.J. Distribution and pharmacokinetics of methamphetamine in the human body: Clinical implications. PLoS ONE. 2010;5:e15269. doi: 10.1371/journal.pone.0015269. PubMed DOI PMC
Girault J., Valjent E., Caboche J., Herve D. ERK2: A logical AND gate critical for drug-induced plasticity? Curr. Opin. Pharmacol. 2007;7:77–85. doi: 10.1016/j.coph.2006.08.012. PubMed DOI
Curley J.P., Champagne F.A., Bateson P., Keverne E.B. Transgenerational effects of impaired maternal care on behaviour of offspring and grandoffspring. Anim. Behav. 2008;75:1551–1561. doi: 10.1016/j.anbehav.2007.10.008. DOI
Caldji C., Diorio J., Anisman H., Meaney M.J. Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology. 2004;29:1344–1352. doi: 10.1038/sj.npp.1300436. PubMed DOI
Homer B.D., Solomon T.M., Moeller R.W., Mascia A., DeRaleau L., Halkitis P.N. Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioural implications. Psychol. Bull. 2008;134:301–310. doi: 10.1037/0033-2909.134.2.301. PubMed DOI
Champagne F., Diorio J., Sharma S., Meaney M.J. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc. Natl. Acad. Sci. USA. 2001;98:12736–12741. doi: 10.1073/pnas.221224598. PubMed DOI PMC
Benoit D., Parker K.C. Stability and transmission of attachment across three generations. Child Dev. 1994;65:1444–1456. doi: 10.2307/1131510. PubMed DOI
Itzhak Y., Ergui I., Young J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry. 2015;20:232–239. doi: 10.1038/mp.2014.7. PubMed DOI
Lester B.M., LaGasse L.L. Children of addicted women. J. Addict Dis. 2010;29:259–276. doi: 10.1080/10550881003684921. PubMed DOI PMC
Ary T.E., Komiskey H.L. Basis of phencyclidine’s ability to decrease the synaptosomal accumulation of 3Hcatecholamines. Eur. J. Pharmacol. 1980;61:401–405. doi: 10.1016/0014-2999(80)90082-5. PubMed DOI
Biagioni F., Ferese R., Limanaqi F., Madonna M., Lenzi P., Gambardella S., Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res. 2019;1719:157–175. doi: 10.1016/j.brainres.2019.05.035. PubMed DOI
Nohesara S., Ghadirivasfi M., Barati M. Methamphetamine-induced psychosis is associated with DNA hypomethylation and increased expression of AKT1 and key dopaminergic genes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016;171:1180–1189. doi: 10.1002/ajmg.b.32506. PubMed DOI PMC
Šagud M., Mück-Seler D., Mihaljević-Peles A. Catechol-O-methyl transferase and schizophrenia. Psychiatr. Danub. 2010;22:270–274. PubMed
Pregelj P. Neurobiological aspects of psychosis and gender. Psychiatr. Danub. 2010;21:128–131. PubMed
Fraga M.F., Esteller M. Epigenetics and ageing: The targets and the marks. Trends Genet. 2007;23:413–418. doi: 10.1016/j.tig.2007.05.008. PubMed DOI
Krasnova I.N., Chiflikyan M., Justinova Z., McCoy M.T., Ladenheim B., Jayanthi S. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 2013;58:132–1343. doi: 10.1016/j.nbd.2013.05.009. PubMed DOI PMC
Renthal W., Maze I., Krishnan V., Covington H.E., 3rd, Xiao G., Kumar A. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007;56:517–529. doi: 10.1016/j.neuron.2007.09.032. PubMed DOI
Tan Y.Y., Wu L., Zhao Z.B., Wang Y., Xiao Q., Liu J., Wang G., Ma J.F., Chen S.D. Methylation of alpha-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Park. Relat. Disord. 2014;20:308–313. doi: 10.1016/j.parkreldis.2013.12.002. PubMed DOI
Desplats P., Spencer B., Coffee E., Patel P., Michael S., Patrick C., Adame A., Rockenstein E., Masliah E. Alpha-Synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 2011;286:9031–9037. doi: 10.1074/jbc.C110.212589. PubMed DOI PMC
Jiang W., Li J., Zhang Z., Wang H., Wang Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur. J. Pharmacol. 2014;745:243–248. doi: 10.1016/j.ejphar.2014.10.043. PubMed DOI
Mark K.A., Soghomonian J.J., Yamamoto B.K. Highdose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate longterm dopamine toxicity. J. Neurosci. 2004;24:11449–11456. doi: 10.1523/JNEUROSCI.3597-04.2004. PubMed DOI PMC
Marshall J.F., O’Dell S.J., Weihmuller F.B. Dopamineglutamate interactions in methamphetamine-induced neurotoxicity. J. Neural Transm. 1993;91:241–254. doi: 10.1007/BF01245234. PubMed DOI
Jayanthi S., McCoy M.T., Chen B., Britt J.P., Kourrich S., Yau H.J., Cadet J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry. 2014;76:47–56. doi: 10.1016/j.biopsych.2013.09.034. PubMed DOI PMC
Cadet J.L., Ali S., Epstein C. Involvement of oxygenbased radicals in methamphetamine-induced neurotoxicity: Evidence from the use of CuZnSOD transgenic micea. Ann. N. Y. Acad. Sci. 1994;738:388–391. doi: 10.1111/j.1749-6632.1994.tb21827.x. PubMed DOI
Hřebíčková I., Ševčíková M., Macúchová E., Šlamberová R. How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats? Physiol. Behav. 2017;179:391–400. doi: 10.1016/j.physbeh.2017.07.009. PubMed DOI
Hřebíčková I., Malinová-Ševčíková M., Macúchová E., Nohejlová K., Šlamberová R. Exposure to methamphetamine during first and second half of prenatal period and its consequences on cognition after long-term application in adulthood. Physiol. Res. 2014;63 PubMed
Ševčíková M., Hrebíčková I., Macúchová E., Šlamberová R. The influence of methamphetamine on maternal behavior and development of the pups during the neonatal period. Int. J. Dev. Neurosci. 2017;59:37–46. doi: 10.1016/j.ijdevneu.2017.03.005. PubMed DOI
Šlamberová R., Mikulecká A., Pometlová M., Schutová B., Hrubá L., Deykun K. Sex differences in social interaction of methamphetamine-treated rats. Behav. Pharmacol. 2011;22:617–623. doi: 10.1097/FBP.0b013e32834afea4. PubMed DOI
Holubová A., Ševčíková M., Macúchová E., Hrebíčková I., Pometlová M., Šlamberová R. Effects of perinatal stress and drug abuse on maternal behavior and sensorimotor development of affected progeny. Physiol. Res. 2017;66 doi: 10.33549/physiolres.933800. PubMed DOI
Matějovská I., Bernášková K., Šlamberová R. Effect of prenatal methamphetamine exposure and challenge dose of the same drug in adulthood on epileptiform activity induced by electrical stimulation in female rats. Neuroscience. 2014;257:130–138. doi: 10.1016/j.neuroscience.2013.10.069. PubMed DOI
Kitamura O., Wee S., Specio S.E., Koob G.F., Pulvirenti L. Escalation of methamphetamine self-administration in rats: A dose–effect function. Psychopharmacology. 2006;186:48–53. doi: 10.1007/s00213-006-0353-z. PubMed DOI
Harrod S.B., Dwoskin L.P., Crooks P.A., Klebaur J.E., Bardo M.T. Lobeline attenuates d-methamphetamine self-administration in rats. J. Pharmacol. Exp. Ther. 2001;298:172–179. PubMed
van Thriel C., Westerink R.H.S., Beste C., Bale A.S., Lein P.J., Leist M. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology. 2012;33:911–924. doi: 10.1016/j.neuro.2011.10.002. PubMed DOI PMC
van Thriel C., Quetscher C., Pesch B., Lotz A., Lehnert M., Casjens S., Beste C. Are multitasking abilities impaired in welders exposed to manganese? Translating cognitive neuroscience to neurotoxicology. Arch. Toxicol. 2017;91:2865–2877. doi: 10.1007/s00204-017-1932-y. PubMed DOI
Diamond A. Executive functions. Ann. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC
Methamphetamine, neurotransmitters and neurodevelopment