Influence of Prenatal Methamphetamine Abuse on the Brain

. 2020 Jul 14 ; 4 (3) : . [epub] 20200714

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34968287

Grantová podpora
18-03806S Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/16_025/0007444 OP VVV, PharmaBrain
PROGRES Q35 and 260533/SVV/2020 the research programme of Charles University

Methamphetamine (MA), a psychostimulant, has become a serious problem in recent years. It is one of the most widely abused psychostimulants in the world. In the Czech Republic, ecstasy is the most commonly used non-cannabis drug, followed by hallucinogenic fungi, LSD, MA, cocaine, and finally heroin. The prevalence of the usage of all addictive substances is highest in the age category of 15-34. Approximately 17.2% of registered drug addicts, both male and female, in the Czech Republic use MA as their first-choice drug. This group consists mostly of women who are unemployed and addicted to MA (85%). Almost half of the addicted women switched to MA from other drugs in the course of pregnancy. Psychostimulants such as amphetamine and its synthetic derivate MA induce feelings of calm and happiness by suppressing anxiety and depression. When MA is abused for longer periods, it mimics symptoms of mania and can lead to the development of psychosis. MA is often abused for its anorectic effect, its simple preparation, and compared to heroin and cocaine, its low price. There are significant differences in the susceptibility of users to the stimulant, with reactions to MA fluctuating from person to person. Molecular mechanisms related to the variable response among users might represent an explanation for increased addiction-associated bipolar disorder and psychosis. Currently, there is limited information regarding genetic mechanisms linked to these disorders and the transmission of drug addiction. As such, animal models of drug addiction represent significant sources of information and assets in the research of these issues. The aim of this review is to summarize the mechanism of action of methamphetamine and its effect on pregnant addicted women and their children, including a detailed description of the anatomical structures involved.

Zobrazit více v PubMed

Segal B., Morral A.R., Stevens S.J. Adolescent Substance Abuse Treatment in the United States: Exemplary Models from a National Evaluation Study. Routledge; Abingdon, UK: 2014. DOI

Office of the Government of the Czech Republic . Annual Report on the State of the Drugs Problem for the European Monitoring Center for Drugs and Drug Addiction: Czech Republic. Office of the Government of the Czech Republic; Prague, Czech Republic: 2018.

Staeheli S.N., Veloso V.P., Bovens M., Bissig C., Kraemer T., Poetzsch M. LC-MS/MS Screening Method Using Information-Dependent Acquisition of Enhanced Product Ion Mass Spectra for Synthetic Cannabinoids Including Metabolites in Urine. Drug Test. Anal. 2019 doi: 10.1002/dta.2664. PubMed DOI

NIDA Methamphetamine. [(accessed on 5 November 2019)]; Retrieved. Available online: https://www.drugabuse.gov/drugs-abuse/methamphetamine.

Walsh N. Harm Reduction: Focal Point for Viral Hepatitis. World Health Organization; København, Denmark: 2019. [(accessed on 9 May 2019)]. Available online: https://www.who.int/hepatitis/news-events/03_prevention-preventing-infection.pdf?ua=1.

Vindenes V., Yttredal B., Øiestad E.L., Waal H., Bernard J.P., Mørland J.G., Christophersen A.S. Oral fluid is a viable alternative for monitoring drug abuse: Detection of drugs in oral fluid by liquid chromatography-tandem mass spectrometry and comparison to the results from urine samples from patients treated with methadone or buprenorphine. J. Anal. Toxicol. 2011;35:32–39. doi: 10.1093/anatox/35.1.32. PubMed DOI

Lindsay M.K., Burnett E. The use of narcotics and street drugs during pregnancy. Clin. Obstet. Gynekol. 2013;56:133–141. doi: 10.1097/GRF.0b013e31827fb6ad. PubMed DOI

Sobell L.C., Sobell M.B., Ward E. Evaluating Alcohol and Drug Abuse Treatment Effectiveness: Recent Advances. Pergamon Press; New York, NY, USA: 1980.

Švestka J., Češková E., Náhunek K. Psychofarmaka V Klinické Praxi. Grada Publishing; Prague, Czech Republic: 1995.

Weiss R.D., Potter J.S., Griffin M.L., Provost S.E., Fitzmaurice G.M., McDermott K.A., Carroll K.M. Long-Term outcomes from the national drug abuse treatment clinical trials network prescription opioid addiction treatment study. Drug Alcohol Depend. 2015;150:112–119. doi: 10.1016/j.drugalcdep.2015.02.030. PubMed DOI PMC

McKetin R., Dawe S., Burns R.A., Hides L., Kavanagh D.J., Teesson M., Saunders J.B. The profile of psychiatric symptoms exacerbated by methamphetamine use. Drug Alcohol Depend. 2016;161:104–109. doi: 10.1016/j.drugalcdep.2016.01.018. PubMed DOI

Birbaumer N., Veit R., Lotze M., Erb M., Hermann C., Grodd W., Flor H. Deficient fear conditioning in psychopathy: A functional magnetic resonance imaging study. Arch. Gen. Psychiatry. 2005;62:799–805. doi: 10.1001/archpsyc.62.7.799. PubMed DOI

Hebb D.O. Textbook of Psychology. 3rd ed. W.B. Saunders Company; Philadelphia, PA, USA: 1972.

McCusker J., Bigelow C., Vickers-Lahi M., Spotts D., Garfield F., Frost R. Planned duration of residential drug abuse treatment: Efficasy versus effectiveness. Addiction. 1997;92:1467–1478. doi: 10.1111/j.1360-0443.1997.tb02868.x. PubMed DOI

Štefunková M. Metamfetamin (Pervitin): Situace v eu a Její Globální Kontext. Centrum adiktologie, Psychiatrická klinika 1. LF UK a VFN v Praze; Praha, Czech Republic: 2010.

Zhang Y., Mayer-Blackwell B., Schlussman S.D., Randesi M., Butelman E.R., Ho A., Kreek M.J. Extended access oxycodone self-administration and neurotransmitter receptor gene expression in the dorsal striatum of adult C57BL/6 J mice. Psychopharmacology. 2014;231:1277–1287. doi: 10.1007/s00213-013-3306-3. PubMed DOI PMC

Fumagalli F., Gainetdinov R.R., Valenzano K.J., Caron M.G. Role of dopamine transporter in methamphetamine-induced neurotoxicity: Evidence from mice lacking the transporter. J. Neurosci. 1998;18:4861–4869. doi: 10.1523/JNEUROSCI.18-13-04861.1998. PubMed DOI PMC

Plessinger M.A. Prenatal exposure to amphetamines. Risks and adverse outcomes in pregnancy. Obstet. Gynecol. Clin. N. Am. 1998;25:119–138. doi: 10.1016/S0889-8545(05)70361-2. PubMed DOI

Dubertret C., Gorwood P., Ades J., Feingold J., Schwartz J.C., Sokoloff P. Meta-Analysis of DRD3 gene and schizophrenia: Ethnic heterogeneity and significant association in caucasians. Am. J. Med. Genet. Part A. 1998;81:318–322. doi: 10.1002/(SICI)1096-8628(19980710)81:4<318::AID-AJMG8>3.0.CO;2-P. PubMed DOI

da Silva Santos A.M., Kelly J.P., Doyle K.M. Dose-Dependent effects of binge-like methamphetamine dosing on dopamine and neurotrophin levels in rat brain. Neuropsychobiology. 2017;75:63–71. doi: 10.1159/000480513. PubMed DOI

Camp D.M., Browman K.E., Robinson T.E. The effects of methamphetamine and cocaine on motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 344 rats. Brain Res. 1994;668:180–193. doi: 10.1016/0006-8993(94)90523-1. PubMed DOI

Numachi N., Ohara A., Yamashita M., Fukushima S., Kobayashi K., Hata H., Watanabe H., Hall F.S., Lesch K.P., Murphy D.L., et al. Methamphetamine-Induced hyperthermia and lethal toxicity: Role of the dopamine and serotonin transporters. Eur. J. Pharmacol. 2007;572:120–128. doi: 10.1016/j.ejphar.2007.06.022. PubMed DOI

Šlamberová R. Drug in pregnancy: The Effects on mother and her progeny. Physiol. Res. 2012;61:123–135. PubMed

Cho B.I. Methamphetamine abuse: Epidemiologic issues and implications. NIDA Res. Monogr. 1991;115:99–106. PubMed

Thrash B., Thiruchelvan K., Ahuja M., Suppiramaniam V., Dhanasekaran M. Methamphetamine-Induced neurotoxicity: The road to Parkinson’s disease. Pharmacol. Rep. 2009;61:966–977. doi: 10.1016/S1734-1140(09)70158-6. PubMed DOI

Lampert S.M., Kaye A.D., Urman R.D., Manchikanti L. Substance Abuse. Springer; New York, NY, USA: 2015. Drug testing and adherence monitoring in substance abuse patients; pp. 621–631. DOI

Yui K., Ikemoto S., Goto K., Nishijima K., Yoshino T., Ishiguro T. Spontaneous Recurrence of Methamphetamine-Lnduced Paranoid-Hallucinatory States in Female Subjects: Susceptibility to Psychotic States and Implications for Relapse of Schizophrenia. Pharmacopsychiatry. 2002;35:62–71. doi: 10.1055/s-2002-25067. PubMed DOI

Vavříková B., Binder T., Živný J. Characteristics of a population of drug dependent pregnant women in Czech Republic. Čes. Gynekol. 2001;66:285–291. PubMed

Sipes T.E., Geyer M.A. DOI disruption of prepulse inhibition of startle in the rat is mediated by 5-HT2A and not by 5-HT2C receptors. Behav. Pharnmacol. 1995;6:839–842. doi: 10.1097/00008877-199512000-00010. PubMed DOI

Vavříková B., Binder T., Živný J., Vítková I. Placental and umbilical cord changes in drug-addicted women. Čes. Gynekol. 2001;66:345–349. PubMed

Bauer C.R., Shankaran S., Bada H.S., Lester B., Wright L.L., Krause-Steinrauf H., Smeriglio V.L., Finnegan L.P., Maza P.L., Verter J. The Maternal Lifestyle Study: Drug exposure during pregnancy and short-term maternal outcomes. Am. J. Obstet. Gynecol. 2002;186:487–495. doi: 10.1067/mob.2002.121073. PubMed DOI

Chang L., Alicata D., Ernst T., Volkow N. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addict. Soc. Study Addict. 2007;102:16–32. doi: 10.1111/j.1360-0443.2006.01782.x. PubMed DOI

Anckarsater H. Central nervous changes in social dysfunction: Autism, aggression, and psychopathy. Brain Res. Bull. 2006;69:259–265. doi: 10.1016/j.brainresbull.2006.01.008. PubMed DOI

Ma F., Xie H., Dong Z.Q., Wang Y.Q., Wu G.C. Expression of ORL 1 mRNA in some brain nuclei in neuropathic pain rats. Brain Res. 2005;1043:214–217. doi: 10.1016/j.brainres.2005.01.037. PubMed DOI

Mena J.C., Cuellar H., Vargas D., Riascos R. PET and SPECT in drug and substance abuse. Top. Magn. Reson. Imaging. 2005;16:253–256. doi: 10.1097/01.rmr.0000192177.01789.c0. PubMed DOI

Raine A., Yang Y. The neuroanatomical bases of psychopathy: A review of brain imaging findings. In: Patrick C.J., editor. Handbook of Psychopathy. Guilford; New York, NY, USA: 2004.

Bechara A. The role of emotion in decision making: Evidence from neurological patients with orbitofrontal damage. Brain Cognit. 2004;55:30–40. doi: 10.1016/j.bandc.2003.04.001. PubMed DOI

Amen D.G., Stubblefield M., Carmicheal B., Thisted R. Brain SPECT findings and aggressiveness. Ann. Clin. Psychiatry. 1996;8:129–137. doi: 10.3109/10401239609147750. PubMed DOI

Bayer S.A., Altman J., Russo R.J., Zhang X. Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology. 1993;14:83. PubMed

Rolls E.T., Treves A. Neural Networks and Brain Function. Oxford University Press; Oxford, UK: 1998.

Bullmore E., Sporns O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 2009;10:186. doi: 10.1038/nrn2575. PubMed DOI

Maren S., Phan K.L., Liberzon I. The contextual brain: Implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 2013;14:417–428. doi: 10.1038/nrn3492. PubMed DOI PMC

Li H., Scholl J.L., Tu W., Hassell J.E., Watt M.J., Forster G.L., Renner K.J. Serotonergic responses to stress are enhanced in the central amygdala and inhibited in the ventral hippocampus during amphetamine withdrawal. Eur. J. Neurosci. 2014;40:3684–3692. doi: 10.1111/ejn.12735. PubMed DOI PMC

Krugel L.K., Biele G., Mohr P.N.C., Li S.C., Heekeren H.R. Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc. Natl. Acad. Sci. USA. 2009;106:17951–17956. doi: 10.1073/pnas.0905191106. PubMed DOI PMC

Mansour A., Meador-Woodruff J.H., Bunzow J.R., Civelli O., Akil H., Watson S.J. Localization of dopamine D2 receptor mRNA and D1 and D2 receptor binding in the rat brain and pituitary: An in situ hybridization-receptor autoradiographic analysis. J. Neurosci. 1990;10:2587–2600. doi: 10.1523/JNEUROSCI.10-08-02587.1990. PubMed DOI PMC

Bourque M., Liu B., Dluzen D.E., Di Paolo T. Sex differences in methamphetamine toxicity in mice: Effect on brain dopamine signalling pathways. Psychoneuroendocrinology. 2011;36:955–969. doi: 10.1016/j.psyneuen.2010.12.007. PubMed DOI

Drago J., Padungchaichot P., Accili D., Fuchs S. Dopamine receptors and dopamine transporter in brain function and addictive behaviors: Insights from targeted mouse mutants. Dev. Neurosci. 1998;20:188–203. doi: 10.1159/000017313. PubMed DOI

Hollerman J.R., Schultz W. Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1998;1:304–309. doi: 10.1038/1124. PubMed DOI

Holick K.A., Lee D.C., Hen R., Dulawa S.C. Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology. 2008;33:406–417. doi: 10.1038/sj.npp.1301399. PubMed DOI

Frankle W.G., Lombardo I., New A.S., Goodman M., Talbot P.S., Huang Y., Hwang D., Slifstein M., Curry S., Abi-Dargham A., et al. Brain serotonin transporter distribution in subjects with impulsive aggressivity: A positron emission study with [11C] McN 5652. Am. J. Psychiatry. 2005;162:915–923. doi: 10.1176/appi.ajp.162.5.915. PubMed DOI

Won L., Bubula N., McCoy H., Heller A. Methamphetamine concentrations in fetal and maternal brain following prenatal exposure. Neurotoxicol. Teratol. 2001;23:349–354. doi: 10.1016/S0892-0362(01)00151-9. PubMed DOI

Barrett K.E., Barman S.M., Boitano S., Brooks H.L. Ganong’s Review of Medical Physiology. 23rd ed. McGraw-Hill Medical; New York, NY, USA: 2009.

Guyton A.C., Hall J.E. Textbook of Medical Physiology. 11th ed. Elsevier; Amsterdam, The Netherlands: 2006.

Campbell T.G. The best of a bas bunch: The ventromedial prefrontal cortex and dorsal anterior cingulate cortex in decision-making. J. Neurosci. 2007;27:447–448. doi: 10.1523/JNEUROSCI.4967-06.2007. PubMed DOI PMC

Waberžinek G., Krajíčková D. Základy Speciální Neurologie. Karolinum; Praha, Czech Republic: 2006.

Apergis-Schoute A.M., Gillan C.M., Fineberg N.A., Fernandez-Egea E., Sahakian B.J., Robbins T.W. Neural basis of impaired safety signaling in obsessive compulsive disorder. Proc. Natl. Acad. Sci. USA. 2017;114:3216–3221. doi: 10.1073/pnas.1609194114. PubMed DOI PMC

Gillan C.M., Apergis-Schoute A.M., Morein-Zamir S., Urcelay C.P., Sule A., Fineberg Sahakian B.J., Robbins T.W. Functional neuroimaging of avoidance habits in obsessive-compulsive disorder. Am. J. Psychiatry. 2015;172:284–293. doi: 10.1176/appi.ajp.2014.14040525. PubMed DOI PMC

Blair R.J. Neurocognitive models of aggression, the antisocial personality disorders, and psychopathy. J. Neurol. Neurosurg. Psychiatry. 2001;71:727–731. doi: 10.1136/jnnp.71.6.727. PubMed DOI PMC

Brower M.C., Price B.H. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behavior: A critical review. J. Neurol. Neurosurg. Psychiatry. 2001;71:720–726. doi: 10.1136/jnnp.71.6.720. PubMed DOI PMC

Burgess N., Maguire E.A., O’Keefe J. The human hippocampus and spatial and episodic memory. Neuron. 2002;35:625–641. doi: 10.1016/S0896-6273(02)00830-9. PubMed DOI

Stuchlik A. Dynamic learning and memory, synaptic plasticity and neurogenesis: An update. Front. Behav. Neurosci. 2014;8:106. doi: 10.3389/fnbeh.2014.00106. PubMed DOI PMC

Nakazawa K., Quirk M.C., Chitwood R.A., Watanabe M., Yeckel M.F., Sun L.D., Tonegawa S. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science. 2002;297:211–218. doi: 10.1126/science.1071795. PubMed DOI PMC

Kesner R.P., Gilbert P.E., Barua L.A. The role of the hippocampus in memory for the temporal order of a sequence of odors. Behav. Neurosci. 2002;116:286–290. doi: 10.1037/0735-7044.116.2.286. PubMed DOI

Bannerman D.M., Sprengel R., Sanderson D.J., McHugh S.B., Rawlins J.N.P., Monyer H., Seeburg P.H. Hippocampal synaptic plasticity, spatial memory and anxiety. Nat. Rev. Neurosci. 2014;15:181. doi: 10.1038/nrn3677. PubMed DOI

Simões P.F., Silva A.P., Pereira F.C., Grade S., Milhazes N., Borges F., Ribeiro C.F., Macedo T.R. Methamphetamine induces alternations on hippocampal NMDA and AMPA receptor subunit levels and impairs spatial working memory. Neuroscience. 2007;150:433–434. doi: 10.1016/j.neuroscience.2007.09.044. PubMed DOI

Honey R.C., Good M. Associative modulation of the orienting response: Distinct effects revealed by hippocampal lesions. J. Exp. Psychol. Anim. Behav. Process. 2000;26:3–14. doi: 10.1037/0097-7403.26.1.3. PubMed DOI

Bannerman D.M., Rawlins J.N.P., Good M.A. The drugs don’t work—or do they? Pharmacological and transgenic studies of the contribution of NMDA and GluR-A-containing AMPA receptors to hippocampal-dependent memory. Psychopharmacology. 2006;188:552–566. doi: 10.1007/s00213-006-0403-6. PubMed DOI

McCutcheon J.E., Marinelli M. Age matters. Eur. J. Neurosci. 2009;29:997–1014. doi: 10.1111/j.1460-9568.2009.06648.x. PubMed DOI PMC

Squire L.R. Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans. Psychol. Rev. 1992;99:195. doi: 10.1037/0033-295X.99.2.195. PubMed DOI

Caputi A., Fuchs E.C., Allen K., Le Magueresse C., Monyer H. Selective reduction of AMPA currents onto hippocampal interneurons impairs network oscillatory activity. PLoS ONE. 2012;7:e37318. doi: 10.1371/journal.pone.0037318. PubMed DOI PMC

O’Keefe J., Nadel L. The Hippocampus as a Cognitive Map. Oxford University Press; Oxford, UK: 1978.

Rawlins J.N., Olton D.S. The septo-hippocampal system and cognitive mapping. Behav. Brain Res. 1982;5:331–358. doi: 10.1016/0166-4328(82)90039-0. PubMed DOI

O’Keefe J., Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971;34:171–175. doi: 10.1016/0006-8993(71)90358-1. PubMed DOI

Mariano T.Y., Bannerman D.M., McHugh S.B., Preston T.J., Rudebeck P.H., Rudebeck S.R., Campbell T.G. Impulsive choice in hippocampal but not orbitofrontal cortex-lesioned rats on a nonspatial decision-making maze task. Eur. J. Neurosci. 2009;30:472–484. doi: 10.1111/j.1460-9568.2009.06837.x. PubMed DOI PMC

Pothuizen H.H., Zhang W.N., Jongen-Relo A.L., Feldon J., Yee B.K. Dissociation of function between the dorsal and the ventral hippocampus in spatial learning abilities of the rat: A within-subject, within-task comparison of reference and working spatial memory. Eur. J. Neurosci. 2004;19:705–712. doi: 10.1111/j.0953-816X.2004.03170.x. PubMed DOI

Stuchlik A., Rehakova L., Rambousek L., Svoboda J., Vales K. Manipulation of D2 receptors with quinpirole and sulpiride affects locomotor activity before spatial behavior of rats in an active place avoidance task. Neurosci. Res. 2007;58:133–139. doi: 10.1016/j.neures.2007.02.006. PubMed DOI

Taube J.S., Muller R.U., Ranck J.B. Head-Direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420–435. doi: 10.1523/JNEUROSCI.10-02-00420.1990. PubMed DOI PMC

Stuchlik A., Rezacova L., Vales K., Bubenikova V., Kubik S. Application of a novel Active Allothetic Place Avoidance task (AAPA) in testing a pharmacological model of psychosis in rats: Comparison with the Morris Water Maze. Neurosci. Lett. 2004;366:162–166. doi: 10.1016/j.neulet.2004.05.037. PubMed DOI

Barkus C., McHugh S.B., Sprengel R., Seeburg P.H., Rawlins J.N.P., Bannerman D.M. Hippocampal NMDA receptors and anxiety: At the interface between cognition and emotion. Eur. J. Pharmacol. 2010;626:49–56. doi: 10.1016/j.ejphar.2009.10.014. PubMed DOI PMC

Pentkowski N.S., Blanchard D.C., Lever C., Litvin Y., Blanchard R.J. Effects of lesions to the dorsal and ventral hippocampus on defensive behaviors in rats. Eur. J. Neurosci. 2006;23:2185–2196. doi: 10.1111/j.1460-9568.2006.04754.x. PubMed DOI

Deacon R.M., Bannerman D.M., Rawlins J.N. Anxiolytic effects of cytotoxic hippocampal lesions in rats. Behav. Neurosci. 2002;116:494–497. doi: 10.1037/0735-7044.116.3.494. PubMed DOI

Nicolini H., Cruz C., Camarena B., Orozco B., Kennedy J.L., King N., Sidenberg D. DRD2, DRD3 and 5HT2A receptor genes polymorphisms in obsessive-compulsive disorder. Mol. Psychiatry. 1996;1:461–465. PubMed

Macúchová M., Šlamberová R. Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine. Behav. Brain Res. 2014;270:8–17. doi: 10.1016/j.bbr.2014.04.040. PubMed DOI

Šlamberová R., Charousová P., Pometlová M. Methamphetamine Administration during Gestation Impairs Maternal Behavior. Dev. Psychobiol. J. Int. Soc. Dev. Psychobiol. 2005;46:57–65. doi: 10.1002/dev.20042. PubMed DOI

Behnke M., Smith V.C. Committee on Substance Abuse; Committee on Fetus and Newborn. Prenatal Substance Abuse: Short- and Long-term Effects on the Exposed Fetus. Pediatrics. 2013;131:1009–1024. doi: 10.1542/peds.2012-3931. PubMed DOI PMC

Kuczkowski K.M. The effects of drug abuse on pregnancy. Curr. Opin. Obstet. Gynecol. 2007;19:578–585. doi: 10.1097/GCO.0b013e3282f1bf17. PubMed DOI

Plotka J., Narkowicz S., Polkowska Z., Biziuk M., Namiesnik J. Reviews of Environmental Contamination and Toxicology. Volume 227. Springer; Cham, Switzerland: 2014. Effects of addictive substances during pregnancy and infancy and their analysis in biological materials: Reviews; pp. 55–77. PubMed DOI

Rambousek L., Kacer P., Syslová K., Bumba J., Bubeníková-Valesová V., Šlamberová R. Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend. 2014;139:138–144. doi: 10.1016/j.drugalcdep.2014.03.023. PubMed DOI

Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Arria A., Fallone M. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol. 2008;30:20–28. doi: 10.1016/j.ntt.2007.09.005. PubMed DOI PMC

Dattel B.J. Substance abuse in pregnancy. Semin. Perinatol. 1990;14:179–187. PubMed

Neri M., Bello S., Turillazzi E., Riezzo I. Drugs of abuse in pregnancy, poor neonatal development, and future neurodegeneration. Is oxidative stress the culprit? Curr. Pharmaceutical Design. 2015;21:1358–1368. doi: 10.2174/1381612821666150105124510. PubMed DOI

Wells P.G., Bhatia S., Drake D.M., Miller-Pinsler L. Fetal oxidative stress mechanisms of neurodevelopmental deficits and exacerbation by ethanol and methamphetamine. Birth Defects Res. Part C Embryo Today Rev. 2016;108:108–130. doi: 10.1002/bdrc.21134. PubMed DOI

Cui C., Sakata-Haga H., Ohta K.I., Nishida M., Yashiki M., Sawada K., Fukui Y. Histological brain alterations following prenatal methamphetamine exposure in rats. Congenit. Anomalies. 2006;46:180–187. doi: 10.1111/j.1741-4520.2006.00126.x. PubMed DOI

Golub M., Costa L., Crofton K., Frank D., Fried P., Gladen B., Rowland A. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of amphetamine and methamphetamine. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2005;74:471–584. doi: 10.1002/bdrb.20048. PubMed DOI

Brown J., Hohman M. The impact of methamphetamine use on parenting. J. Soc. Work Pract Addict. 2006;6:63–88. doi: 10.1300/J160v06n01_04. DOI

Ackerman J.P., Llorente A.M., Black M.M., Ackerman C.S., Mayes L.A., Nair P. The effect of prenatal drug exposure and caregiving context on children’s performance on a task of susteined visual attention. J. Dev. Behav. Pediatr. 2008;29:467–474. doi: 10.1097/DBP.0b013e3181903168. PubMed DOI PMC

Šlamberová R., Macúchová E., Nohejlová K., Štofková A., Juroviová J. Effect of amphetamine on adult male and female rats prenatally exposed to methamphetamine. Prague Med. Rep. 2014;115:43–59. doi: 10.14712/23362936.2014.5. PubMed DOI

Šlamberová R., Pometlová M., Charousová P. Postnatal development of rat pups is altered by prenatal mathamphetamine exposure. Prog. Neuro-Psychopharmacol. A Biol. Psychiatr. 2006;30:82–88. doi: 10.1016/j.pnpbp.2005.06.006. PubMed DOI

Šlamberová R., Charousová P., Pometlová M. Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation. Reprod. Toxicol. 2005;20:103–110. doi: 10.1016/j.reprotox.2004.11.010. PubMed DOI

Vrajová M., Schutová B., Klaschka J., Štěpánková H., Řípová D., Šlamberová R. Age-Related differences in NMDA receptor subunits of prenatally MA—Exposed male rats. Neurochem. Res. 2014;39:2040–2046. doi: 10.1007/s11064-014-1381-4. PubMed DOI

Schutová B., Hrubá L., Rokyta R., Šlamberová R. Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev. Psychobiol. 2013;55:232–242. doi: 10.1002/dev.21016. PubMed DOI

Kinsley C.H., Turco D., Bauer A., Beverly M., Wellman J., Graham A.L. Cocaine alters the onset and maintenance of maternal behavior in lactating rats. Pharmacol. Biochem. Behav. 1994;47:857–864. doi: 10.1016/0091-3057(94)90288-7. PubMed DOI

Vassoler F.M., Byrnes E.M., Pierce R.C. The impact of exposure to addictive drugs on future generations: Physiological and behavioral effects. Neuropharmacology. 2014;76:269–275. doi: 10.1016/j.neuropharm.2013.06.016. PubMed DOI PMC

Bagheri J., Rajabzadeh A., Baei F., Jalayeri Z., Ebrahimzadeh-Bideskan A. The effect of maternal exposure to methamphetamine during pregnancy and lactation period on hippocampal neurons apoptosis in rat offspring. Toxin Rev. 2017;36:194–203. doi: 10.1080/15569543.2017.1288141. DOI

Steiner E., Villen T., Hallberg M., Rane A. Amphetamine secretion in breast milk. Eur. J. Clin. Pharmacol. 1984;27:123–124. doi: 10.1007/BF02395219. PubMed DOI

Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Arria A., Liu J. The infant development, environment, and lifestyle study: Effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics. 2006;118:1149–1156. doi: 10.1542/peds.2005-2564. PubMed DOI

Smith L.M., Yonekura M.L., Wallace T., Berman N., Kuo J., Berkowitz C. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J. Dev. Behav. Pediatri. 2003;24:17–23. doi: 10.1097/00004703-200302000-00006. PubMed DOI

Eyler F.D., Behnke M. Early development of infants exposed to drug prenataly. Clin. Perinatol. 1999;26:107–150. doi: 10.1016/S0095-5108(18)30075-7. PubMed DOI

van Baar A.L., Fleury P., Soepatmi S., Ultee C.A., Wesselman P.J.M. Neonatal behaviour after drug dependent pregnancy. Arch. Dis. Child. 1989;64:235–240. doi: 10.1136/adc.64.2.235. PubMed DOI PMC

Little B.B., Snell L.M., Gilstrap L.C. Methamphetamine abuse during pregnancy: Outcome and fetal effects. Obstetri. Gynecol. 1988;72:541–544. PubMed

Eze N., Smith L.M., LaGasse L.L., Derauf C., Newman E., Arria A., Lester B.M. School-Aged outcomes following prenatal methamphetamine exposure: 7.5-year follow-up from the infant development, environment, and lifestyle study. J. Pediatri. 2016;170:34–38. doi: 10.1016/j.jpeds.2015.11.070. PubMed DOI PMC

Nguyen D., Smith L.M., LaGasse L.L., Derauf C., Grant P., Shah R., Della Grotta S. Intrauterine growth of infants exposed to prenatal methamphetamine: Results from the infant development, environment, and lifestyle study. J. Pediatri. 2010;157:337–339. doi: 10.1016/j.jpeds.2010.04.024. PubMed DOI PMC

Shah R., Diaz S.D., Arria A. Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes. Am. J. Perinatol. 2012;29:391–400. doi: 10.1055/s-0032-1304818. PubMed DOI PMC

Šlamberová R. Review of Long-Term Consequences of Maternal Methamphetamine Exposure. Physiol. Res. 2019;68:S219–S231. doi: 10.33549/physiolres.934360. PubMed DOI

Behnke M., Eyler F.D. The Consequences of Prenatal Substance Use for the Developing Fetus, Newborn, and Young Child. Int. J. Addict. 1993;28:1341–1391. doi: 10.3109/10826089309062191. PubMed DOI

Derauf C., LaGasse L., Smith L., Newman E., Shah R., Arria A., Dansereau L. Infant temperament and high risk environment relate to behavior problems and language in toddlers. J. Dev. Behav. Pediatri. JDBP. 2011;32:125. doi: 10.1097/DBP.0b013e31820839d7. PubMed DOI PMC

Covington S.S. Women and addiction: A trauma-informed approach. J. Psychoact. Drugs. 2008;40:377–385. doi: 10.1080/02791072.2008.10400665. PubMed DOI

Kiblawi Z.N., Smith L.M., LaGasse L.L., Diaz S.D., Derauf C., Newman E., Strauss A. Prenatal methamphetamine exposureand neonatal and infant neurobehavioral outcome: Results from the IDEAL study. Subst. Abus. 2014;35:68–73. doi: 10.1080/08897077.2013.814614. PubMed DOI PMC

Chakraborty A., Anstice N.S., Jacobs R.J., LaGasse L.L., Lester B.M., Wouldes T.A., Thompson B. Prenatal exposure to recreational drugs affects global motion perception in preschool children. Sci. Rep. 2015;5:16921. doi: 10.1038/srep16921. PubMed DOI PMC

Zabaneh R., Smith L.M., LaGasse L.L., Derauf C., Newman E., Shah R., Della Grotta S. The effects of prenatal methamphetamine exposure on childhood growth patterns from birth to 3 years of age. Am. J. Perinatol. 2012;29:203–210. doi: 10.1055/s-0031-1285094. PubMed DOI PMC

Cernerud L., Eriksson M., Jonsson B., Steneroth G., Zetterstrom R. Amphetamine addiction during pregnancy: 14-year follow-up of growth and school performance. Acta Paediatr. 1996;85:204–208. doi: 10.1111/j.1651-2227.1996.tb13993.x. PubMed DOI

Smith L.M., Santos L.C. Prenatal exposure: The effects of prenatal cocaine and methamphetamine exposure on the developing child. Birth Defects Res. Part C Embryo Today Rev. 2016;108:142–146. doi: 10.1002/bdrc.21131. PubMed DOI

Jablonski S.A., Williams M.T., Vorhees C.V. Neurotoxin Modeling of Brain Disorders—Life-Long Outcomes in Behavioral Teratology. Springer; Cham, Switzerland: 2015. Neurobehavioral effects from developmental methamphetamine exposure; pp. 183–230. PubMed DOI

Chang L., Smith L.M., LoPresti C., Yonekura M.L., Kuo J., Walot I., Ernst T. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphet-amine exposure. Psychiatry Res. Neuroimaging. 2004;132:95–106. doi: 10.1016/j.pscychresns.2004.06.004. PubMed DOI

Williams J.H., Ross L. Consequences of prenatal toxin exposure for mental health in children and adolescents. Eur. Child Adolesc. Psychiatry. 2007;16:243–253. doi: 10.1007/s00787-006-0596-6. PubMed DOI

Smith A.M., Chen A. Neonatal amphetamine exposure and hippocampus-mediated behaviors. Neurobiol. Learn. Mem. 2009;91:207–217. doi: 10.1016/j.nlm.2008.12.005. PubMed DOI PMC

Jablonski S.A., Williams M.T., Vorhees C.V. Mechanisms involved in the neurotoxic and cognitive effects of developmental methamphetamine exposure. Birth Defects Res. Part C Embryo Today Rev. 2016;108:131–141. doi: 10.1002/bdrc.21130. PubMed DOI

Billing L., Eriksson M., Jonsson B., Steneroth G., Zetterström R. The influence of environmental factors on behavioural problems in 8-year-old children exposed to amphetamine during fetal life. Child Abus. Negl. 1994;18:3–9. doi: 10.1016/0145-2134(94)90091-4. PubMed DOI

Kiblawi Z.N., Smith L.M., LaGasse L.L., Diaz S.D., Newman E., Shah R., Neal C. The effect of prenatal methamphetamine exposure on attention as assessed by continuous performance tests: Results from the infant development, environment, and lifestyle (IDEAL) study. J. Dev. Behav. Pediatr. JDBP. 2013;34:31. doi: 10.1097/DBP.0b013e318277a1c5. PubMed DOI PMC

Abar B., LaGasse L.L., Derauf C., Newman E., Shah R., Smith L.M., Arria A., Huestis M., Della G.S., Dansereau L.M., et al. Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychol. Addict. Behav. 2013;27:662. doi: 10.1037/a0030157. PubMed DOI PMC

Spurlock G., Williams J., McGuffin P., Aschauer H.N., Lenzinger E., Fuchs K., Mallet J. European Multicentre Association Study of Schizophrenia: A study of the DRD2 Ser311Cys and DRD3 Ser9Gly polymorphisms. Am. J. Med. Genet. 1998;81:24–28. doi: 10.1002/(SICI)1096-8628(19980207)81:1<24::AID-AJMG5>3.0.CO;2-N. PubMed DOI

Raine A., Yang Y. Neural foundations to moral reasoning and antisocial behavior. Soc. Cognit. Affect. Neurosci. 2006;1:203–213. doi: 10.1093/scan/nsl033. PubMed DOI PMC

Holmes S.E., Slaughter J.R., Kashani J. Risk factors in childhood that lead to the development of conduct disorder and antisocial personality disorder. Child Psychiatry Human Dev. 2001;31:183–193. doi: 10.1023/A:1026425304480. PubMed DOI

Raine A., Lencz T., Bihrle S., LaCasse L., Colletti P. Reduced prefrontal gray matter volume and reduced autonomic activity in antisocial personality disorder. Arch. Gen. Psychiatry. 2000;57:119–127. doi: 10.1001/archpsyc.57.2.119. PubMed DOI

Leech S.L., Richardson G.A., Goldschmidt L., Day N.L. Prenatal substance exposure: Effects on attention and impulsivity of 6-year-olds. Neurotoxicol. Teratol. 1999;21:109–118. doi: 10.1016/S0892-0362(98)00042-7. PubMed DOI

Davidson R.J., Putnam K.M., Larson C.L. Dysfunction in the neural circuitry of emotion regulation—A possible prelude to violence. Science. 2000;289:591–594. doi: 10.1126/science.289.5479.591. PubMed DOI

Irner T.B. Substance exposure in utero and developmental consequences in adolescence: A systematic review. Child Neuropsychol. 2012;18:521–549. doi: 10.1080/09297049.2011.628309. PubMed DOI

Shilling P.D., Kuczenski R., Segal D.S., Barrett T.B., Kelsoe J.R. Differential regulation of immediate-early gene expression in the prefrontal cortex of rat with a high vs. low behavioral response to methamphetamine. Neuropsychopharm. 2006;31:2359–2367. doi: 10.1038/sj.npp.1301162. PubMed DOI

Fujáková-Lipski M., Kaping D., Sirová J., Šlamberová R. Transgenerational neurobiochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol. 2017;91:3373–3384. doi: 10.1007/s00204-017-1969-y. PubMed DOI

Šlamberová R., Pometlová M., Rokyta R. Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol. 2007;49:312–322. doi: 10.1002/dev.20203. PubMed DOI

Westerga J., Gramsbergen A. The development of locomotion in the rat. Dev. Brain Res. 1990;57:163–174. doi: 10.1016/0165-3806(90)90042-W. PubMed DOI

Altman J., Sudarshan K. Postnatal development of locomotion in the laboratory rat. Anim. Behav. 1975;23:896–920. doi: 10.1016/0003-3472(75)90114-1. PubMed DOI

Vinay L., Ben-Mabrouk F., Brocard F., Clarac F., Jean-Xavier C., Pearlstein E., Pflieger J.F. Perinatal development of the motor systems involved in postural control. Neural Plast. 2005;12:131–139. doi: 10.1155/NP.2005.131. PubMed DOI PMC

Sengupta P. The laboratory rat: Relating its age with human’s. Int. J. Prev. Med. 2013;4:624. PubMed PMC

Petríková I., Šlamberová R. Critical neurodevelopmental periods for the effect of methamphetamine. Cesk. Fysiol. 2018;67:1–9.

Rice D., Baron S. Critical periods of vulnerability for the developing nervous systém: Evidence from humans and animal models. Environ. Healt Perspect. 2000;108:511–533. doi: 10.1289/ehp.00108s3511. PubMed DOI PMC

Křeček J. Effect of ovarectomy of females and oestrogen administration to males during the neonatal critical period on salt intake in adulthood in rats. Physiol. Bohemoslov. 1978;27:1–5. PubMed

Křeček J. The theory of critical developmental periods and postnatal development of endocrine functions. Biopsychol. Dev. 1971:233–248.

Spear N.E., Miller R.R., editors. Information Processing in Animals: Memory Mechanisms. Psychology Press; New Brunswick, NJ, USA: 2014. pp. 5–47.

Wiltgen B.J., Royle G.A., Gray E.E., Abdipranoto A., Thangthaeng N., Jacobs N., Fanselow M.S. A role for calcium-permeable AMPA receptors in synaptic plasticity and learning. PLoS ONE. 2010;5:e12818. doi: 10.1371/journal.pone.0012818. PubMed DOI PMC

Wells P.G., McCallum G.P., Chen C.S., Henderson J.T., Lee C.J., Perstin J., Wong A.W. Oxidative stress in developmental origins of disease: Teratogenesis, neurodevelopmental deficits, and cancer. Toxicol. Sci. 2009;108:4–18. doi: 10.1093/toxsci/kfn263. PubMed DOI

Silva A.J. Molecular and cellular cognitive studies of the role of synaptic plasticity in memory. J. Neurobiol. 2003;54:224–237. doi: 10.1002/neu.10169. PubMed DOI

Quinton M.S., Yamamoto B.K. Causes and consequences of methamphetamine and MDMA toxicity. AAPS J. 2006;8:337. doi: 10.1007/BF02854904. PubMed DOI PMC

Pometlová M., Hrubá L., Slamberová R., Rokyta R. Cross-Fostering effect on postnatal development of rat pups exposed to methamphetamine during gestation and preweaning periods. Int. J. Dev. Neurosci. 2009;27:149–155. doi: 10.1016/j.ijdevneu.2008.11.006. PubMed DOI

Acuff-Smith K.D., Schilling M.A., Fisher J.E., Vorhees C.V. Stage-Specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol. Teratol. 1996;18:199–215. doi: 10.1016/0892-0362(95)02015-2. PubMed DOI

Martin J.C., Ellinwood E.H. Conditioned aversion in spatial paradigms following methamphetamine injection. Psychopharmacology. 1974;36:323–335. doi: 10.1007/BF00422564. PubMed DOI

Šlamberová R., Vrajová M., Schutová B., Mertlová M., Macúchová E., Nohejlová K., Hrubá L., Puskarčíková J., Bubeníková-Valešová V., Yamamotová A. Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol. Res. 2014;63 PubMed

Yamamotová A., Šlamberová R. Behavioral and antinoticeptive effects of different psychostimulant drugs in parentally methamphetamine-exposed rats. Physiol. Res. 2012;61:139–147. PubMed

Fowler J.S., Volkow N.D., Logan J. Fast uptake and long-lasting binding of methamphetamine in the human brain: Comparison with cocaine. NeuroImage. 2008;43:756–763. doi: 10.1016/j.neuroimage.2008.07.020. PubMed DOI PMC

Volkow N.D., Fowler J.S., Wang G.J. Distribution and pharmacokinetics of methamphetamine in the human body: Clinical implications. PLoS ONE. 2010;5:e15269. doi: 10.1371/journal.pone.0015269. PubMed DOI PMC

Girault J., Valjent E., Caboche J., Herve D. ERK2: A logical AND gate critical for drug-induced plasticity? Curr. Opin. Pharmacol. 2007;7:77–85. doi: 10.1016/j.coph.2006.08.012. PubMed DOI

Curley J.P., Champagne F.A., Bateson P., Keverne E.B. Transgenerational effects of impaired maternal care on behaviour of offspring and grandoffspring. Anim. Behav. 2008;75:1551–1561. doi: 10.1016/j.anbehav.2007.10.008. DOI

Caldji C., Diorio J., Anisman H., Meaney M.J. Maternal behavior regulates benzodiazepine/GABAA receptor subunit expression in brain regions associated with fear in BALB/c and C57BL/6 mice. Neuropsychopharmacology. 2004;29:1344–1352. doi: 10.1038/sj.npp.1300436. PubMed DOI

Homer B.D., Solomon T.M., Moeller R.W., Mascia A., DeRaleau L., Halkitis P.N. Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and behavioural implications. Psychol. Bull. 2008;134:301–310. doi: 10.1037/0033-2909.134.2.301. PubMed DOI

Champagne F., Diorio J., Sharma S., Meaney M.J. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc. Natl. Acad. Sci. USA. 2001;98:12736–12741. doi: 10.1073/pnas.221224598. PubMed DOI PMC

Benoit D., Parker K.C. Stability and transmission of attachment across three generations. Child Dev. 1994;65:1444–1456. doi: 10.2307/1131510. PubMed DOI

Itzhak Y., Ergui I., Young J.I. Long-term parental methamphetamine exposure of mice influences behavior and hippocampal DNA methylation of the offspring. Mol. Psychiatry. 2015;20:232–239. doi: 10.1038/mp.2014.7. PubMed DOI

Lester B.M., LaGasse L.L. Children of addicted women. J. Addict Dis. 2010;29:259–276. doi: 10.1080/10550881003684921. PubMed DOI PMC

Ary T.E., Komiskey H.L. Basis of phencyclidine’s ability to decrease the synaptosomal accumulation of 3Hcatecholamines. Eur. J. Pharmacol. 1980;61:401–405. doi: 10.1016/0014-2999(80)90082-5. PubMed DOI

Biagioni F., Ferese R., Limanaqi F., Madonna M., Lenzi P., Gambardella S., Fornai F. Methamphetamine persistently increases alpha-synuclein and suppresses gene promoter methylation within striatal neurons. Brain Res. 2019;1719:157–175. doi: 10.1016/j.brainres.2019.05.035. PubMed DOI

Nohesara S., Ghadirivasfi M., Barati M. Methamphetamine-induced psychosis is associated with DNA hypomethylation and increased expression of AKT1 and key dopaminergic genes. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2016;171:1180–1189. doi: 10.1002/ajmg.b.32506. PubMed DOI PMC

Šagud M., Mück-Seler D., Mihaljević-Peles A. Catechol-O-methyl transferase and schizophrenia. Psychiatr. Danub. 2010;22:270–274. PubMed

Pregelj P. Neurobiological aspects of psychosis and gender. Psychiatr. Danub. 2010;21:128–131. PubMed

Fraga M.F., Esteller M. Epigenetics and ageing: The targets and the marks. Trends Genet. 2007;23:413–418. doi: 10.1016/j.tig.2007.05.008. PubMed DOI

Krasnova I.N., Chiflikyan M., Justinova Z., McCoy M.T., Ladenheim B., Jayanthi S. CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis. 2013;58:132–1343. doi: 10.1016/j.nbd.2013.05.009. PubMed DOI PMC

Renthal W., Maze I., Krishnan V., Covington H.E., 3rd, Xiao G., Kumar A. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron. 2007;56:517–529. doi: 10.1016/j.neuron.2007.09.032. PubMed DOI

Tan Y.Y., Wu L., Zhao Z.B., Wang Y., Xiao Q., Liu J., Wang G., Ma J.F., Chen S.D. Methylation of alpha-synuclein and leucine-rich repeat kinase 2 in leukocyte DNA of Parkinson’s disease patients. Park. Relat. Disord. 2014;20:308–313. doi: 10.1016/j.parkreldis.2013.12.002. PubMed DOI

Desplats P., Spencer B., Coffee E., Patel P., Michael S., Patrick C., Adame A., Rockenstein E., Masliah E. Alpha-Synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 2011;286:9031–9037. doi: 10.1074/jbc.C110.212589. PubMed DOI PMC

Jiang W., Li J., Zhang Z., Wang H., Wang Z. Epigenetic upregulation of alpha-synuclein in the rats exposed to methamphetamine. Eur. J. Pharmacol. 2014;745:243–248. doi: 10.1016/j.ejphar.2014.10.043. PubMed DOI

Mark K.A., Soghomonian J.J., Yamamoto B.K. Highdose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate longterm dopamine toxicity. J. Neurosci. 2004;24:11449–11456. doi: 10.1523/JNEUROSCI.3597-04.2004. PubMed DOI PMC

Marshall J.F., O’Dell S.J., Weihmuller F.B. Dopamineglutamate interactions in methamphetamine-induced neurotoxicity. J. Neural Transm. 1993;91:241–254. doi: 10.1007/BF01245234. PubMed DOI

Jayanthi S., McCoy M.T., Chen B., Britt J.P., Kourrich S., Yau H.J., Cadet J.L. Methamphetamine downregulates striatal glutamate receptors via diverse epigenetic mechanisms. Biol. Psychiatry. 2014;76:47–56. doi: 10.1016/j.biopsych.2013.09.034. PubMed DOI PMC

Cadet J.L., Ali S., Epstein C. Involvement of oxygenbased radicals in methamphetamine-induced neurotoxicity: Evidence from the use of CuZnSOD transgenic micea. Ann. N. Y. Acad. Sci. 1994;738:388–391. doi: 10.1111/j.1749-6632.1994.tb21827.x. PubMed DOI

Hřebíčková I., Ševčíková M., Macúchová E., Šlamberová R. How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats? Physiol. Behav. 2017;179:391–400. doi: 10.1016/j.physbeh.2017.07.009. PubMed DOI

Hřebíčková I., Malinová-Ševčíková M., Macúchová E., Nohejlová K., Šlamberová R. Exposure to methamphetamine during first and second half of prenatal period and its consequences on cognition after long-term application in adulthood. Physiol. Res. 2014;63 PubMed

Ševčíková M., Hrebíčková I., Macúchová E., Šlamberová R. The influence of methamphetamine on maternal behavior and development of the pups during the neonatal period. Int. J. Dev. Neurosci. 2017;59:37–46. doi: 10.1016/j.ijdevneu.2017.03.005. PubMed DOI

Šlamberová R., Mikulecká A., Pometlová M., Schutová B., Hrubá L., Deykun K. Sex differences in social interaction of methamphetamine-treated rats. Behav. Pharmacol. 2011;22:617–623. doi: 10.1097/FBP.0b013e32834afea4. PubMed DOI

Holubová A., Ševčíková M., Macúchová E., Hrebíčková I., Pometlová M., Šlamberová R. Effects of perinatal stress and drug abuse on maternal behavior and sensorimotor development of affected progeny. Physiol. Res. 2017;66 doi: 10.33549/physiolres.933800. PubMed DOI

Matějovská I., Bernášková K., Šlamberová R. Effect of prenatal methamphetamine exposure and challenge dose of the same drug in adulthood on epileptiform activity induced by electrical stimulation in female rats. Neuroscience. 2014;257:130–138. doi: 10.1016/j.neuroscience.2013.10.069. PubMed DOI

Kitamura O., Wee S., Specio S.E., Koob G.F., Pulvirenti L. Escalation of methamphetamine self-administration in rats: A dose–effect function. Psychopharmacology. 2006;186:48–53. doi: 10.1007/s00213-006-0353-z. PubMed DOI

Harrod S.B., Dwoskin L.P., Crooks P.A., Klebaur J.E., Bardo M.T. Lobeline attenuates d-methamphetamine self-administration in rats. J. Pharmacol. Exp. Ther. 2001;298:172–179. PubMed

van Thriel C., Westerink R.H.S., Beste C., Bale A.S., Lein P.J., Leist M. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts. Neurotoxicology. 2012;33:911–924. doi: 10.1016/j.neuro.2011.10.002. PubMed DOI PMC

van Thriel C., Quetscher C., Pesch B., Lotz A., Lehnert M., Casjens S., Beste C. Are multitasking abilities impaired in welders exposed to manganese? Translating cognitive neuroscience to neurotoxicology. Arch. Toxicol. 2017;91:2865–2877. doi: 10.1007/s00204-017-1932-y. PubMed DOI

Diamond A. Executive functions. Ann. Rev. Psychol. 2013;64:135–168. doi: 10.1146/annurev-psych-113011-143750. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Methamphetamine, neurotransmitters and neurodevelopment

. 2021 Dec 31 ; 70 (S3) : S301-S315.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...