Methamphetamine, neurotransmitters and neurodevelopment

. 2021 Dec 31 ; 70 (S3) : S301-S315.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35099249

Methamphetamine (MA), as massively abused psychoactive stimulant, has been associated with many neurological diseases. It has various potent and neurotoxic properties. There are many mechanisms of action that contribute to its neurotoxic and degenerative effects, including excessive neurotransmitter (NEU) release, blockage of NEU uptake transporters, degeneration of NEU receptors, process of oxidative stress etc. MA intoxication is caused by blood-brain barrier disruption resulted from MA-induced oxidation stress. In our laboratory we constantly work on animal research of MA. Our current interest is to investigate processes of MA-induced alteration in neurotransmission, especially during development of laboratory rat. This review will describe current understanding in role of NEUs, which are affected by MA-induced neurotoxicity caused by altering the action of NEUs in the central nervous system (CNS). It also briefly brings information about NEUs development in critical periods of development.

Zobrazit více v PubMed

AGGARWAL S, MORTENSEN OV. Overview of monoamine transporters. Curr Protoc Pharmacol. 2017;79:12.16.1–12.16.17. doi: 10.1002/cpph.32. PubMed DOI PMC

ALBERS DS, SONSALLA PK. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther. 1995;275:1104–1114. PubMed

ALI SF, KORDSMEIER KJ, GOUGH B. Drug-induced circling preference in rats. Correlation with monoamine levels. Mol Neurobiol. 1995;11:145–154. doi: 10.1007/BF02740691. PubMed DOI

ALONSO V, FRIEDMAN PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol. 2013;27:558–572. doi: 10.1210/me.2012-1404. PubMed DOI PMC

ANGLIN MD, BURKE C, PERROCHET B, STAMPER E, DAWUD-NOURSI S. History of the methamphetamine problem. J Psychoactive Drugs. 2000;32:137–141. doi: 10.1080/02791072.2000.10400221. PubMed DOI

BAR-PELED O, GROSS-ISSEROFF R, BEN-HUR H, HOSKINS I, GRONER Y, BIEGON A. Fetal human brain exhibits a prenatal peak in the density of serotonin 5-HT1A receptors. Neurosci Lett. 1991;127:173–176. doi: 10.1016/0304-3940(91)90787-T. PubMed DOI

BENNETT EJ, SHALER TA, WOODMAN B, RYU KY, ZAITSEVA TS, BECKER CH, BATES GP, SCHULMAN H, KOPITO RR. Global changes to the ubiquitin system in Huntington’s disease. Nature. 2007;448:704–708. doi: 10.1038/nature06022. PubMed DOI

BOUTREL B, FRANC B, HEN R, HAMON M, ADRIEN J. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci. 1999;19:3204–3212. doi: 10.1523/JNEUROSCI.19-08-03204.1999. PubMed DOI PMC

BOYSON SJ, ADAMS CE. D1 and D2 dopamine receptors in perinatal and adult basal ganglia. Pediatr Res. 1997;41:822–831. doi: 10.1203/00006450-199706000-00006. PubMed DOI

BREEN MS, UHLMANN A, NDAY CM, GLATT SJ, MITT M, METSALPU A, STEIN DJ, ILLING N. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Transl Psychiatry. 2016;6:e802. doi: 10.1038/tp.2016.67. PubMed DOI PMC

CALIPARI ES, BAGOT RC, PURUSHOTHAMAN I, DAVIDSON TJ, YORGASON JT, PENA CJ, WALKER DM, PIRPINIAS ST, GUISE KG, RAMAKRISHNAN C, DEISSEROTH K, NESTLER EJ. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A. 2016;113:2726–2731. doi: 10.1073/pnas.1521238113. PubMed DOI PMC

CALIPARI ES, JUAREZ B, MOREL C, WALKER DM, CAHILL ME, RIBEIRO E, ROMAN-ORTIZ C, RAMAKRISHNAN C, DEISSEROTH K, HAN MH, NESTLER EJ. Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun. 2017;8:13877. doi: 10.1038/ncomms13877. PubMed DOI PMC

CHEBIB M, JOHNSTON GA. The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol. 1999;26:937–940. doi: 10.1046/j.1440-1681.1999.03151.x. PubMed DOI

CHEBIB M, JOHNSTON GA. GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem. 2000;43:1427–1447. doi: 10.1021/jm9904349. PubMed DOI

CHEBIB M, MEWETT KN, JOHNSTON GA. GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1998;357:227–234. doi: 10.1016/S0014-2999(98)00552-4. PubMed DOI

CHIU VM, SCHENK JO. Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system. Curr Drug Abuse Rev. 2012;5:227–242. doi: 10.2174/1874473711205030227. PubMed DOI

CHUGANI DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry. 2002;7(Suppl 2):S16–S17. doi: 10.1038/sj.mp.4001167. PubMed DOI

DARWIN KH. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol. 2009;7:485–491. doi: 10.1038/nrmicro2148. PubMed DOI PMC

DIAMOND A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond B Biol Sci. 1996;351:1483–1493. doi: 10.1098/rstb.1996.0134. discussion 1494. PubMed DOI

DIAMOND A, BRIAND L, FOSSELLA J, GEHLBACH L. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatry. 2004;161:125–132. doi: 10.1176/appi.ajp.161.1.125. PubMed DOI

DINOPOULOS A, PARNAVELAS JG. The development of ventral tegmental area (VTA) projections to the visual cortex of the rat. Neurosci Lett. 1991;134:12–16. doi: 10.1016/0304-3940(91)90497-H. PubMed DOI

FERRUCCI M, LIMANAQI F, RYSKALIN L, BIAGIONI F, BUSCETI CL, FORNAI F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front Neuroanat. 2019;13:48. doi: 10.3389/fnana.2019.00048. PubMed DOI PMC

FLECKENSTEIN AE, VOLZ TJ, HANSON GR. Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology. 2009;56(Suppl 1):133–138. doi: 10.1016/j.neuropharm.2008.07.002. PubMed DOI PMC

FORNAI F, GIORGI FS, ALESSANDRI MG, GIUSIANI M, CORSINI GU. Effects of pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on methamphetamine pharmacokinetics and striatal dopamine losses. J Neurochem. 1999;72:777–784. doi: 10.1046/j.1471-4159.1999.0720777.x. PubMed DOI

FRANKLE WG, LOMBARDO I, NEW AS, GOODMAN M, TALBOT PS, HUANG Y, HWANG D-R, SLIFSTEIN M, CURRY S, ABI-DARGHAM A, LARUELLE M, SIEVER LJ. Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry. 2005;162:915–923. doi: 10.1176/appi.ajp.162.5.915. PubMed DOI

FUMAGALLI F, GAINETDINOV RR, VALENZANO KJ, CARON MG. Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci. 1998;18:4861–4869. doi: 10.1523/JNEUROSCI.18-13-04861.1998. PubMed DOI PMC

GASPAR P, CASES O, MAROTEAUX L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4:1002–1012. doi: 10.1038/nrn1256. PubMed DOI

GOLDSTEIN DS. Catecholamines in the periphery. Overview. Adv Pharmacol. 1998;42:529–539. doi: 10.1016/S1054-3589(08)60806-6. PubMed DOI

GRELLA CE, ANGLIN MD. Introduction to the special issue on addiction health services: in memory of Douglas Longshore. J Behav Health Serv Res. 2009;36:131–136. doi: 10.1007/s11414-008-9157-8. PubMed DOI

GUPTA S, KULHARA P. Cellular and molecular mechanisms of drug dependence: An overview and update. Indian J Psychiatry. 2007;49:85–90. doi: 10.4103/0019-5545.33253. PubMed DOI PMC

HAPPE HK, COULTER CL, GERETY ME, SANDERS JD, O’ROURKE M, BYLUND DB, MURRIN LC. Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience. 2004;123:167–178. doi: 10.1016/j.neuroscience.2003.09.004. PubMed DOI

HART CL, MARVIN CB, SILVER R, SMITH EE. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology. 2012;37:586–608. doi: 10.1038/npp.2011.276. PubMed DOI PMC

HEDGES DJ, HAMILTON-NELSON KL, SACHAROW SJ, NATIONS L, BEECHAM GW, KOZHEKBAEVA ZM, BUTLER BL, CUKIER HN, WHITEHEAD PL, MA D, JAWORSKI JM, NATHANSON L, LEE JM, HAUSER SL, OKSENBERG JR, CUCCARO ML, HAINES JL, GILBERT JR, PERICAK-VANCE MA. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. Mol Autism. 2012;3:2. doi: 10.1186/2040-2392-3-2. PubMed DOI PMC

HEDGES DM, OBRAY JD, YORGASON JT, JANG EY, WEERASEKARA VK, UYS JD, BELLINGER FP, STEFFENSEN SC. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology. 2018;43:1405–1414. doi: 10.1038/npp.2017.291. PubMed DOI PMC

HEIKKILA RE, YOUNGSTER SK, PANEK DU, GIOVANNI A, SONSALLA PK. Studies with the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and several of its analogs. Toxicology. 1988;49:493–501. doi: 10.1016/0300-483X(88)90035-2. PubMed DOI

HERLENIUS E, LAGERCRANTZ H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev. 2001;65:21–37. doi: 10.1016/S0378-3782(01)00189-X. PubMed DOI

HERLENIUS E, LAGERCRANTZ H. Development of neurotransmitter systems during critical periods. Exp Neurol. 2004;190(Suppl 1):S8–S21. doi: 10.1016/j.expneurol.2004.03.027. PubMed DOI

HOYER D, HANNON JP, MARTIN GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533–554. doi: 10.1016/S0091-3057(01)00746-8. PubMed DOI

HSIEH JH, STEIN DJ, HOWELLS FM. The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci. 2014;8:537. doi: 10.3389/fnhum.2014.00537. PubMed DOI PMC

HUANG MC, LIN SK, CHEN CH, PAN CH, LEE CH, LIU HC. Oxidative stress status in recently abstinent methamphetamine abusers. Psychiatry Clin Neurosci. 2013;67:92–100. doi: 10.1111/pcn.12025. PubMed DOI

HUMBARD MA, MAUPIN-FURLOW JA. Prokaryotic proteasomes: nanocompartments of degradation. J Mol Microbiol Biotechnol. 2013;23:321–334. doi: 10.1159/000351348. PubMed DOI PMC

IMAM SZ, EL-YAZAL J, NEWPORT GD, ITZHAK Y, CADET JL, SLIKKER W, JR, ALI SF. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci. 2001;939:366–380. doi: 10.1111/j.1749-6632.2001.tb03646.x. PubMed DOI

JANG EY, YANG CH, HEDGES DM, KIM SP, LEE JY, EKINS TG, GARCIA BT, KIM HY, NELSON AC, KIM NJ, STEFFENSEN SC. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens. Addict Biol. 2017;22:1304–1315. doi: 10.1111/adb.12419. PubMed DOI PMC

KELLEY AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44:161–179. doi: 10.1016/j.neuron.2004.09.016. PubMed DOI

KOOB GF, Le MOAL M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129. doi: 10.1016/S0893-133X(00)00195-0. PubMed DOI

KUCZENSKI R, SEGAL DS, CHO AK, MELEGA W. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci. 1995;15:1308–1317. doi: 10.1523/JNEUROSCI.15-02-01308.1995. PubMed DOI PMC

LAGALI PS, CORCORAN CP, PICKETTS DJ. Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet. 2010;78:321–333. doi: 10.1111/j.1399-0004.2010.01503.x. PubMed DOI

LIMANAQI F, GAMBARDELLA S, BIAGIONI F, BUSCETI CL, FORNAI F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid Med Cell Longev. 2018;2018:4982453. doi: 10.1155/2018/4982453. PubMed DOI PMC

MACUCHOVA E, SLAMBEROVA R. Drug sensitization induced by prenatal methamphetamine exposure. (Article in English, Czech) Cesk Fysiol. 2016;65:32–37. PubMed

MARK KA, SOGHOMONIAN JJ, YAMAMOTO BK. High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci. 2004;24:11449–11456. doi: 10.1523/JNEUROSCI.3597-04.2004. PubMed DOI PMC

MELDRUM BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007S–1015S. doi: 10.1093/jn/130.4.1007S. PubMed DOI

MEYERS SA, RAFFUL C, MITTAL ML, SMITH LR, TIRADO-MUNOZ J, JAIN S, SUN X, GARFEIN RS, STRATHDEE SA, DEBECK K, HAYASHI K, McNEIL R, MILLOY MJ, OLDING M, GUISE A, WERB D, SCHEIM AI. Examining the gender composition of drug injecting initiation events: A mixed methods investigation of three North American contexts. Int J Drug Policy. 2021;90:103056. doi: 10.1016/j.drugpo.2020.103056. PubMed DOI PMC

NAQUI SZ, HARRIS BS, THOMAIDOU D, PARNAVELAS JG. The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res Dev Brain Res. 1999;113:75–82. doi: 10.1016/S0165-3806(99)00003-6. PubMed DOI

NORDAHL TE, SALO R, LEAMON M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J Neuropsychiatry Clin Neurosci. 2003;15:317–325. doi: 10.1176/jnp.15.3.317. PubMed DOI

OLSON L, SEIGER A. Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch. 1972;137:301–316. doi: 10.1007/BF00519099. PubMed DOI

PENDLETON RG, RASHEED A, ROYCHOWDHURY R, HILLMAN R. A new role for catecholamines: ontogenesis. Trends Pharmacol Sci. 1998;19:248–251. doi: 10.1016/s0165-6147(98)01218-8. PubMed DOI

PEREIRA FC, ROLO MR, MARQUES E, MENDES VM, RIBEIRO CF, ALI SF, MORGADINHO T, MACEDO TR. Acute increase of the glutamate-glutamine cycling in discrete brain areas after administration of a single dose of amphetamine. Ann N Y Acad Sci. 2008;1139:212–221. doi: 10.1196/annals.1432.040. PubMed DOI

RIDDLE EL, FLECKENSTEIN AE, HANSON GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006;8:E413–E418. doi: 10.1007/BF02854914. PubMed DOI PMC

SHAO X, ZHU G. Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder. Front Psychiatry. 2020;11:381. doi: 10.3389/fpsyt.2020.00381. PubMed DOI PMC

SHIBA T, YAMATO M, KUDO W, WATANABE T, UTSUMI H, YAMADA K. In vivo imaging of mitochondrial function in methamphetamine-treated rats. Neuroimage. 2011;57:866–872. doi: 10.1016/j.neuroimage.2011.05.041. PubMed DOI

SCHMIDT CJ, RITTER JK, SONSALLA PK, HANSON GR, GIBB JW. Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther. 1985;233:539–544. PubMed

SCHMIDT CJ, SONSALLA PK, HANSON GR, PEAT MA, GIBB JW. Methamphetamine-induced depression of monoamine synthesis in the rat: development of tolerance. J Neurochem. 1985;44:852–855. doi: 10.1111/j.1471-4159.1985.tb12893.x. PubMed DOI

SLAMBEROVA R. Review of long-term consequences of maternal methamphetamine exposure. Physiol Res. 2019;68(Suppl 3):S219–S231. doi: 10.33549/physiolres.934360. PubMed DOI

STEPHANS SE, YAMAMOTO BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse. 1994;17:203–209. doi: 10.1002/syn.890170310. PubMed DOI

SULZER D, SONDERS MS, POULSEN NW, GALLI A. Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol. 2005;75:406–433. doi: 10.1016/j.pneurobio.2005.04.003. PubMed DOI

SZUMLINSKI KK, LOMINAC KD, CAMPBELL RR, COHEN M, FULTZ EK, BROWN CN, MILLER BW, QUADIR SG, MARTIN D, THOMPSON AB, Von JONQUIERES G, KLUGMANN M, PHILLIPS TJ, KIPPIN TE. Methamphetamine addiction vulnerability: the glutamate, the bad, and the ugly. Biol Psychiatry. 2017;81:959–970. doi: 10.1016/j.biopsych.2016.10.005. PubMed DOI PMC

TAKADA M, HATTORI T. Organization of ventral tegmental area cells projecting to the occipital cortex and forebrain in the rat. Brain Res. 1987;418:27–33. doi: 10.1016/0006-8993(87)90958-9. PubMed DOI

TOMÁŠKOVÁ A, ŠLAMBEROVÁ R, ČERNÁ M. Influence of prenatal methamphetamine abuse on the brain. Epigenomes. 2020;4:14. doi: 10.3390/epigenomes4030014. PubMed DOI PMC

TOMKINS DM, SELLERS EM. Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ. 2001;164:817–821. PubMed PMC

VERNEY C, LEBRAND C, GASPAR P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec. 2002;267:87–93. doi: 10.1002/ar.10089. PubMed DOI

VRAJOVA M, SLAMBEROVA R, HOSCHL C, OVSEPIAN SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep. 2021;44:zsab001. doi: 10.1093/sleep/zsab001. PubMed DOI

WEARNE TA, CORNISH JL. Inhibitory regulation of the prefrontal cortex following behavioral sensitization to amphetamine and/or methamphetamine psychostimulants: A review of GABAergic mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109681. doi: 10.1016/j.pnpbp.2019.109681. PubMed DOI

WILLIAMS GV, GOLDMAN-RAKIC PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature. 1995;376:572–575. doi: 10.1038/376572a0. PubMed DOI

YUI K, GOTO K, IKEMOTO S, ISHIGURO T. Monoamine neurotransmitter function and spontaneous recurrence of methamphetamine psychosis. Ann N Y Acad Sci. 1996;801:415–429. doi: 10.1111/j.1749-6632.1996.tb17464.x. PubMed DOI

ZHOU QY, PALMITER RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83:1197–1209. doi: 10.1016/0092-8674(95)90145-0. PubMed DOI

ZOUBKOVA H, TOMASKOVA A, NOHEJLOVA K, CERNA M, SLAMBEROVA R. Prenatal exposure to methamphetamine: Up-regulation of brain receptor genes. Front Neurosci. 2019;13:771. doi: 10.3389/fnins.2019.00771. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...