Methamphetamine, neurotransmitters and neurodevelopment
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články, přehledy
PubMed
35099249
PubMed Central
PMC8884400
DOI
10.33549/physiolres.934821
PII: 934821
Knihovny.cz E-zdroje
- MeSH
- centrální nervový systém účinky léků růst a vývoj metabolismus MeSH
- chování zvířat účinky léků MeSH
- krysa rodu Rattus MeSH
- lidé MeSH
- methamfetamin toxicita MeSH
- nervový přenos účinky léků MeSH
- neurogeneze účinky léků MeSH
- neurotoxické syndromy etiologie metabolismus patologie MeSH
- neurotransmiterové látky toxicita MeSH
- stimulanty centrálního nervového systému toxicita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- methamfetamin MeSH
- neurotransmiterové látky MeSH
- stimulanty centrálního nervového systému MeSH
Methamphetamine (MA), as massively abused psychoactive stimulant, has been associated with many neurological diseases. It has various potent and neurotoxic properties. There are many mechanisms of action that contribute to its neurotoxic and degenerative effects, including excessive neurotransmitter (NEU) release, blockage of NEU uptake transporters, degeneration of NEU receptors, process of oxidative stress etc. MA intoxication is caused by blood-brain barrier disruption resulted from MA-induced oxidation stress. In our laboratory we constantly work on animal research of MA. Our current interest is to investigate processes of MA-induced alteration in neurotransmission, especially during development of laboratory rat. This review will describe current understanding in role of NEUs, which are affected by MA-induced neurotoxicity caused by altering the action of NEUs in the central nervous system (CNS). It also briefly brings information about NEUs development in critical periods of development.
Zobrazit více v PubMed
AGGARWAL S, MORTENSEN OV. Overview of monoamine transporters. Curr Protoc Pharmacol. 2017;79:12.16.1–12.16.17. doi: 10.1002/cpph.32. PubMed DOI PMC
ALBERS DS, SONSALLA PK. Methamphetamine-induced hyperthermia and dopaminergic neurotoxicity in mice: pharmacological profile of protective and nonprotective agents. J Pharmacol Exp Ther. 1995;275:1104–1114. PubMed
ALI SF, KORDSMEIER KJ, GOUGH B. Drug-induced circling preference in rats. Correlation with monoamine levels. Mol Neurobiol. 1995;11:145–154. doi: 10.1007/BF02740691. PubMed DOI
ALONSO V, FRIEDMAN PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol. 2013;27:558–572. doi: 10.1210/me.2012-1404. PubMed DOI PMC
ANGLIN MD, BURKE C, PERROCHET B, STAMPER E, DAWUD-NOURSI S. History of the methamphetamine problem. J Psychoactive Drugs. 2000;32:137–141. doi: 10.1080/02791072.2000.10400221. PubMed DOI
BAR-PELED O, GROSS-ISSEROFF R, BEN-HUR H, HOSKINS I, GRONER Y, BIEGON A. Fetal human brain exhibits a prenatal peak in the density of serotonin 5-HT1A receptors. Neurosci Lett. 1991;127:173–176. doi: 10.1016/0304-3940(91)90787-T. PubMed DOI
BENNETT EJ, SHALER TA, WOODMAN B, RYU KY, ZAITSEVA TS, BECKER CH, BATES GP, SCHULMAN H, KOPITO RR. Global changes to the ubiquitin system in Huntington’s disease. Nature. 2007;448:704–708. doi: 10.1038/nature06022. PubMed DOI
BOUTREL B, FRANC B, HEN R, HAMON M, ADRIEN J. Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci. 1999;19:3204–3212. doi: 10.1523/JNEUROSCI.19-08-03204.1999. PubMed DOI PMC
BOYSON SJ, ADAMS CE. D1 and D2 dopamine receptors in perinatal and adult basal ganglia. Pediatr Res. 1997;41:822–831. doi: 10.1203/00006450-199706000-00006. PubMed DOI
BREEN MS, UHLMANN A, NDAY CM, GLATT SJ, MITT M, METSALPU A, STEIN DJ, ILLING N. Candidate gene networks and blood biomarkers of methamphetamine-associated psychosis: an integrative RNA-sequencing report. Transl Psychiatry. 2016;6:e802. doi: 10.1038/tp.2016.67. PubMed DOI PMC
CALIPARI ES, BAGOT RC, PURUSHOTHAMAN I, DAVIDSON TJ, YORGASON JT, PENA CJ, WALKER DM, PIRPINIAS ST, GUISE KG, RAMAKRISHNAN C, DEISSEROTH K, NESTLER EJ. In vivo imaging identifies temporal signature of D1 and D2 medium spiny neurons in cocaine reward. Proc Natl Acad Sci U S A. 2016;113:2726–2731. doi: 10.1073/pnas.1521238113. PubMed DOI PMC
CALIPARI ES, JUAREZ B, MOREL C, WALKER DM, CAHILL ME, RIBEIRO E, ROMAN-ORTIZ C, RAMAKRISHNAN C, DEISSEROTH K, HAN MH, NESTLER EJ. Dopaminergic dynamics underlying sex-specific cocaine reward. Nat Commun. 2017;8:13877. doi: 10.1038/ncomms13877. PubMed DOI PMC
CHEBIB M, JOHNSTON GA. The ‘ABC’ of GABA receptors: a brief review. Clin Exp Pharmacol Physiol. 1999;26:937–940. doi: 10.1046/j.1440-1681.1999.03151.x. PubMed DOI
CHEBIB M, JOHNSTON GA. GABA-activated ligand gated ion channels: medicinal chemistry and molecular biology. J Med Chem. 2000;43:1427–1447. doi: 10.1021/jm9904349. PubMed DOI
CHEBIB M, MEWETT KN, JOHNSTON GA. GABA(C) receptor antagonists differentiate between human rho1 and rho2 receptors expressed in Xenopus oocytes. Eur J Pharmacol. 1998;357:227–234. doi: 10.1016/S0014-2999(98)00552-4. PubMed DOI
CHIU VM, SCHENK JO. Mechanism of action of methamphetamine within the catecholamine and serotonin areas of the central nervous system. Curr Drug Abuse Rev. 2012;5:227–242. doi: 10.2174/1874473711205030227. PubMed DOI
CHUGANI DC. Role of altered brain serotonin mechanisms in autism. Mol Psychiatry. 2002;7(Suppl 2):S16–S17. doi: 10.1038/sj.mp.4001167. PubMed DOI
DARWIN KH. Prokaryotic ubiquitin-like protein (Pup), proteasomes and pathogenesis. Nat Rev Microbiol. 2009;7:485–491. doi: 10.1038/nrmicro2148. PubMed DOI PMC
DIAMOND A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond B Biol Sci. 1996;351:1483–1493. doi: 10.1098/rstb.1996.0134. discussion 1494. PubMed DOI
DIAMOND A, BRIAND L, FOSSELLA J, GEHLBACH L. Genetic and neurochemical modulation of prefrontal cognitive functions in children. Am J Psychiatry. 2004;161:125–132. doi: 10.1176/appi.ajp.161.1.125. PubMed DOI
DINOPOULOS A, PARNAVELAS JG. The development of ventral tegmental area (VTA) projections to the visual cortex of the rat. Neurosci Lett. 1991;134:12–16. doi: 10.1016/0304-3940(91)90497-H. PubMed DOI
FERRUCCI M, LIMANAQI F, RYSKALIN L, BIAGIONI F, BUSCETI CL, FORNAI F. The effects of amphetamine and methamphetamine on the release of norepinephrine, dopamine and acetylcholine from the brainstem reticular formation. Front Neuroanat. 2019;13:48. doi: 10.3389/fnana.2019.00048. PubMed DOI PMC
FLECKENSTEIN AE, VOLZ TJ, HANSON GR. Psychostimulant-induced alterations in vesicular monoamine transporter-2 function: neurotoxic and therapeutic implications. Neuropharmacology. 2009;56(Suppl 1):133–138. doi: 10.1016/j.neuropharm.2008.07.002. PubMed DOI PMC
FORNAI F, GIORGI FS, ALESSANDRI MG, GIUSIANI M, CORSINI GU. Effects of pretreatment with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on methamphetamine pharmacokinetics and striatal dopamine losses. J Neurochem. 1999;72:777–784. doi: 10.1046/j.1471-4159.1999.0720777.x. PubMed DOI
FRANKLE WG, LOMBARDO I, NEW AS, GOODMAN M, TALBOT PS, HUANG Y, HWANG D-R, SLIFSTEIN M, CURRY S, ABI-DARGHAM A, LARUELLE M, SIEVER LJ. Brain serotonin transporter distribution in subjects with impulsive aggressivity: a positron emission study with [11C]McN 5652. Am J Psychiatry. 2005;162:915–923. doi: 10.1176/appi.ajp.162.5.915. PubMed DOI
FUMAGALLI F, GAINETDINOV RR, VALENZANO KJ, CARON MG. Role of dopamine transporter in methamphetamine-induced neurotoxicity: evidence from mice lacking the transporter. J Neurosci. 1998;18:4861–4869. doi: 10.1523/JNEUROSCI.18-13-04861.1998. PubMed DOI PMC
GASPAR P, CASES O, MAROTEAUX L. The developmental role of serotonin: news from mouse molecular genetics. Nat Rev Neurosci. 2003;4:1002–1012. doi: 10.1038/nrn1256. PubMed DOI
GOLDSTEIN DS. Catecholamines in the periphery. Overview. Adv Pharmacol. 1998;42:529–539. doi: 10.1016/S1054-3589(08)60806-6. PubMed DOI
GRELLA CE, ANGLIN MD. Introduction to the special issue on addiction health services: in memory of Douglas Longshore. J Behav Health Serv Res. 2009;36:131–136. doi: 10.1007/s11414-008-9157-8. PubMed DOI
GUPTA S, KULHARA P. Cellular and molecular mechanisms of drug dependence: An overview and update. Indian J Psychiatry. 2007;49:85–90. doi: 10.4103/0019-5545.33253. PubMed DOI PMC
HAPPE HK, COULTER CL, GERETY ME, SANDERS JD, O’ROURKE M, BYLUND DB, MURRIN LC. Alpha-2 adrenergic receptor development in rat CNS: an autoradiographic study. Neuroscience. 2004;123:167–178. doi: 10.1016/j.neuroscience.2003.09.004. PubMed DOI
HART CL, MARVIN CB, SILVER R, SMITH EE. Is cognitive functioning impaired in methamphetamine users? A critical review. Neuropsychopharmacology. 2012;37:586–608. doi: 10.1038/npp.2011.276. PubMed DOI PMC
HEDGES DJ, HAMILTON-NELSON KL, SACHAROW SJ, NATIONS L, BEECHAM GW, KOZHEKBAEVA ZM, BUTLER BL, CUKIER HN, WHITEHEAD PL, MA D, JAWORSKI JM, NATHANSON L, LEE JM, HAUSER SL, OKSENBERG JR, CUCCARO ML, HAINES JL, GILBERT JR, PERICAK-VANCE MA. Evidence of novel fine-scale structural variation at autism spectrum disorder candidate loci. Mol Autism. 2012;3:2. doi: 10.1186/2040-2392-3-2. PubMed DOI PMC
HEDGES DM, OBRAY JD, YORGASON JT, JANG EY, WEERASEKARA VK, UYS JD, BELLINGER FP, STEFFENSEN SC. Methamphetamine induces dopamine release in the nucleus accumbens through a sigma receptor-mediated pathway. Neuropsychopharmacology. 2018;43:1405–1414. doi: 10.1038/npp.2017.291. PubMed DOI PMC
HEIKKILA RE, YOUNGSTER SK, PANEK DU, GIOVANNI A, SONSALLA PK. Studies with the neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and several of its analogs. Toxicology. 1988;49:493–501. doi: 10.1016/0300-483X(88)90035-2. PubMed DOI
HERLENIUS E, LAGERCRANTZ H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev. 2001;65:21–37. doi: 10.1016/S0378-3782(01)00189-X. PubMed DOI
HERLENIUS E, LAGERCRANTZ H. Development of neurotransmitter systems during critical periods. Exp Neurol. 2004;190(Suppl 1):S8–S21. doi: 10.1016/j.expneurol.2004.03.027. PubMed DOI
HOYER D, HANNON JP, MARTIN GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533–554. doi: 10.1016/S0091-3057(01)00746-8. PubMed DOI
HSIEH JH, STEIN DJ, HOWELLS FM. The neurobiology of methamphetamine induced psychosis. Front Hum Neurosci. 2014;8:537. doi: 10.3389/fnhum.2014.00537. PubMed DOI PMC
HUANG MC, LIN SK, CHEN CH, PAN CH, LEE CH, LIU HC. Oxidative stress status in recently abstinent methamphetamine abusers. Psychiatry Clin Neurosci. 2013;67:92–100. doi: 10.1111/pcn.12025. PubMed DOI
HUMBARD MA, MAUPIN-FURLOW JA. Prokaryotic proteasomes: nanocompartments of degradation. J Mol Microbiol Biotechnol. 2013;23:321–334. doi: 10.1159/000351348. PubMed DOI PMC
IMAM SZ, EL-YAZAL J, NEWPORT GD, ITZHAK Y, CADET JL, SLIKKER W, JR, ALI SF. Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci. 2001;939:366–380. doi: 10.1111/j.1749-6632.2001.tb03646.x. PubMed DOI
JANG EY, YANG CH, HEDGES DM, KIM SP, LEE JY, EKINS TG, GARCIA BT, KIM HY, NELSON AC, KIM NJ, STEFFENSEN SC. The role of reactive oxygen species in methamphetamine self-administration and dopamine release in the nucleus accumbens. Addict Biol. 2017;22:1304–1315. doi: 10.1111/adb.12419. PubMed DOI PMC
KELLEY AE. Memory and addiction: shared neural circuitry and molecular mechanisms. Neuron. 2004;44:161–179. doi: 10.1016/j.neuron.2004.09.016. PubMed DOI
KOOB GF, Le MOAL M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology. 2001;24:97–129. doi: 10.1016/S0893-133X(00)00195-0. PubMed DOI
KUCZENSKI R, SEGAL DS, CHO AK, MELEGA W. Hippocampus norepinephrine, caudate dopamine and serotonin, and behavioral responses to the stereoisomers of amphetamine and methamphetamine. J Neurosci. 1995;15:1308–1317. doi: 10.1523/JNEUROSCI.15-02-01308.1995. PubMed DOI PMC
LAGALI PS, CORCORAN CP, PICKETTS DJ. Hippocampus development and function: role of epigenetic factors and implications for cognitive disease. Clin Genet. 2010;78:321–333. doi: 10.1111/j.1399-0004.2010.01503.x. PubMed DOI
LIMANAQI F, GAMBARDELLA S, BIAGIONI F, BUSCETI CL, FORNAI F. Epigenetic effects induced by methamphetamine and methamphetamine-dependent oxidative stress. Oxid Med Cell Longev. 2018;2018:4982453. doi: 10.1155/2018/4982453. PubMed DOI PMC
MACUCHOVA E, SLAMBEROVA R. Drug sensitization induced by prenatal methamphetamine exposure. (Article in English, Czech) Cesk Fysiol. 2016;65:32–37. PubMed
MARK KA, SOGHOMONIAN JJ, YAMAMOTO BK. High-dose methamphetamine acutely activates the striatonigral pathway to increase striatal glutamate and mediate long-term dopamine toxicity. J Neurosci. 2004;24:11449–11456. doi: 10.1523/JNEUROSCI.3597-04.2004. PubMed DOI PMC
MELDRUM BS. Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr. 2000;130(4S Suppl):1007S–1015S. doi: 10.1093/jn/130.4.1007S. PubMed DOI
MEYERS SA, RAFFUL C, MITTAL ML, SMITH LR, TIRADO-MUNOZ J, JAIN S, SUN X, GARFEIN RS, STRATHDEE SA, DEBECK K, HAYASHI K, McNEIL R, MILLOY MJ, OLDING M, GUISE A, WERB D, SCHEIM AI. Examining the gender composition of drug injecting initiation events: A mixed methods investigation of three North American contexts. Int J Drug Policy. 2021;90:103056. doi: 10.1016/j.drugpo.2020.103056. PubMed DOI PMC
NAQUI SZ, HARRIS BS, THOMAIDOU D, PARNAVELAS JG. The noradrenergic system influences the fate of Cajal-Retzius cells in the developing cerebral cortex. Brain Res Dev Brain Res. 1999;113:75–82. doi: 10.1016/S0165-3806(99)00003-6. PubMed DOI
NORDAHL TE, SALO R, LEAMON M. Neuropsychological effects of chronic methamphetamine use on neurotransmitters and cognition: A review. J Neuropsychiatry Clin Neurosci. 2003;15:317–325. doi: 10.1176/jnp.15.3.317. PubMed DOI
OLSON L, SEIGER A. Early prenatal ontogeny of central monoamine neurons in the rat: fluorescence histochemical observations. Z Anat Entwicklungsgesch. 1972;137:301–316. doi: 10.1007/BF00519099. PubMed DOI
PENDLETON RG, RASHEED A, ROYCHOWDHURY R, HILLMAN R. A new role for catecholamines: ontogenesis. Trends Pharmacol Sci. 1998;19:248–251. doi: 10.1016/s0165-6147(98)01218-8. PubMed DOI
PEREIRA FC, ROLO MR, MARQUES E, MENDES VM, RIBEIRO CF, ALI SF, MORGADINHO T, MACEDO TR. Acute increase of the glutamate-glutamine cycling in discrete brain areas after administration of a single dose of amphetamine. Ann N Y Acad Sci. 2008;1139:212–221. doi: 10.1196/annals.1432.040. PubMed DOI
RIDDLE EL, FLECKENSTEIN AE, HANSON GR. Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J. 2006;8:E413–E418. doi: 10.1007/BF02854914. PubMed DOI PMC
SHAO X, ZHU G. Associations among monoamine neurotransmitter pathways, personality traits, and major depressive disorder. Front Psychiatry. 2020;11:381. doi: 10.3389/fpsyt.2020.00381. PubMed DOI PMC
SHIBA T, YAMATO M, KUDO W, WATANABE T, UTSUMI H, YAMADA K. In vivo imaging of mitochondrial function in methamphetamine-treated rats. Neuroimage. 2011;57:866–872. doi: 10.1016/j.neuroimage.2011.05.041. PubMed DOI
SCHMIDT CJ, RITTER JK, SONSALLA PK, HANSON GR, GIBB JW. Role of dopamine in the neurotoxic effects of methamphetamine. J Pharmacol Exp Ther. 1985;233:539–544. PubMed
SCHMIDT CJ, SONSALLA PK, HANSON GR, PEAT MA, GIBB JW. Methamphetamine-induced depression of monoamine synthesis in the rat: development of tolerance. J Neurochem. 1985;44:852–855. doi: 10.1111/j.1471-4159.1985.tb12893.x. PubMed DOI
SLAMBEROVA R. Review of long-term consequences of maternal methamphetamine exposure. Physiol Res. 2019;68(Suppl 3):S219–S231. doi: 10.33549/physiolres.934360. PubMed DOI
STEPHANS SE, YAMAMOTO BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse. 1994;17:203–209. doi: 10.1002/syn.890170310. PubMed DOI
SULZER D, SONDERS MS, POULSEN NW, GALLI A. Mechanisms of neurotransmitter release by amphetamines: A review. Prog Neurobiol. 2005;75:406–433. doi: 10.1016/j.pneurobio.2005.04.003. PubMed DOI
SZUMLINSKI KK, LOMINAC KD, CAMPBELL RR, COHEN M, FULTZ EK, BROWN CN, MILLER BW, QUADIR SG, MARTIN D, THOMPSON AB, Von JONQUIERES G, KLUGMANN M, PHILLIPS TJ, KIPPIN TE. Methamphetamine addiction vulnerability: the glutamate, the bad, and the ugly. Biol Psychiatry. 2017;81:959–970. doi: 10.1016/j.biopsych.2016.10.005. PubMed DOI PMC
TAKADA M, HATTORI T. Organization of ventral tegmental area cells projecting to the occipital cortex and forebrain in the rat. Brain Res. 1987;418:27–33. doi: 10.1016/0006-8993(87)90958-9. PubMed DOI
TOMÁŠKOVÁ A, ŠLAMBEROVÁ R, ČERNÁ M. Influence of prenatal methamphetamine abuse on the brain. Epigenomes. 2020;4:14. doi: 10.3390/epigenomes4030014. PubMed DOI PMC
TOMKINS DM, SELLERS EM. Addiction and the brain: the role of neurotransmitters in the cause and treatment of drug dependence. CMAJ. 2001;164:817–821. PubMed PMC
VERNEY C, LEBRAND C, GASPAR P. Changing distribution of monoaminergic markers in the developing human cerebral cortex with special emphasis on the serotonin transporter. Anat Rec. 2002;267:87–93. doi: 10.1002/ar.10089. PubMed DOI
VRAJOVA M, SLAMBEROVA R, HOSCHL C, OVSEPIAN SV. Methamphetamine and sleep impairments: neurobehavioral correlates and molecular mechanisms. Sleep. 2021;44:zsab001. doi: 10.1093/sleep/zsab001. PubMed DOI
WEARNE TA, CORNISH JL. Inhibitory regulation of the prefrontal cortex following behavioral sensitization to amphetamine and/or methamphetamine psychostimulants: A review of GABAergic mechanisms. Prog Neuropsychopharmacol Biol Psychiatry. 2019;95:109681. doi: 10.1016/j.pnpbp.2019.109681. PubMed DOI
WILLIAMS GV, GOLDMAN-RAKIC PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature. 1995;376:572–575. doi: 10.1038/376572a0. PubMed DOI
YUI K, GOTO K, IKEMOTO S, ISHIGURO T. Monoamine neurotransmitter function and spontaneous recurrence of methamphetamine psychosis. Ann N Y Acad Sci. 1996;801:415–429. doi: 10.1111/j.1749-6632.1996.tb17464.x. PubMed DOI
ZHOU QY, PALMITER RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell. 1995;83:1197–1209. doi: 10.1016/0092-8674(95)90145-0. PubMed DOI
ZOUBKOVA H, TOMASKOVA A, NOHEJLOVA K, CERNA M, SLAMBEROVA R. Prenatal exposure to methamphetamine: Up-regulation of brain receptor genes. Front Neurosci. 2019;13:771. doi: 10.3389/fnins.2019.00771. PubMed DOI PMC