Prenatal Exposure to Methamphetamine: Up-Regulation of Brain Receptor Genes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31417344
PubMed Central
PMC6686742
DOI
10.3389/fnins.2019.00771
Knihovny.cz E-zdroje
- Klíčová slova
- hippocampus, methamphetamine, microarray, prefrontal cortex, prenatal, real-time PCR, receptor, striatum,
- Publikační typ
- časopisecké články MeSH
Methamphetamine (METH) is a widespread illicit drug. If it is taken by pregnant women, it passes through the placenta and just as it affects the mother, it can impair the development of the offspring. The aim of our study was to identify candidates to investigate for changes in the gene expression in the specific regions of the brain associated with addiction to METH in rats. We examined the various areas of the central nervous system (striatum, hippocampus, prefrontal cortex) for signs of impairment in postnatal day 80 in experimental rats, whose mothers had been administered METH (5 mg/kg/day) during the entire gestation period. Changes in the gene expression at the mRNA level were determined by two techniques, microarray and real-time PCR. Results of two microarray trials were evaluated by LIMMA analysis. The first microarray trial detected either up-regulated or down-regulated expression of 2189 genes in the striatum; the second microarray trial detected either up-regulated or down-regulated expression of 1344 genes in the hippocampus of prenatally METH-exposed rats. We examined the expression of 10 genes using the real-time PCR technique. Differences in the gene expression were counted by the Mann-Whitney U-test. Significant changes were observed in the cocaine- and amphetamine-regulated transcript prepropeptide, tachykinin receptor 3, dopamine receptor D3 gene expression in the striatum regions, in the glucocorticoid nuclear receptor Nr3c1 gene expression in the prefrontal cortex and in the carboxylesterase 2 gene expression in the hippocampus of prenatally METH-exposed rats. The microarray technique also detected up-regulated expression of trace amine-associated receptor 7 h gene in the hippocampus of prenatally METH-exposed rats. We have identified susceptible genes; candidates for the study of an impairment related to methamphetamine addiction in the specific regions of the brain.
Department of Medical Genetics 3rd Faculty of Medicine Charles University Prague Czechia
Department of Physiology 3rd Faculty of Medicine Charles University Prague Czechia
Zobrazit více v PubMed
Acevedo S. F., de Esch I. J. P., Raber J. (2007). Sex- and histamine-dependent long-term cognitive effects of methamphetamine exposure. Neuropsychopharmacology 32 665–672. 10.1038/sj.npp.1301091 PubMed DOI
Achat-Mendes C., Lynch L. J., Sullivan K. A., Vallender E. J., Miller G. M. (2012). Augmentation of methamphetamine-induced behaviors in transgenic mice lacking the trace amine-associated receptor 1. Pharmacol. Biochem. Behav. 101 201–207. 10.1016/j.pbb.2011.10.025 PubMed DOI PMC
Acuff-Smith K. D., George M., Lorens S. A., Vorhees C. V. (1992). Preliminary evidence for methamphetamine-induced behavioral and ocular effects in rat offspring following exposure during early organogenesis. Psychopharmacology 109 255–263. 10.1007/bf02245871 PubMed DOI
Acuff-Smith K. D., Schilling M. A., Fisher J. E., Voorhees C. V. (1996). Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol. Teratol. 18 199–215. 10.1016/0892-0362(95)02015-2 PubMed DOI
Ago Y., Arikawa S., Yata M., Yano K., Abe M., Takuma K., et al. (2009). Role of prefrontal dopaminergic neurotransmission in glucocorticoid receptor-mediated modulation of methamphetamine-induced hyperactivity. Synapse 63 7–14. 10.1002/syn.20575 PubMed DOI
Anderson P., Morris R., Amaral D., Bliss T., O’Keefe J. (2007). “The Hippocampal Formation,” in The Hippocampus Book, First Edn, eds Anderson P., Morris R., Amaral D., Bliss T., O’Keefe J. (New York, NY: Oxford University Press; ).
Barros M., Dempster E. L., Illott N., Chabrawi S., Maior R. S., Tomaz C., et al. (2013). Decreased methylation of the NK3 receptor coding gene (TACR3) after cocaine-induced place preference in marmoset monkeys. Addict. Biol. 18 452–454. 10.1111/j.1369-1600.2011.00409.x PubMed DOI
Bernaudin M., Tang Y., Reilly M., Petit E., Sharp F. R. (2002). Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia-induced ischemic tolerance. J. Biol. Chem. 277 39728–39738. 10.1074/jbc.M204619200 PubMed DOI
Billing L., Eriksson M., Jonsson B., Steneroth G., Zetterström R. (1994). The influence of environmental factors on behavioral problems in 8-year-old children exposed to amphetamine during fetal life. Child Abuse Negl. 18 3–9. 10.1016/0145-2134(94)90091-4 PubMed DOI
Borowsky B., Adham N., Jones K. A., Raddatz R., Artymyshyn R., Ogozalek K. L., et al. (2001). Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U.S.A. 98 8966–8971. 10.1073/pnas.151105198 PubMed DOI PMC
Bouthenet M. L., Souil E., Martres M. P., Sokoloff P., Giros B., Schwartz J. C. (1991). Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res. 564 203–219. 10.1016/0006-8993(91)91456-b PubMed DOI
Bubeníková-Valešová V., Kačer P., Syslová K., Rambousek L., Janovský M., Schutová B., et al. (2009). Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. Int. J. Dev. Neurosci. 27 525–530. 10.1016/j.ijdevneu.2009.06.012 PubMed DOI
Bunzow J. R., Sonders M. S., Arttamangkul S., Harrison L. M., Zhang G., Quigley D. I., et al. (2001). Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60 1181–1188. 10.1124/mol.60.6.1181 PubMed DOI
Burchfield D. J., Lucas V. W., Abrams R. M., Miller R. L., DeVane C. L. (1991). Disposition and pharmacodynamics of methamphetamine in pregnant sheep. JAMA 265 1968–1973. 10.1001/jama.265.15.1968 PubMed DOI
Cadet J. L., Krasnova I. N. (2009). Molecular bases of methamphetamine-induced neurodegeneration. Int. Rev. Neurobiol. 88 101–119. 10.1016/S0074-7742(09)88005-7 PubMed DOI PMC
Cernerud L., Eriksson M., Jonsson B., Steneroth G., Zetterström R. (1996). Amphetamine addiction during pregnancy: 14- year follow-up of growth and school performance. Acta Paediatr. 85 204–208. 10.1111/j.1651-2227.1996.tb13993.x PubMed DOI
Champagne F. A., Francis D. D., Mar A., Meaney M. J. (2003). Variations in maternal care in the rat as a mediating influence for the effects of environment on development. Physiol. Behav. 79 359–371. 10.1016/s0031-9384(03)00149-5 PubMed DOI
Chandrasekaran B., Yi H. G., Blanco N. J., McGeary J. E., Maddox W. T. (2015). Enhanced procedural learning of speech sound categories in a genetic variant of FOXP2. J. Neurosci. 35 7808–7812. 10.1523/JNEUROSCI.4706-14.2015 PubMed DOI PMC
Chang L., Alicata D., Ernst T., Volkow N. (2007). Structural and metabolic brain changes in the striatum associated with methamphetamine abuse. Addiction 102 16–32. 10.1111/j.1360-0443.2006.01782.x PubMed DOI
Chang L., Smith L. M., LoPresti C., Yonekura M. L., Kuo J., Walot I., et al. (2004). Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 132 95–106. 10.1016/j.pscychresns.2004.06.004 PubMed DOI
ChEBI (2018). The European Bioinformatics Institute (EMBL-EBI), CHEBI:6809 – Methamphetamine. Available at: https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:6809 (accessed June 23, 2018).
Chen Y., Song R., Yang R. F., Wu N., Li J. (2014). A novel dopamine D3 receptor antagonist YQA14 inhibits methamphetamine self-administration and relapse to drug-seeking behavior in rats. Eur. J. Pharmacol. 743 126–132. 10.1016/j.ejphar.2014.09.026 PubMed DOI
Cho D. H., Lyu H. M., Lee H. B., Kim P. Y., Chin K. (1991). Behavioral teratogenicity of methamphetamine. J. Toxicol. Sci. 16 37–49. 10.2131/jts.16.supplementi_37 PubMed DOI
Couceyro P. R., Evans C., McKinzie A., Mitchell D., Dube M., Hagshenas L., et al. (2005). Cocaine- and amphetamine-regulated transcript (CART) peptides modulate the locomotor and motivational properties of psychostimulants. J. Pharmacol. Exp. Ther. 315 1091–1100. 10.1124/jpet.105.091678 PubMed DOI
Cui C., Sakata-Haga H., Ohta K., Nishida M., Yashiki M., Sawada K., et al. (2006). Histological brain alterations following prenatal methamphetamine exposure in rats. Cong.. Anom. Kyoto 46 180–187. 10.1111/j.1741-4520.2006.00126.x PubMed DOI
Dattel B. J. (1990). Substance abuse in pregnancy. Semin. Perinatol. 14 179–187. PubMed
De Souza Silva M. A., Mello E. L., Jr., Müller C. P., Jocham G., Maior R. S., Huston J. P., et al. (2006). The tachykinin NK3 receptor antagonist SR142801 blocks the behavioral effects of cocaine in marmoset monkeys. Eur. J. Pharmacol. 536 269–278. 10.1016/j.ejphar.2006.03.010 PubMed DOI
Derauf C., Lester B. M., Neyzi N., Kekatpure M., Gracia L., Davis J., et al. (2012). Subcortical and cortical structural central nervous system changes and attention processing deficits in preschool-aged children with prenatal methamphetamine and tobacco exposure. Dev. Neurosci. 34 327–341. 10.1159/000341119 PubMed DOI PMC
Diaz J., Pilon C., Le Foll B., Gros C., Triller A., Schwartz J. C., et al. (2000). Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J. Neurosci. 20 8677–8684. 10.1523/jneurosci.20-23-08677.2000 PubMed DOI PMC
Diaz S. D., Smith L. M., LaGasse L. L., Derauf C., Newman E., Shah R., et al. (2014). Effects of prenatal methamphetamine exposure on behavioral and cognitive findings at 7.5 years. J. Pediatr. 164 1333–1338. 10.1016/j.jpeds.2014.01.053 PubMed DOI PMC
Dixon S. D., Bejar R. (1989). Echoencephalographic findings in neonates associated with maternal cocaine and methamphetamine use: incidence and clinical correlates. J. Pediatr. 115 770–778. 10.1016/s0022-3476(89)80661-4 PubMed DOI
Duysen E. G., Koentgen F., Williams G. R., Timperley C. M., Schopfer L. M., Cerasoli D. M., et al. (2011). Production of ES1 plasma carboxylesterase knockout mice for toxicity studies. Chem. Res. Toxicol. 24 1891–1898. 10.1021/tx200237a PubMed DOI PMC
Entrez PubMed (2019a). Gene Database, “CARTPT CART Prepropeptide”, Gene ID: 29131. Available at: https://www.ncbi.nlm.nih.gov/gene/29131 (accessed June 8, 2019).
Entrez PubMed (2019b). Gene Database, “CES2 carboxylesterase 2“, Gene ID: 8824. Available at: https://www.ncbi.nlm.nih.gov/gene/8824 (accessed June 8, 2019).
Eriksson M., Billing L., Steneroth G., Zetterstrom R. (1989). Health and development of 8-year-old children whose mothers abused amphetamine during pregnancy. Acta Paediatr. Scand. 78 944–949. 10.1111/j.1651-2227.1989.tb11179.x PubMed DOI
Eriksson M., Larsson G., Winbladh B., Zetterstrom R. (1978). The influence of amphetamine addiction on pregnancy and the newborn infant. Acta Paediatr. Scand. 67 95–99. 10.1111/j.1651-2227.1978.tb16283.x PubMed DOI
Eriksson M., Larsson G., Zetterstrom R. (1981). Amphetamine addiction and pregnancy. II. Pregnancy, delivery and the neonatal period. Socio-medical aspects. Acta Obstet. Gynecol. Scand. 60 253–259. 10.3109/00016348109158127 PubMed DOI
Eriksson M., Zetterstrom R. (1994). Amphetamine addiction during pregnancy: 10-year follow-up. Acta Paediatr. Suppl. 404 27–31. 10.1111/j.1651-2227.1994.tb13380.x PubMed DOI
Fialová M., Šírová J., Bubeníková-Valešová V., Šlamerová R. (2015). The effect of prenatal methamphetamine exposure on recognition memory in adult rats. Prague Med. Rep. 116 31–39. 10.14712/23362936.2015.43 PubMed DOI
Foroud T., Wetherill L. F., Kramer J., Tischfield J. A., Nurnberger J. I., Jr., Schuckit M. A., et al. (2008). The tachykinin receptor 3 is associated with alcohol and cocaine dependence. Alcohol. Clin. Exp. Res. 32 1023–1030. 10.1111/j.1530-0277.2008.00663.x PubMed DOI PMC
Fujáková-Lipski M., Kaping D., Šírová J., Horáček J., Páleníček T., Zach P., et al. (2017). Trans-generational neurochemical modulation of methamphetamine in the adult brain of the Wistar rat. Arch. Toxicol. 91 3373–3384. 10.1007/s00204-017-1969-y PubMed DOI
Gecz J., Mulley J. (2000). Genes for cognitive function: developments on the X. Genome Res. 10 157–163. 10.1101/gr.10.2.157 PubMed DOI
GeneCards (2019a). Human Gene Database “Cartpt gene”. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CARTPT (accessed June 8, 2019).
GeneCards (2019b). Human Gene Database “CES2 gene”. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=CES2 (accessed June 8, 2019).
Gilks C. B., Vanderhyden B. C., Zhu S., van de Rijn M., Longacre T. A. (2005). Distinction between serous tumors of low malignant potential and serous carcinomas based on global mRNA expression profiling. Gynecol. Oncol. 96 684–694. 10.1016/j.ygyno.2004.11.039 PubMed DOI
Gubern C., Hurtado O., Rodríguez R., Morales J. R., Romera V. G., Moro M. A., et al. (2009). Validation of housekeeping genes for quantitative real-time PCR in in-vivo and in-vitro models of cerebral ischaemia. BMC Mol. Biol. 10:57. 10.1186/1471-2199-10-57 PubMed DOI PMC
Gussow D., Rein R., Ginjaar I., Hochstenbach F., Seemann G., Kottman A., et al. (1987). The human beta-2-microglobulin gene. Primary structure and definition of the transcriptional unit. J. Immunol. 139 3132–3138. PubMed
Hatfield M. J., Tsurkan L., Garrett M., Shaver T. M., Hyatt J. L., Edwards C. C., et al. (2011). Organ-specific carboxylesterase profiling identifies the small intestine and kidney as major contributors of activation of the anticancer prodrug CPT-11. Biochem. Pharmacol. 81 24–31. 10.1016/j.bcp.2010.09.001 PubMed DOI PMC
Heal D. J., Smith S. L., Gosden J., Nutt D. J. (2013). Amphetamine, past and present – a pharmacological and clinical perspective. J. Psychopharmacol. 27 479–496. 10.1177/0269881113482532 PubMed DOI PMC
Heidbreder C. A., Gardner E. L., Xi Z. X., Thanos P. K., Mugnaini M., Hagan J. J., et al. (2005). The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. Brain Res. Brain Res. Rev. 49 77–105. 10.1016/j.brainresrev.2004.12.033 PubMed DOI PMC
Holubová A., Lukášková I., Tomášová N., Šuhajdová M., Šlamberová R. (2018). Early postnatal stress impairs cognitive functions of male rats persisting until adulthood. Front. Behav. Neurosci. 12:176. 10.3389/fnbeh.2018.00176 PubMed DOI PMC
Holubová A., Štofková A., Jurčovičová J., Šlamberová R. (2016). The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin, and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiol. Res. 65 S557–S566. PubMed
Hori S., Ohtsuki S., Ichinowatari M., Yokota T., Kanda T., Terasaki T. (2005). Selective gene silencing of rat ATP-binding cassette G2 transporter in an in vitro blood-brain barrier model by short interfering RNA. J. Neurochem. 93 63–71. 10.1111/j.1471-4159.2004.02994.x PubMed DOI
Hrebíčková I., Ševčíková M., Macúchová E., Šlamberová R. (2017). How methamphetamine exposure during different neurodevelopmental stages affects social behavior of adult rats? Physiol. Behav. 179 391–400. 10.1016/j.physbeh.2017.07.009 PubMed DOI
Hrubá L., Schutová B., Pometlová M., Rokyta R., Šlamberová R. (2010). Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats. Behav. Brain Res. 208 63–71. 10.1016/j.bbr.2009.11.001 PubMed DOI
Hrubá L., Schutova B., Šlamberová R. (2012). Sex differences in anxiety-like behavior and locomotor activity following prenatal and postnatal methamphetamine exposure in adult rats. Physiol. Behav. 105 364–370. 10.1016/j.physbeh.2011.08.016 PubMed DOI
Hrubá L., Schutová B., Šlamberová R., Pometlová M., Rokyta R. (2009). Effect of methamphetamine exposure and cross-fostering on sensorimotor development of male and female rat pups. Dev. Psychobiol. 51 73–83. 10.1002/dev.20346 PubMed DOI
Huang S. H., Wu W. R., Lee L. M., Huang P. R., Chen J. C. (2018). mTOR signaling in the nucleus accumbens mediates behavioral sensitization to methamphetamine. Prog. Neuropsychopharmacol. Biol. Psychiatry 86 331–339. 10.1016/j.pnpbp.2018.03.017 PubMed DOI
Hubert G. W., Kuhar M. J. (2005). Colocalization of CART with substance P but not enkephalin in the rat nucleus accumbens. Brain Res. 1050 8–14. 10.1016/j.brainres.2005.05.025 PubMed DOI
Imai T., Taketani M., Shii M., Hosokawa M., Chiba K. (2006). Substrate specificity of carboxylesterase isozymes and their contribution to hydrolase activity in human liver and small intestine. Drug Metab. Dispos. 34 1734–1741. 10.1124/dmd.106.009381 PubMed DOI
Imai T., Yoshigae Y., Hosokawa M., Chiba K., Otagiri M. (2003). Evidence for the involvement of a pulmonary first-pass effect via carboxylesterase in the disposition of a propranolol ester derivative after intravenous administration. J. Pharmacol. Exp. Ther. 307 1234–1242. 10.1124/jpet.103.056499 PubMed DOI
Jean A., Conductier G., Manrique C., Bouras C., Berta P., Gen R., et al. (2007). Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc. Natl. Acad. Sci. U.S.A. 104 16335–16340. 10.1073/pnas.0701471104 PubMed DOI PMC
Jeng W., Ramkissoon A., Parman T., Wells P. G. (2006). Prostaglandin H synthase-catalyzed bioactivation of amphetamines to free radical intermediates that cause CNS regional DNA oxidation and nerve terminal neurodegeneration. FASEB J. 20 638–650. 10.1096/fj.05-5271com PubMed DOI
Jeng W., Wells P. G. (2010). Reduced 3,4-methylenedioxymethamphetamine (Ecstasy)-initiated oxidative DNA damage and neurodegeneration in prostaglandin H synthase-1 knockout mice. ACS Chem. Neurosci. 1 366–380. 10.1021/cn900022w PubMed DOI PMC
Jeng W., Wong A. W., Ting-A-Kee R., Wells P. G. (2005). Methamphetamine-enhanced embryonic oxidative DNA damage and neurodevelopmental deficits. Free Radical Biol. Med. 39 317–326. 10.1016/j.freeradbiomed.2005.03.015 PubMed DOI
Jocham G., Lauber A. C., Müller C. P., Huston J. P., de Souza Silva M. A. (2007). Neurokinin 3 receptor activation potentiates the psychomotor and nucleus accumbens dopamine response to cocaine, but not its place conditioning effects. Eur. J. Neurosci. 25 2457–2472. 10.1111/j.1460-9568.2007.05491.x PubMed DOI
Kishi T., Ikeda M., Kitajima T., Yamanouchi Y., Kinoshita Y., Kawashima K., et al. (2009). A functional polymorphism in estrogen receptor alpha gene is associated with Japanese methamphetamine induced psychosis. Prog. Neuropsychopharmacol. Biol. Psychiatry 33 895–898. 10.1016/j.pnpbp.2009.04.008 PubMed DOI
Kosten T. A., Huang W., Nielsen D. A. (2014). Sex and litter effects on anxiety and DNA methylation levels of stress and neurotrophin genes in adolescent rats. Dev. Psychobiol. 56 392–406. 10.1002/dev.21106 PubMed DOI
Kosten T. A., Nielsen D. A. (2014). Litter and sex effects on maternal behavior and DNA methylation of the Nr3c1 exon 17 promoter gene in hippocampus and cerebellum. Int. J. Dev. Neurosci. 36 5–12. 10.1016/j.ijdevneu.2014.03.010 PubMed DOI PMC
Krasnova I. N., Chiflikyan M., Justinova Z., McCoy M. T., Ladenheim B., Jayanthi S., et al. (2013). CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiol. Dis 58 132–143. 10.1016/j.nbd.2013.05.009 PubMed DOI PMC
Krasnova I. N., Gerra M. C., Walther D., Jayanthi S., Ladenheim B., Mccoy M. T., et al. (2017). Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Sci. Rep. 7:8331. 10.1038/s41598-017-08898-8 PubMed DOI PMC
Kuhar M. J., Jaworski J. N., Hubert G. W., Philpot K. B., Dominguez G. (2005). Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets. AAPS J. 7 E259–E265. 10.1208/aapsj070125 PubMed DOI PMC
LaGasse L. L., Derauf C., Smith L. M., Newman E., Shah R., Neal C., et al. (2012). Prenatal methamphetamine exposure and childhood behavior problems at 3 and 5 years of age. Pediatrics 129 681–688. 10.1542/peds.2011-2209 PubMed DOI PMC
Laizure S. C., Herring V., Hu Z., Witbrodt K., Parker R. B. (2013). The role of human carboxylesterases in drug metabolism: have we overlooked their importance? Pharmacotherapy. 33 210–222. 10.1002/phar.1194 PubMed DOI PMC
Langnaese K., John R., Schweizer H., Ebmeyer U., Keilhoff G. (2008). Selection of reference genes for quantitative real-time PCR in a rat asphyxial cardiac arrest model. BMC Mol. Biol. 9:53. 10.1186/1471-2199-9-53 PubMed DOI PMC
Le Foll B., Diaz J., Sokoloff P. (2005). A single cocaine exposure increases BDNF and D-3 receptor expression: implications for drug-conditioning. Neuroreport 16 175–178. 10.1097/00001756-200502080-00022 PubMed DOI
Leung K. P., Qu Y. H., Qiao D. F., Xie W. B., Li D. R., Xu J. T., et al. (2014). Critical role of insulin-like growth factor binding protein-5 in methamphetamine-induced apoptosis in cardiomyocytes. Mol. Med. Rep. 10 2306–2312. 10.3892/mmr.2014.2572 PubMed DOI PMC
Levant B. (1998). Differential distribution of D3 dopamine receptors in the brains of several mammalian species. Brain Res. 800 269–274. 10.1016/S0006-8993(98)00529-0 PubMed DOI
Le’vesque D., Diaz J., Pilon C., Martres M. P., Giros B., Souil E., et al. (1992). Identification, characterization, and localization of the dopamine D3 receptor in rat brain using 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin. Proc. Natl. Acad. Sci. U.S.A. 89 8155–8159. 10.1073/pnas.89.17.8155 PubMed DOI PMC
Lian J., Nelson R., Lehner R. (2018). Carboxylesterases in lipid metabolism: from mouse to human. Protein Cell. 9 178–195. 10.1007/s13238-017-0437-z PubMed DOI PMC
Liberles S. D., Buck L. B. (2006). A second class of chemosensory receptors in the olfactory epithelium. Nature 442 645–650. 10.1038/nature05066 PubMed DOI
Lindemann L., Meyer C. A., Jeanneau K., Bradaia A., Ozmen L., Bluethmann H., et al. (2008). Trace amine-associated receptor 1 modulates dopaminergic activity. J. Pharmacol. Exp. Ther. 324 948–956. 10.1124/jpet.107.132647 PubMed DOI
Little B. B., Snell L. M., Gilstrap L. C., III (1988). Methamphetamine use during pregnancy: outcome and fetal effects. Obstet. Gynecol. 72 541–544. PubMed
Liu D., Diorio J., Tannenbaum B., Caldji C., Francis D., Freedman A., et al. (1997). Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277 1659–1662. 10.1126/science.277.5332.1659 PubMed DOI
Liu H. Q., An Y. W., Hu A. Z., Li M. H., Wu J. L., Liu L., et al. (2019). Critical roles of the PI3K-Akt-mTOR signaling pathway in apoptosis and autophagy of astrocytes induced by methamphetamine. Open Chem. 17 96–104. 10.1515/chem-2019-0015 DOI
Lloyd S. A., Oltean C., Pass H., Phillips B., Staton K., Robertson C. L., et al. (2013). Prenatal exposure to psychostimulants increases impulsivity, compulsivity, and motivation for rewards in adult mice. Physiol. Behav. 119 43–51. 10.1016/j.physbeh.2013.05.038 PubMed DOI
Macúchová E., Nohejlová K., Šlamberová R. (2014). Gender differences in the effect of adult amphetamine on cognitive functions of rats prenatally exposed to methamphetamine. Behav. Brain Res. 270 8–17. 10.1016/j.bbr.2014.04.040 PubMed DOI
Macúchová E., Nohejlová-Deykun K., Šlamberová R. (2013). Effect of methamphetamine on cognitive functions of adult female rats prenatally exposed to the same drug. Physiol. Res. 62 S89–S98. 10.1016/j.bbr.2014.04.040 PubMed DOI
Marrero-Rosado B., de Araujo Furtado M., Schultz V., Stone M., Kundrick E., Walker E., et al. (2018). Soman-induced status epilepticus, epileptogenesis, and neuropathology in carboxylesterase knockout mice treated with midazolam. Epilepsia 59 2206–2218. 10.1111/epi.14582 PubMed DOI PMC
Martin J. C. (1975). Effects on offspring of chronic maternal methamphetamine exposure. Dev. Psychobiol. 8 397–404. 10.1002/dev.420080504 PubMed DOI
Martin J. C., Martin D. C., Radow B., Sigman G. (1976). Growth, development and activity in rat offspring following maternal drug exposure. Exp. Aging Res. 2 235–251. 10.1080/03610737608257179 PubMed DOI
Marwick C. (2000). NIDA seeking data on effect of fetal exposure to methamphetamine. JAMA 283 2225–2226. 10.1001/jama.283.17.2225 PubMed DOI
Matějovská I., Bernášková K., Šlamberová R. (2014). Effect of prenatal methamphetamine exposure and challenge dose of the same drug in adulthood on epileptiform activity induced by electrical stimulation in female rats. Neuroscience 257 130–138. 10.1016/j.neuroscience.2013.10.069 PubMed DOI
Matera R. F., Zabala H., Jimenez A. P. (1968). Bifid exencephalia. Teratogen action of amphetamine. Int. Surg. 50 79–85. PubMed
Melamed J. L., de Souza Silva M. A., Tomaz C., Müller C. P., Huston J. P., Barros M. (2013). Sensitization of hypervigilance effects of cocaine can be induced by NK3 receptor activation in marmoset monkeys. Drug Alcohol Depend 128 155–160. 10.1016/j.drugalcdep.2012.08.020 PubMed DOI
Middaugh L. D. (1989). Prenatal amphetamine effects on behavior: possible mediation by brain monoamines. Ann. N. Y. Acad. Sci. 562 308–318. 10.1111/j.1749-6632.1989.tb21028.x PubMed DOI
Mizoguchi H., Yamada K. (2019). Methamphetamine use causes cognitive impairment and altered decision-making. Neurochem. Int. 124 106–113. 10.1016/j.neuint.2018.12.019 PubMed DOI
Neisewander J. L., Fuchs R. A., Tran-Nguyen L. T., Weber S. M., Coffey G. P., Joyce J. N. (2004). Increases in dopamine D3 receptor binding in rats receiving a cocaine challenge at various time points after cocaine self-administration: implications for cocaine-seeking behavior. Neuropsychopharmacology 29 1479–1487. 10.1038/sj.npp.1300456 PubMed DOI
O’Brien C. P., Gardner E. L. (2005). Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol. Ther. 108 18–58. 10.1016/j.pharmthera.2005.06.018 PubMed DOI
Ogden C. A., Rich M. E., Schork N. J., Paulus M. P., Geyer M. A., Lohr J. B., et al. (2004). Candidate genes, pathways and mechanisms for bipolar (manic-depressive) and related disorders: an expanded convergent functional genomics approach. Mol. Psychiatry 9 1007–1029. 10.1038/sj.mp.4001547 PubMed DOI
Oro A. S., Dixon S. D. (1987). Perinatal cocaine and methamphetamine exposure: maternal and neonatal correlates. J. Pediatr. 111 571–578. 10.1016/s0022-3476(87)80125-7 PubMed DOI
Paris J. M., Lorens S. A. (1989). A dose-response analysis of intra-raphe tachykinin-induced hyperactivity. J. Pharmacol. Exp. Ther. 251 388–393. PubMed
Pfaffl M. W. (2001). A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29:e45. PubMed PMC
Pierce R. C., Kumaresan V. (2006). The mesolimbic dopamine system: the final com- mon pathway for the reinforcing effect of drugs of abuse? Neurosci. Biobehav. Rev. 30 215–238. 10.1016/j.neubiorev.2005.04.016 PubMed DOI
Piper B. J., Acevedo S. F., Kolchugina G. K., Butler R. W., Corbett S. M., Honeycutt E. B., et al. (2011). Abnormalities in parentally rated executive function in methamphetamine/polysubstance exposed children. Pharmacol. Biochem. Behav. 98 432–439. 10.1016/j.pbb.2011.02.013 PubMed DOI PMC
Plessinger M. A. (1998). Prenatal exposure to amphetamines. Risks and adverse outcomes in pregnancy. Obstet. Gynecol. Clin. North Am. 25 119–138. PubMed
Pometlová M., Hrubá L., Slamberová R., Rokyta R. (2009). Cross-fostering effect on postnatal development of rat pups exposed to methamphetamine during gestation and preweaning periods. Int. J. Dev. Neurosci. 27 149–155. 10.1016/j.ijdevneu.2008.11.006 PubMed DOI
Rambousek L., Kacer P., Syslova K., Bumba J., Bubenikova-Valesova V., Slamberova R. (2014). Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol Depend 139 138–144. 10.1016/j.drugalcdep.2014.03.023 PubMed DOI
Ramkissoon A., Wells P. G. (2011). Human prostaglandin H synthase (hPHS)21- and hPHS-2-dependent bioactivation, oxidative macromolecular damage and cytotoxicity of dopamine, its precursor and metabolites. Free Radical Biol. Med. 50 295–304. 10.1016/j.freeradbiomed.2010.11.010 PubMed DOI
Ren W., Luan X., Zhang J., Gutteea P., Cai Y., Zhao J., et al. (2017). Brain-derived neurotrophic factor levels and depression during methamphetamine withdrawal. J. Affect. Disord. 221 165–171. 10.1016/j.jad.2017.06.017 PubMed DOI
Ren W., Tao J., Wei Y., Su H., Zhang J., Xie Y., et al. (2016). Time-dependent serum brain-derived neurotrophic factor decline during methamphetamine withdrawal. Medicine 95:e2604. 10.1097/MD.0000000000002604 PubMed DOI PMC
Roberts S. M., Harbison R. D., James R. C. (1993). Inhibition by ethanol of the metabolism of cocaine to benzoylecgonine and ecgonine methyl ester in mouse and human liver. Drug Metab. Dispos. 21 537–541. PubMed
Robinson T. E., Becker J. B. (1986). Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. 11 157–198. 10.1016/s0006-8993(86)80193-7 PubMed DOI
Rogge G., Jones D., Hubert G. W., Lin Y., Kuhar M. J. (2008). CART peptides: regulators of body weight, reward and other functions. Nat. Rev. Neurosci. 9 747–758. 10.1038/nrn2493 PubMed DOI PMC
Romanowski T., Markiewicz A., Bednarz N., Bielawski K. P. (2007). Housekeeping genes as a reference in quantitative real-time RT-PCR. Postepy. Hig. Med. Dosw. 61 500–510. PubMed
Ross M. K., Crow J. A. (2007). Human carboxylesterases and their role in xenobiotic and endobiotic metabolism. J. Biochem. Mol. Toxicol. 21 187–196. 10.1002/jbt.20178 PubMed DOI
Rutigliano G., Accorroni A., Zucchi R. (2018). The case for TAAR1 as a modulator of central nervous system function. Front. Pharmacol. 8:987. 10.3389/fphar.2017.00987 PubMed DOI PMC
Salinas A., Wilde J. D., Maldve R. E. (2006). Ethanol enhancement of cocaine- and amphetamine-regulated transcript mRNA and peptide expression in the nucleus accumbens. J. Neurochem. 2006 408–415. 10.1111/j.1471-4159.2006.03745.x PubMed DOI
Schutová B., Hrubá L., Pometlová M., Deykun K., Šlamberová R. (2008). Impact of methamphetamine administered prenatally and in adulthood on cognitive functions of male rats tested in Morris water maze. Prague Med. Rep. 109 62–70. PubMed
Schutová B., Hrubá L., Pometlová M., Deykun K., Šlamberová R. (2009). Cognitive functions and drug sensitivity in adult male rats prenatally exposed to methamphetamine. Physiol. Res. 58 741–750. PubMed
Schutová B., Hrubá L., Rokyta R., Šlamberová R. (2012). Gender differences in behavioral changes elicited by prenatal methamphetamine exposure and application of the same drug in adulthood. Dev. Psychobiol. 55 232–242. 10.1002/dev.21016 PubMed DOI
Segal D. M., Moraes C. T., Mash D. C. (1997). Up-regulation of D-3 dopamine receptor mRNA in the nucleus accumbens of human cocaine fatalities. Mol. Brain Res.. 45 335–339. 10.1016/s0169-328x(97)00025-9 PubMed DOI
Shilling P. D., Kuczenski R., Segal D. S., Barrett T. B., Kelsoe J. R. (2006). Differential regulation of immediate-early gene expression in the prefrontal cortex of rats with a high vs low behavioral response to methamphetamine. Neuropsychopharmacology 31 2359–2367. 10.1038/sj.npp.1301162 PubMed DOI
Silva M. A., Jocham G., Barros M., Tomaz C., Müller C. P. (2008). Neurokinin 3 receptor modulation of the behavioral and neurochemical effects of cocaine in rats and monkeys. Rev. Neurosci. 19 101–111. PubMed
Šlamberová R. (2012). Drugs in pregnancy: the effects on mother and her progeny. Physiol. Res. 61 S123–S135. PubMed
Šlamberová R., Charousová P., Pometlová M. (2005a). Maternal behavior is impaired by methamphetamine administered during pre-mating, gestation and lactation. Reprod Toxicol. 20 103–110. 10.1016/j.reprotox.2004.11.010 PubMed DOI
Šlamberová R., Charousová P., Pometlová M. (2005b). Methamphetamine administration during gestation impairs maternal behavior. Dev. Psychobiol. 46 57–65. 10.1002/dev.20042 PubMed DOI
Šlamberová R., Pometlová M., Syllabová L., Mancusková M. (2005c). Learning in the Place navigation task, not the New learning task, is altered by prenatal methamphetamine exposure. Brain Res. Dev. Brain Res. 157 217–219. 10.1016/j.devbrainres.2005.04.005 PubMed DOI
Šlamberová R., Riley M. A., Vathy I. (2005d). Cross-generational effect of prenatal morphine exposure on neurobehavioral development of rat pups. Physiol. Res. 54 655–660. PubMed
Šlamberová R., Pometlová M., Charousová P. (2006). Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30 82–88. 10.1016/j.pnpbp.2005.06.006 PubMed DOI
Šlamberová R., Pometlová M., Macúchová E., Nohejlová K., Sruchlik A., Valeš K. (2015). Do the effects of prenatal exposure and acute treatment of methamphetamine on anxiety vary depending on the animal model used? Behav. Brain Res. 292 361–369. 10.1016/j.bbr.2015.07.001 PubMed DOI
Šlamberová R., Pometlová M., Rokyta R. (2007). Effect of methamphetamine exposure during prenatal and preweaning periods lasts for generations in rats. Dev. Psychobiol. 49 312–322. 10.1002/dev.20203 PubMed DOI
Šlamberová R., Rokyta R. (2005). Seizure susceptibility in prenatally methamphetamine-exposed adult female rats. Brain Res. 1060 193–197. 10.1016/j.brainres.2005.08.034 PubMed DOI
Šlamberová R., Vrajová M., Schutová B., Mertlová M., Macúchová E., Nohejlová K., et al. (2014). Prenatal methamphetamine exposure induces long-lasting alterations in memory and development of NMDA receptors in the hippocampus. Physiol. Res. 63 S547–S558. PubMed
Šmehilová M. (2011). Principy a využití qPCR, Pokroèilé biochemické a biotechnologické metody. Available at: https://docplayer.cz/35816720-Principy-a-vyuzit-iti-qpcr-kbc-bam-pokrocil-rni-biologie.html (accessed June 12, 2019).
Smith L. M., Lagasse L. L., Derauf C., Grant P., Shah R., Arria A., et al. (2008). Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicol. Teratol. 30 20–28. 10.1016/j.ntt.2007.09.005 PubMed DOI PMC
Sokoloff P., Diaz J., Le Foll B., Guillin O., Leriche L., Bezard E., et al. (2006). The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol. Disord. Drug Targets 5 25–43. 10.2174/187152706784111551 PubMed DOI
Sokoloff P., Giros B., Martres M. P., Bouthenet M. L., Schwartz J. C. (1990). Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347 146–151. 10.1038/347146a0 PubMed DOI
Staley J. K., Mash D. C. (1996). Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities. J. Neurosci. 16 6100–6106. 10.1523/jneurosci.16-19-06100.1996 PubMed DOI PMC
Stewart J. L., Meeker J. E. (1997). Fetal and infant deaths associated with maternal methamphetamine abuse. J. Anal. Toxicol. 21 515–517. 10.1093/jat/21.6.515 PubMed DOI
Sulzer D., Chen T. K., Lau Y. Y., Kristensen H., Rayport S., Ewing A. (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15 4102–4108. 10.1523/jneurosci.15-05-04102.1995 PubMed DOI PMC
Sulzer D., Sonders M. S., Poulsen N. W., Galli A. (2005). Mechanisms of neurotransmitter release by amphetamines: a review. Prog. Neurobiol. 75 406–433. 10.1016/j.pneurobio.2005.04.003 PubMed DOI
Taketani M., Shii M., Ohura K., Ninomiya S., Imai T. (2007). Carboxylesterase in the liver and small intestine of experimental animals and human. Life Sci. 81 924–932. 10.1016/j.lfs.2007.07.026 PubMed DOI
Thompson B. L., Levitt P., Stanwood G. D. (2009). Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat. Rev. Neurosci. 10 303–312. 10.1038/nrn2598 PubMed DOI PMC
Tronche F., Kellendonk C., Kretz O., Gass P., Anlag K., Orban P. C., et al. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat. Genet. 1 99–103. 10.1038/12703 PubMed DOI
Tulloch I., Ghazaryan N., Mexhitaj I., Ordonez D., Angulo J. A. (2011). Role of neurokinin-1 and dopamine receptors on the striatal methamphetamine-induced proliferation of new cells in mice. Brain Res. 1399 33–39. 10.1016/j.brainres.2011.05.017 PubMed DOI PMC
van Baar A. L., Fleury P., Soepatmi S., Ultee C. A., Wesselman P. J. (1989). Neonatal behavior after drug dependent pregnancy. Arch. Dis. Child. 64 235–240. 10.1136/adc.64.2.235 PubMed DOI PMC
Vavřinková B., Binder T., Živný J. (2001). Characteristics of a population of drug dependent pregnant women in the Czech Republic. Ceska. Gynekol. 66 285–291. PubMed
Volkow N. D., Chang L., Wang G. J., Fowler J. S., Leonido-Yee M., Franceschi D., et al. (2001). Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am. J. Psychiatry 158 377–382. 10.1176/appi.ajp.158.3.377 PubMed DOI
Volovelsky O., Cohen G., Kenig A., Wasserman G., Dreazen A., Meyuhas O., et al. (2016). Phosphorylation of ribosomal protein S6 mediates mammalian target of rapamycin complex 1–induced parathyroid cell proliferation in secondary hyperparathyroidism. J. Am. Soc. Nephrol. 27 1091–1101. 10.1681/ASN.2015040339 PubMed DOI PMC
Wang J., Angulo J. A. (2011). Synergism between methamphetamine and the neuropeptide substance P on the production of nitric oxide in the striatum of mice. Brain Res. 1369 131–139. 10.1016/j.brainres.2010.11.017 PubMed DOI PMC
Weaver I. C., Cervoni N., Champagne F. A., D’Alessio A. C., Sharma S., Seckl J. R., et al. (2004). Epigenetic programming by maternal behavior. Nat. Neurosci. 7 847–854. 10.1038/nn1276 PubMed DOI
Wikipedia contributors (2019a). “Carboxylesterase 2,” Wikipedia, The Free Encyclopedia. Available at: https://en.wikipedia.org/w/index.php?title=Carboxylesterase_2&oldid=889466082 (accessed June 9, 2019).
Wikipedia contributors (2019b). “Methamphetamine,” Wikipedia, The Free Encyclopedia. Available at: https://en.wikipedia.org/w/index.php?title=Methamphetamine&oldid=898948968 (accessed June 3, 2019).
Williams M. T., Morford L. L., Wood S. L., Wallace T. L., Fukumura M., Broening H. W., et al. (2003). Developmental d-methamphetamine treatment selectively induces spatial navigation impairments inreference memory in the Morris water maze while sparing working memory. Synapse 48 138–148. 10.1002/syn.10159 PubMed DOI
Winslow B. T., Voorhees K. I., Pehl K. A. (2007). Methamphetamine abuse. Am. Fam. Phys. 76 1169–1174. PubMed
Won L., Bubula N., McCoy H., Heller A. (2001). Methamphetamine concentrations in fetal and maternal brain following prenatal exposure. Neurotoxicol. Teratol. 23 349–354. 10.1016/S0892-0362(01)00151-9 PubMed DOI
Wong A. W., McCallum G. P., Jeng W., Wells P. G. (2008). Oxoguanine glycosylase 1 protects against methamphetamine-enhanced fetal brain oxidative DNA damage and neurodevelopmental deficits. J. Neurosci. 28 9047–9054. 10.1523/JNEUROSCI.2557-08.2008 PubMed DOI PMC
Wouldes T., LaGasse L., Sheridan J., Lester B. (2004). Maternal methamphetamine use during pregnancy and child outcome: what do we know? N. Z. Med. J. 117:U1180. PubMed
Xie Z., Miller G. M. (2009). A receptor mechanism for methamphetamine action in dopamine transporter regulation in brain. J. Pharmacol. Exp. Ther. 330 316–325. 10.1124/jpet.109.153775 PubMed DOI PMC
Yager L. M., Garcia A. F., Wunsch A. M., Ferguson S. M. (2015). The ins and outs of the striatum: role in drug addiction. Neuroscience 301 529–541. 10.1016/j.neuroscience.2015.06.033 PubMed DOI PMC
Yang Y., Raine A. (2009). Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 174 81–88. 10.1016/j.pscychresns.2009.03.012 PubMed DOI PMC
Yu J., Wang J., Cadet J. L., Angulo J. A. (2004). Histological evidence supporting a role for the striatal neurokinin-1 receptor in methamphetamine-induced neurotoxicity in the mouse brain. Brain Res. 1007 124–131. 10.1016/j.brainres.2004.01.077 PubMed DOI PMC
Zoubková H. (2019a). Data from: Results of First Microarray Trial of METH and SAL Exposed Rats. Available at: https://figshare.com/articles/Results_of_first_microarray_trial/8081072 (accessed June 18, 2019).
Zoubková H. (2019b). Data from: Results of Second Microarray Trial METH and SAL Exposed Rats. Available at: https://figshare.com/articles/Results_of_second_microarray_trial/8081120 (accessed June 18, 2019).
Methamphetamine, neurotransmitters and neurodevelopment