Early Postnatal Stress Impairs Cognitive Functions of Male Rats Persisting Until Adulthood
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
30174595
PubMed Central
PMC6107702
DOI
10.3389/fnbeh.2018.00176
Knihovny.cz E-resources
- Keywords
- learning, maternal separation, memory, methamphetamine, postnatal stress, prenatal stress,
- Publication type
- Journal Article MeSH
Methamphetamine (MA) is the most abused "hard" illicit drug in the Czech Republic. Drugs abused during pregnancy are not hazardous merely to the mother, but also to developing fetuses. The offspring of drug-addicted mothers are also often exposed to perinatal stressors that may impair brain development of affected progeny. The present study examines the effect of perinatal stressors and drug exposure on cognitive function in male progeny. In the present study, rat mothers were divided into three groups according to drug treatment during pregnancy: controls (C); saline (SA, s.c., 1 ml/kg); MA (s.c., 5 mg/ml/kg). Litters were divided into two groups according to postnatal stressors: non-stressed controls (N); Maternal separation (MS). For evaluation of learning and memory, adult male progeny were tested in the Morris Water Maze (MWM). Our results revealed no significant effects caused by prenatal drug or prenatal stress exposure. On the other hand, chronic postnatal stress, mediated by MS, significantly impaired learning on the Place Navigation test. In addition, MS was associated with changes in search strategies on the Place Navigation, Probe, and Memory Recall tests. Specifically, postnatal stress increased thigmotaxis, indicating less awareness of the hidden platform. In conclusion, the present study provides evidence that exposure to early postnatal stress significantly impairs cognitive functions of male rats, which persists into adulthood.
See more in PubMed
Acuff-Smith K. D., Schilling M. A., Fisher J. E., Vorhees C. V. (1996). Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicol. Teratol. 18, 199–215. 10.1016/0892-0362(95)02015-2 PubMed DOI
Aisa B., Elizalde N., Tordera R., Lasheras B., Del Rio J., Ramirez M. J. (2009). Effects of neonatal stress on markers of synaptic plasticity in the hippocampus: implications for spatial memory. Hippocampus 19, 1222–1231. 10.1002/hipo.20586 PubMed DOI
Aisa B., Tordera R., Lasheras B., Del Rio J., Ramirez M. J. (2007). Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 32, 256–266. 10.1016/j.psyneuen.2006.12.013 PubMed DOI
Altman J., Bayer S. A. (1990). Migration and distribution of two populations of hippocampal granule cell precursors during the perinatal and postnatal periods. J. Comp. Neurol. 301, 365–381. 10.1002/cne.903010304 PubMed DOI
Anacker C., Cattaneo A., Luoni A., Musaelyan K., Zunszain P. A., Milanesi E., et al. . (2013). Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology 38, 872–883. 10.1038/npp.2012.253 PubMed DOI PMC
Andersen S. L., Teicher M. H. (2004). Delayed effects of early stress on hippocampal development. Neuropsychopharmacology 29, 1988–1993. 10.1038/sj.npp.1300528 PubMed DOI
Antonelli M. C., Pallarés M. E., Ceccatelli S., Spulber S. (2017). Long-term consequences of prenatal stress and neurotoxicants exposure on neurodevelopment. Prog. Neurobiol. 155, 21–35. 10.1016/j.pneurobio.2016.05.005 PubMed DOI
Barrot M., Wallace D. L., Bolaños C. A., Graham D. L., Perrotti L. I., Neve R. L., et al. . (2005). Regulation of anxiety and initiation of sexual behavior by CREB in the nucleus accumbens. Proc. Natl. Acad. Sci. U S A 102, 8357–8362. 10.1073/pnas.0500587102 PubMed DOI PMC
Bayer S. A., Altman J., Russo R. J., Zhang X. (1993). Timetables of neurogenesis in the human brain based on experimentally determined patterns in the rat. Neurotoxicology 14, 83–144. PubMed
Bernaskova K., Tomkova S., Slamberova R. (2017). Are changes in excitability in the hippocampus of adult male rats induced by prenatal methamphetamine exposure or stress? Epilepsy Res. 137, 132–138. 10.1016/j.eplepsyres.2017.08.009 PubMed DOI
Berridge C. W., Waterhouse B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res. Rev. 42, 33–84. 10.1016/s0165-0173(03)00143-7 PubMed DOI
Cao X., Huang S., Cao J., Chen T., Zhu P., Zhu R., et al. . (2014). The timing of maternal separation affects morris water maze performance and long-term potentiation in male rats. Dev. Psychobiol. 56, 1102–1109. 10.1002/dev.21130 PubMed DOI
Chang L., Smith L. M., Lopresti C., Yonekura M. L., Kuo J., Walot I., et al. . (2004). Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 132, 95–106. 10.1016/j.pscychresns.2004.06.004 PubMed DOI
Charil A., Laplante D. P., Vaillancourt C., King S. (2010). Prenatal stress and brain development. Brain Res. Rev. 65, 56–79. 10.1016/j.brainresrev.2010.06.002 PubMed DOI
Cho A. K., Melega W. P. (2002). Patterns of methamphetamine abuse and their consequences. J. Addict. Dis. 21, 21–34. 10.1300/j069v21n01_03 PubMed DOI
Choy K. H., De Visser Y., Nichols N. R., van den Buuse M. (2008). Combined neonatal stress and young-adult glucocorticoid stimulation in rats reduce BDNF expression in hippocampus: effects on learning and memory. Hippocampus 18, 655–667. 10.1002/hipo.20425 PubMed DOI
Courtney K. E., Ray L. A. (2014). Methamphetamine: an update on epidemiology, pharmacology, clinical phenomenology, and treatment literature. Drug Alcohol. Depend. 143, 11–21. 10.1016/j.drugalcdep.2014.08.003 PubMed DOI PMC
de Kloet E. R., Oitzl M. S., Joëls M. (1999). Stress and cognition: are corticosteroids good or bad guys? Trends Neurosci. 22, 422–426. 10.1016/s0166-2236(99)01438-1 PubMed DOI
Friedman J. M. (2011). Leptin and the regulation of body weigh. Keio J. Med. 60, 1–9. 10.2302/kjm.60.1 PubMed DOI
Galvan C. D., Hrachovy R. A., Smith K. L., Swann J. W. (2000). Blockade of neuronal activity during hippocampal development produces a chronic focal epilepsy in the rat. J. Neurosci. 20, 2904–2916. 10.1523/jneurosci.20-08-02904.2000 PubMed DOI PMC
Hansen R. L., Struthers J. M., Gospe S. M., Jr. (1993). Visual evoked potentials and visual processing in stimulant drug-exposed infants. Dev. Med. Child Neurol. 35, 798–805. 10.1111/j.1469-8749.1993.tb11731.x PubMed DOI
Heim C., Nemeroff C. B. (2001). The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol. Psychiatry 49, 1023–1039. 10.1016/s0006-3223(01)01157-x PubMed DOI
Holubová A., Mikulecká A., Pometlová M., Nohejlová K., Slamberová R. (2018). Long-term early life adverse experience impairs responsiveness to exteroceptive stimuli in adult rats. Behav. Processes 149, 59–64. 10.1016/j.beproc.2018.02.005 PubMed DOI
Holubová A., Ševčíková M., Macúchová E., Hrebíčková I., Pometlová M., Šlamberová R. (2017). Effects of perinatal stress and drug abuse on maternal behavior and sensorimotor development of affected progeny. Physiol. Res. 66, S481–S491. PubMed
Holubová A., Štofková A., Jurčovičová J., Šlamberová R. (2016). The effect of neonatal maternal stress on plasma levels of adrenocorticotropic hormone, corticosterone, leptin and ghrelin in adult male rats exposed to acute heterotypic stressor. Physiol Res. 65, S557–S566. PubMed
Hori N., Kadota T., Akaike N. (2015). Functional changes in piriform cortex pyramidal neurons in the chronic methamphetamine-treated rat. Gen. Physiol. Biophys. 34, 5–12. 10.4149/gpb_2014024 PubMed DOI
Hrubá L., Schutová B., Pometlová M., Rokyta R., Slamberová R. (2010). Effect of methamphetamine exposure and cross-fostering on cognitive function in adult male rats. Behav. Brain Res. 208, 63–71. 10.1016/j.bbr.2009.11.001 PubMed DOI
Huot R. L., Gonzalez M. E., Ladd C. O., Thrivikraman K. V., Plotsky P. M. (2004). Foster litters prevent hypothalamic-pituitary-adrenal axis sensitization mediated by neonatal maternal separation. Psychoneuroendocrinology 29, 279–289. 10.1016/s0306-4530(03)00028-3 PubMed DOI
Huot R. L., Plotsky P. M., Lenox R. H., Mcnamara R. K. (2002). Neonatal maternal separation reduces hippocampal mossy fiber density in adult Long Evans rats. Brain Res. 950, 52–63. 10.1016/s0006-8993(02)02985-2 PubMed DOI
Kolb B., Gibb R. (2011). Brain plasticity and behaviour in the developing brain. J. Can. Acad. Child Adolesc. Psychiatry 20, 265–276. PubMed PMC
Krugers H. J., Arp J. M., Xiong H., Kanatsou S., Lesuis S. L., Korosi A., et al. . (2017). Early life adversity: lasting consequences for emotional learning. Neurobiol. Stress 6, 14–21. 10.1016/j.ynstr.2016.11.005 PubMed DOI PMC
Lajud N., Roque A., Cajero M., Gutierrez-Ospina G., Torner L. (2012). Periodic maternal separation decreases hippocampal neurogenesis without affecting basal corticosterone during the stress hyporesponsive period, but alters HPA axis and coping behavior in adulthood. Psychoneuroendocrinology 37, 410–420. 10.1016/j.psyneuen.2011.07.011 PubMed DOI
Laplante D. P., Brunet A., Schmitz N., Ciampi A., King S. (2008). Project Ice Storm: prenatal maternal stress affects cognitive and linguistic functioning in 5 1/2-year-old children. J. Am. Acad. Child Adolesc. Psychiatry 47, 1063–1072. 10.1097/CHI.0b013e31817eec80 PubMed DOI
Larsson G., Eriksson M., Zetterström R. (1979). Amphetamine addiction and pregnancy. Acta Psychiatr. Scand. 60, 334–346. 10.1111/j.1600-0447.1979.tb00283.x PubMed DOI
Lemaire V., Koehl M., Le Moal M., Abrous D. N. (2000). Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus. Proc. Natl. Acad. Sci. U S A 97, 11032–11037. 10.1073/pnas.97.20.11032 PubMed DOI PMC
Liles B. D., Newman E., Lagasse L. L., Derauf C., Shah R., Smith L. M., et al. . (2012). Perceived child behavior problems, parenting stress and maternal depressive symptoms among prenatal methamphetamine users. Child Psychiatry Hum. Dev. 43, 943–957. 10.1007/s10578-012-0305-2 PubMed DOI PMC
Lin Y., Xu J., Huang J., Jia Y., Zhang J., Yan C., et al. . (2017). Effects of prenatal and postnatal maternal emotional stress on toddlers’ cognitive and temperamental development. J. Affect. Disord. 207, 9–17. 10.1016/j.jad.2016.09.010 PubMed DOI
Little B. B., Snell L. M., Gilstrap L. C., III. (1988). Methamphetamine abuse during pregnancy: outcome and fetal effects. Obstet. Gynecol. 72, 541–544. PubMed
Macúchová E., Nohejlová K., Sevcíková M., Hrebícková I., Šlamberová R. (2017). Sex differences in the strategies of spatial learning in prenatally-exposed rats treated with various drugs in adulthood. Behav. Brain Res. 327, 83–93. 10.1016/j.bbr.2017.03.041 PubMed DOI
Malinová-Ševčíková M., Hrebíčková I., Macúchová E., Nová E., Pometlová M., Šlamberová R. (2014). Differences in maternal behavior and development of their pups depend on the time of methamphetamine exposure during gestation period. Physiol. Res. 4, S559–S572. PubMed
Marais L., van Rensburg S. J., van Zyl J. M., Stein D. J., Daniels W. M. (2008). Maternal separation of rat pups increases the risk of developing depressive-like behavior after subsequent chronic stress by altering corticosterone and neurotrophin levels in the hippocampus. Neurosci. Res. 61, 106–112. 10.1016/j.neures.2008.01.011 PubMed DOI
Marwick C. (2000). NIDA seeking data on effect of fetal exposure to methamphetamine. JAMA 283, 2225–2226. 10.1001/jama.283.17.2225-jmn0503-2-1 PubMed DOI
McDonald R. J., White N. M. (1994). Parallel information processing in the water maze: evidence for independent memory systems involving dorsal striatum and hippocampus. Behav. Neural Biol. 61, 260–270. 10.1016/s0163-1047(05)80009-3 PubMed DOI
Mesquita A. R., Pego J. M., Summavielle T., Maciel P., Almeida O. F., Sousa N. (2007). Neurodevelopment milestone abnormalities in rats exposed to stress in early life. Neuroscience 147, 1022–1033. 10.1016/j.neuroscience.2007.04.007 PubMed DOI
Mirescu C., Peters J. D., Gould E. (2004). Early life experience alters response of adult neurogenesis to stress. Nat. Neurosci. 7, 841–846. 10.1038/nn1290 PubMed DOI
Morris R. G., Moser E. I., Riedel G., Martin S. J., Sandin J., Day M., et al. . (2003). Elements of a neurobiological theory of the hippocampus: the role of activity-dependent synaptic plasticity in memory. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358, 773–786. 10.1098/rstb.2002.1264 PubMed DOI PMC
Naninck E. F., Hoeijmakers L., Kakava-Georgiadou N., Meesters A., Lazic S. E., Lucassen P. J., et al. . (2015). Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus 25, 309–328. 10.1002/hipo.22374 PubMed DOI
Nephew B., Murgatroyd C. (2013). The role of maternal care in shaping CNS function. Neuropeptides 47, 371–378. 10.1016/j.npep.2013.10.013 PubMed DOI PMC
Oreland S., Nylander I., Pickering C. (2010). Prolonged maternal separation decreases granule cell number in the dentate gyrus of 3-week-old male rats. Int. J. Dev. Neurosci. 28, 139–144. 10.1016/j.ijdevneu.2009.12.005 PubMed DOI
Oro A. S., Dixon S. D. (1987). Perinatal cocaine and methamphetamine exposure: maternal and neonatal correlates. J. Pediatr. 111, 571–578. 10.1016/s0022-3476(87)80125-7 PubMed DOI
Peters D. A. (1986). Prenatal stress increases the behavioral response to serotonin agonists and alters open field behavior in the rat. Pharmacol. Biochem. Behav. 25, 873–877. 10.1016/0091-3057(86)90400-4 PubMed DOI
Plotsky P. M., Thrivikraman K. V., Nemeroff C. B., Caldji C., Sharma S., Meaney M. J. (2005). Long-term consequences of neonatal rearing on central corticotropin-releasing factor systems in adult male rat offspring. Neuropsychopharmacology 30, 2192–2204. 10.1038/sj.npp.1300769 PubMed DOI
Pryce C. R., Feldon J. (2003). Long-term neurobehavioural impact of the postnatal environment in rats: manipulations, effects and mediating mechanisms. Neurosci. Biobehav. Rev. 27, 57–71. 10.1016/s0149-7634(03)00009-5 PubMed DOI
Rambousek L., Kacer P., Syslová K., Bumba J., Bubeníková-Valesova V., Šlamberová R. (2014). Sex differences in methamphetamine pharmacokinetics in adult rats and its transfer to pups through the placental membrane and breast milk. Drug Alcohol. Depend. 139, 138–144. 10.1016/j.drugalcdep.2014.03.023 PubMed DOI
Salzmann C., Otis M., Long H., Roberge C., Gallo-Payet N., Walker C. D. (2004). Inhibition of steroidogenic response to adrenocorticotropin by leptin: implications for the adrenal response to maternal separation in neonatal rats. Endocrinology 145, 1810–1822. 10.1210/en.2003-1514 PubMed DOI
Sapolsky R. M. (1985). Glucocorticoid toxicity in the hippocampus: temporal aspects of neuronal vulnerability. Brain Res. 359, 300–305. 10.1016/0006-8993(85)91440-4 PubMed DOI
Sapolsky R. M., Meaney M. J. (1986). Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. 396, 64–76. 10.1016/0165-0173(86)90010-x PubMed DOI
Schmidt M. V., Levine S., Alam S., Harbich D., Sterlemann V., Ganea K., et al. . (2006). Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. J. Neuroendocrinol. 18, 865–874. 10.1111/j.1365-2826.2006.01482.x PubMed DOI
Schutová B., Hrubá L., Pometlová M., Deykun K., Šlamberová R. (2009). Cognitive functions and drug sensitivity in adult male rats prenatally exposed to methamphetamine. Physiol. Res. 58, 741–750. PubMed
Šlamberová R. (2012). Drugs in pregnancy: the effects on mother and her progeny. Physiol. Res. 61, S123–S135. PubMed
Šlamberová R., Charousová P. (2008). Methamphetamine—a drug of pregnant female drug addicts. Cesk Fysiol. 57, 15–23. . PubMed
Šlamberová R., Charousová P., Pometlová M. (2005). Methamphetamine administration during gestation impairs maternal behavior. Dev. Psychobiol. 46, 57–65. 10.1002/dev.20042 PubMed DOI
Šlamberová R., Pometlová M., Charousová P. (2006). Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog. Neuropsychopharmacol. Biol. Psychiatry 30, 82–88. 10.1016/j.pnpbp.2005.06.006 PubMed DOI
Šlamberová R., Schindler C. J., Vathy I. (2002). Impact of maternal morphine and saline injections on behavioral responses to a cold water stressor in adult male and female progeny. Physiol. Behav. 75, 723–732. 10.1016/s0031-9384(02)00669-8 PubMed DOI
Smith L. M., Chang L., Yonekura M. L., Grob C., Osborn D., Ernst T. (2001). Brain proton magnetic resonance spectroscopy in children exposed to methamphetamine in utero. Neurology 57, 255–260. 10.1212/WNL.57.2.255 PubMed DOI
Stevenson-Hinde J. (2007). Attachment theory and John Bowlby: some reflections. Attach. Hum. Dev. 9, 337–342. 10.1080/14616730701711540 PubMed DOI
Swant J., Chirwa S., Stanwood G., Khoshbouei H. (2010). Methamphetamine reduces LTP and increases baseline synaptic transmission in the CA1 region of mouse hippocampus. PLoS One 5:e11382. 10.1371/journal.pone.0011382 PubMed DOI PMC
Thompson B. L., Levitt P., Stanwood G. D. (2009). Prenatal exposure to drugs: effects on brain development and implications for policy and education. Nat. Rev. Neurosci. 10, 303–312. 10.1038/nrn2598 PubMed DOI PMC
Vavrinková B., Binder T., Zivný J. (2001). Characteristics of a population of drug dependent pregnant women in the Czech Republic. Ceska Gynekol. 66, 285–291. PubMed
Vorhees C. V., Ahrens K. G., Acuff-Smith K. D., Schilling M. A., Fisher J. E. (1994). Methamphetamine exposure during early postnatal development in rats: I. Acoustic startle augmentation and spatial learning deficits. Psychopharmacology 114, 392–401. 10.1007/bf02249328 PubMed DOI
Walker C. D., Salzmann C., Long H., Otis M., Roberge C., Gallo-Payet N. (2004). Direct inhibitory effects of leptin on the neonatal adrenal and potential consequences for brain glucocorticoid feedback. Endocr. Res. 30, 837–844. 10.1081/erc-200044096 PubMed DOI
Williams M. T., Blankenmeyer T. L., Schaefer T. L., Brown C. A., Gudelsky G. A., Vorhees C. V. (2003). Long-term effects of neonatal methamphetamine exposure in rats on spatial learning in the Barnes maze and on cliff avoidance, corticosterone release, and neurotoxicity in adulthood. Dev. Brain Res. 147, 163–175. 10.1016/j.devbrainres.2003.11.001 PubMed DOI
Williams M. T., Schaefer T. L., Furay A. R., Ehrman L. A., Vorhees C. V. (2006). Ontogeny of the adrenal response to (+)-methamphetamine in neonatal rats: the effect of prior drug exposure. Stress 9, 153–163. 10.1080/10253890600902842 PubMed DOI PMC
Wouldes T., LaGasse L., Sheridan J., Lester B. (2004). Maternal methamphetamine use during pregnancy and child outcome: what do we know? N Z Med. J. 117:U1180. PubMed
Yamamoto Y., Yamamoto K., Fukui Y., Kurishita A. (1992). Teratogenic effects of methamphetamine in mice. Nihon Hoigaku Zasshi 46, 126–131. PubMed
Zhou L., Xu J., Zhang J., Yan C., Lin Y., Jia Y., et al. . (2017). Prenatal maternal stress in relation to the effects of prenatal lead exposure on toddler cognitive development. Neurotoxicology 59, 71–78. 10.1016/j.neuro.2017.01.008 PubMed DOI
Perinatal Stress and Methamphetamine Exposure Decreases Anxiety-Like Behavior in Adult Male Rats
Prenatal Exposure to Methamphetamine: Up-Regulation of Brain Receptor Genes