Metal contamination - a global environmental issue: sources, implications & advances in mitigation

. 2025 Jan 29 ; 15 (5) : 3904-3927. [epub] 20250211

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39936144

Metal contamination (MC) is a growing environmental issue, with metals altering biotic and metabolic pathways and entering the human body through contaminated food, water and inhalation. With continued population growth and industrialisation, MC poses an exacerbating risk to human health and ecosystems. Metal contamination in the environment is expected to continue to increase, requiring effective remediation approaches and harmonised monitoring programmes to significantly reduce the impact on health and the environment. Bio-based methods, such as enhanced phytoextraction and chemical stabilisation, are being used worldwide to remediate contaminated sites. A systematic plant screening of potential metallophytes can identify the most effective candidates for phytoremediation. However, the detection and prediction of MC is complex, non-linear and chaotic, and it frequently overlaps with various other constraints. Rapidly evolving artificial intelligence (AI) algorithms offer promising tools for the detection, growth and activity modelling and management of metallophytes, helping to fill knowledge gaps related to complex metal-environment interactions in different scenarios. By integrating AI with advanced sensor technologies and field-based trials, future research could revolutionize remediation strategies. This interdisciplinary approach holds immense potential in mitigating the detrimental impacts of metal contamination efficiently and sustainably.

Zobrazit více v PubMed

Khan M. U. Malik R. N. Muhammad S. Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 2013;93:2230–2238. PubMed

Preetha J. S. Y. Arun M. Vidya N. Kowsalya K. Halka J. Ondrasek G. Biotechnology Advances in Bioremediation of Arsenic: A Review. Molecules. 2023;28:1474. PubMed PMC

Uchimiya M. Bannon D. Nakanishi H. McBride M. B. Williams M. A. Yoshihara T. Speciation C. Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. J. Agric. Food Chem. 2020;68:12856–12869. PubMed

Inyang M. I. Gao B. Yao Y. Xue Y. Zimmerman A. Mosa A. Pullammanappallil P. Ok Y. S. Cao X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2015;46:406–433. doi: 10.1080/10643389.2015.1096880. DOI

Kumar M., Sawhney N. and Lal R., Chemistry of heavy metals in the environment, Heavy Metals in the Environment: Impact, Assessment, and Remediation, 2021, pp. 9–37

Du Y.-J., Liu S.-Y., Liu Z.-B., Chen L., Zhang F. and Jin F., An Overview of Stabilization/Solidification Technique for Heavy Metals Contaminated Soils, Advances in Environmental Geotechnics, 2010, pp. 760–766

Briffa J. Sinagra E. Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC

Chen Q. Y. DesMarais T. Costa M. Metals and Mechanisms of Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019;59:537. PubMed PMC

Ondrasek G. Jelovica Badovinac I. Peter R. Petravić M. Macan J. Rengel Z. Humates and Chlorides Synergistically Increase Cd Phytoaccumulation in Strawberry Fruits, Heightening Health Risk from Cd in Human Diet. Exposure Health. 2022;14:393–410.

Huang B. Yuan Z. Li D. Zheng M. Nie X. Liao Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review, RSC. Environ. Sci.: Processes Impacts. 2020;8:1596. doi: 10.1039/d0em00189a. PubMed DOI

Brewer C. E. Chuang V. J. Masiello C. A. Gonnermann H. Gao X. Dugan B. Driver L. E. Panzacchi P. Zygourakis K. Davies C. A. New approaches to measuring biochar density and porosity. Biomass Bioenergy. 2014;66:176–185.

Shi J. Pang J. Liu Q. Luo Y. Ye J. Xu Q. Long B. Ye B. Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv. 2020;10:7432–7442. PubMed PMC

Ondrasek G. Zovko M. Kranjčec F. Savić R. Romić D. Rengel Z. Wood biomass fly ash ameliorates acidic, low-nutrient hydromorphic soil & reduces metal accumulation in maize. J. Clean. Prod. 2021;283:124650. doi: 10.1016/j.jclepro.2020.124650. DOI

Ondrasek G. Clode P. L. Kilburn M. R. Guagliardo P. Romić D. Rengel Z. Zinc and cadmium mapping in the apical shoot and hypocotyl tissues of radish by high-resolution secondary ion mass spectrometry (NanoSIMS) after short-term exposure to metal contamination. Int. J. Environ. Res. Publ. Health. 2019;16:3. doi: 10.3390/ijerph16030373. PubMed DOI PMC

Ondrasek G. Romić D. Tanaskovik V. Savić R. Rathod S. Horvatinec J. Rengel Z. Humates mitigate Cd uptake in the absence of NaCl salinity, but combined application of humates and NaCl enhances Cd mobility & phyto-accumulation. Sci. Total Environ. 2022;848:157649. doi: 10.1016/j.scitotenv.2022.157649. PubMed DOI

WHO. Ambient (outdoor) air pollution, 2021, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, accessed 20 October 2022

Ondrasek G. Bakić Begić H. Zovko M. Filipović L. Meriño-Gergichevich C. Savić R. Rengel Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019;658:1559–1573. PubMed

Miler M. Gosar M. Assessment of contribution of metal pollution sources to attic and household dust in Pb-polluted area. Indoor Air. 2019;29:487–498. PubMed

Lal R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability. 2015;7:5875–5895.

Kumari S., Mishra A., Kumari S. and Mishra A., Heavy Metal Contamination, Soil Contamination - Threats and Sustainable Solutions, 10.5772/INTECHOPEN.93412 DOI

Naccarato A. Tassone A. Cavaliere F. Elliani R. Pirrone N. Sprovieri F. Tagarelli A. Giglio A. Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci. Total Environ. 2020;749:141438. PubMed

Sajn R. Using attic dust and soil for the separation of anthropogenic and geogenic elemental distributions in an old metallurgic area (Celje, Slovenia) Geochemistry. 2005;5:59–67.

Šajn R. Aliu M. Stafilov T. Alijagić J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013;134:1–16.

Yu H. Li C. Yan J. Ma Y. Zhou X. Yu W. Kan H. Meng Q. Xie R. Dong P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023;6:3505–3519. PubMed PMC

Bouida L. Rafatullah M. Kerrouche A. Qutob M. Alosaimi A. M. Alorfi H. S. Hussein M. A. A Review on Cadmium and Lead Contamination: Sources, Fate, Mechanism, Health Effects and Remediation Methods. Water. 2022;14:21. doi: 10.3390/w14213432. DOI

Rizwan M. Ali S. Hussain A. Ali Q. Shakoor M. B. Zia-ur-Rehman M. Farid M. Asma M. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere. 2017;187:35–42. PubMed

Kaur H. Garg N. Zinc toxicity in plants: a review. Planta. 2021;253:129. PubMed

Li X. Huang S. McBride M. B. Rhizosphere effect on Pb solubility and phytoavailability in Pb-Contaminated soils. Environ. Pollut. 2021;268:115840. PubMed

Pourrut B. Shahid M. Douay F. Dumat C. Pinelli E. Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. Heavy Met. Stress Plants. 2013:121–147.

Sun P. Chen Y. Liu J. Lu S. Guo J. Zhang Z. Zheng X. Quantitative evaluation of the synergistic effect of biochar and plants on immobilization of Pb. J. Environ. Manage. 2022;316:115200. PubMed

Nanda S. Abraham J. Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. Afr. J. Biotechnol. 2013;10:11948–11955.

Asare M. O. Száková J. Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils—a comprehensive review. Environ. Sci. Pollut. Res. 2022;30:11378–11398. PubMed PMC

Ali M. Nas F. S. The effect of lead on plants in terms of growing and biochemical parameters: a review. Moj Ecol. Environ. Sci. 2018;3:265–268. doi: 10.15406/mojes.2018.03.00098. DOI

Herath I. Kumarathilaka P. Navaratne A. Rajakaruna N. Vithanage M. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J. Soils Sediments. 2015;15:126–138.

Sun J. Fan Q. Ma J. Cui L. Quan G. Yan J. Wu L. Hina K. Abdul B. Wang H. Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil. Environ. Pollut. Bioavailability. 2020;32:36–46.

Usman K. Abu-Dieyeh M. H. Zouari N. Al-Ghouti M. A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci. Rep. 2020;10:1–10. PubMed PMC

Haque A. Tang C. K. Islam S. Ranjith P. G. Bui H. H. Biochar Sequestration in Lime-Slag Treated Synthetic Soils: A Green Approach to Ground Improvement. J. Mater. Civ. Eng. 2014;26:06014024.

Kováčik J. Rotková G. Bujdoš M. Babula P. Peterková V. Matúš P. Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J. Hazard. Mater. 2017;339:200–207. PubMed

Moulick D. Samanta S. Sarkar S. Mukherjee A. Pattnaik B. K. Saha S. Awasthi J. P. Bhowmick S. Ghosh D. Samal A. C. Mahanta S. Mazumder M. K. Choudhury S. Bramhachari K. Biswas J. K. Santra S. C. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci. Total Environ. 2021;800:149477. PubMed

Sharma A. Kapoor D. Wang J. Shahzad B. Kumar V. Bali A. S. Jasrotia S. Zheng B. Yuan H. Yan D. Chromium bioaccumulation and its impacts on plants: An overview. Plants. 2020;13(9):100. doi: 10.3390/plants9010100. PubMed DOI PMC

Liu S. Huang J. H. Zhang W. Shi L. X. Yi K. X. Yu H. B. Zhang C. Y. Li S. Z. Li J. N. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. J. Environ. Manage. 2022;302:113995. PubMed

Sharma P. Pandey A. K. Udayan A. Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour. Technol. 2021;326:124750. PubMed

Zunaidi A. A. Lim L. H. Metali F. Assessments of Heavy Metals in Commercially Available Fertilizers in Brunei Darussalam. Agric. Res. 2021;10:234–242.

Dror I. Yaron B. Berkowitz B. Microchemical contaminants as forming agents of anthropogenic soils. Ambio. 2017;46:109–120. PubMed PMC

Gosar M. Šajn R. Teršič T. Distribution pattern of mercury in the Slovenian soil: Geochemical mapping based on multiple geochemical datasets. J. Geochem. Explor. 2016;167:38–48.

Zoffoli H. J. O. Do Amaral-Sobrinho N. M. B. Zonta E. Luisi M. V. Marcon G. Tolón-Becerra A. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region. Environ. Monit. Assess. 2013;185:2423–2437. PubMed

Michalak I. Dziergowska K. Alagawany M. Farag M. R. El-Shall N. A. Tuli H. S. Bin Emran T. Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Q. 2022;42:68–94. PubMed PMC

Mroczek-Sosnowska N. Sawosz E. Vadalasetty K. P. Łukasiewicz M. Niemiec J. Wierzbicki M. Kutwin M. Jaworski S. Chwalibog A. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int. J. Mol. Sci. 2015;16:4838–4849. PubMed PMC

Ouyang Z. Ren P. Zheng D. Huang L. Wei T. Yang C. Kong X. Yin Y. He S. He Q. Hydrothermal synthesis of a new porous zinc oxide and its antimicrobial evaluation in weanling piglets. Livest. Sci. 2021;248:104499.

Hu C. H. Li Y. L. Xiong L. Zhang H. M. Song J. Xia M. S. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol. 2012;177:204–210.

Mohammadi F. Ahmadi F. Andi A. M. Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. Int. J. Biosci. 2015;6:389–394.

Alloway B. J., Sources of Heavy Metals and Metalloids in Soils, in Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, ed. Alloway, B. J., Springer, Dordrecht, The Netherlands, 2013, pp. 11–50

Nicholson F. A. Smith S. R. Alloway B. J. Carlton-Smith C. Chambers B. J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003;311:205–219. PubMed

Luo L. Ma Y. Zhang S. Wei D. Zhu Y. G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage. 2009;90:2524–2530. PubMed

Yang Y. Xiao C. Wang F. Peng L. Zeng Q. Luo S. Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes. J. Hazard. Mater. 2022;423:127183. PubMed

FAO, 2024, https://www.fao.org/faostat/en/#data/RP, accessed 13 January 2025

Alengebawy A. Abdelkhalek S. T. Qureshi S. R. Wang M. Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021;9:42. PubMed PMC

Ondrasek G. Rengel Z. Taylor R. G. Zhuo L. Centers for optimizing water management in agroecosystems & global food security. Front. Sustain. Food Syst. 2024;8:1398454.

Sharma A. Kumar V. Shahzad B. Tanveer M. Sidhu G. P. S. Handa N. Kohli S. K. Yadav P. Bali A. S. Parihar R. D. Dar O. I. Singh K. Jasrotia S. Bakshi P. Ramakrishnan M. Kumar S. Bhardwaj R. Thukral A. K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019;1:1–16.

Alexoaei A. P. Robu R. G. Cojanu V. Miron D. Holobiuc A. M. Good practices in reforming the common agricultural policy to support the European green deal – a perspective on the consumption of pesticides and fertilizers. Amfiteatru Econ. 2022;24:525–545.

Wu H. Lai C. Zeng G. Liang J. Chen J. Xu J. Dai J. Li X. Liu J. Chen M. Lu L. Hu L. Wan J. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit. Rev. Biotechnol. 2016;37:754–764. PubMed

Ondrasek G. Meriño-Gergichevich C. Manterola-Barroso C. Seguel Fuentealba A. Romero S. M. Savić R. Cholin S. S. Horvatinec J. Bio-based resources: systemic & circular solutions for (agro)environmental services. RSC Adv. 2024;14:23466. PubMed PMC

Hejna M. Gottardo D. Baldi A. Dell'Orto V. Cheli F. Zaninelli M. Rossi L. Review: Nutritional ecology of heavy metals. Animal. 2018;12:2156–2170. PubMed

Adekanmi A. T. and Adekanmi A. T., Health Hazards of Toxic and Essential Heavy Metals from the Poultry Waste on Human and Aquatic Organisms, Veterinary Medicine and Science, IntechOpen, 2022, 10.5772/INTECHOPEN.99549 DOI

Regulation (EC) 1831/2003, https://eur-lex.europa.eu/eli/reg/2003/1831/oj, accessed 21 February 2024

Walk C. L. Wilcock P. Magowan E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal. 2015;9:1145–1152. PubMed

National Research Council (NRC), A Framework for K-12 Science Education Practices, Crosscutting Concepts, and Core Ideas, National Academies Press. - References - Scientific Research Publishing, Washington DC The, 2012, https://www.scirp.org/reference/referencespapers?referenceid=1302130, accessed 22 February 2024

Lamastra L. Suciu N. A. Trevisan M. Sewage sludge for sustainable agriculture: Contaminants' contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018;5:1–6.

Marchuk S. Tait S. Sinha P. Harris P. Antille D. L. McCabe B. K. Biosolids-derived fertilisers: A review of challenges and opportunities. Sci. Total Environ. 2023;875:162555. PubMed

Gianico A. Braguglia C. M. Gallipoli A. Montecchio D. Mininni G. Land application of biosolids in europe: Possibilities, con-straints and future perspectives. Water. 2021;13:1. doi: 10.3390/w13010103. DOI

Le Q. Price G. W. A review of the influence of heat drying, alkaline treatment, and composting on biosolids characteristics and their impacts on nitrogen dynamics in biosolids-amended soils. Waste Manage. 2024;176:85–104. PubMed

Wang B. Gao B. Fang J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2018;47:2158–2207.

Council Directive 86/278/EEC, https://eur-lex.europa.eu/eli/dir/1986/278/oj/eng, accessed 13 January 2025

Hossain M. K. Strezov Vladimir V. Chan K. Y. Ziolkowski A. Nelson P. F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 2011;92:223–228. PubMed

Collivignarelli M. C. Abbà A. Frattarola A. Miino M. C. Padovani S. Katsoyiannis I. Torretta V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability. 2019;11:6015. doi: 10.3390/su11216015. DOI

NN 71/2019 (26.7.2019.), Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja - Zakon.hr, https://www.zakon.hr/cms.htm?id=39921, accessed 19 June 2024

Ye S. Zeng G. Wu H. Liang J. Zhang C. Dai J. Xiong W. Song B. Wu S. Yu J. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 2019;140:278–285.

Schimmelpfennig S. Glaser B. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 2012;41:1001–1013. PubMed

Salleh A. F. and Hettiarachchi H., Safe Use of Wastewater in Agriculture (SUWA): Reflecting on the Journey of Supporting the UN Sustainable Development Goals since, UNU-FLORES, 2015, 10.53325/FCVG7887 DOI

Ondrasek G., Water scarcity and water stress in agriculture, Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment, 2014, vol. 1, pp. 75–96

Nedelciu C. E. Ragnarsdóttir K. V. Stjernquist I. From waste to resource: A systems dynamics and stakeholder analysis of phosphorus recycling from municipal wastewater in Europe. Ambio. 2019;48:741–751. PubMed PMC

Chisanga C. B., Use of wastewater for irrigation in vegetable growing in the Kaufe Lagoon areas and along Ngwerere river, Report PMA, 2004, vol. 24, 10.13140/RG.2.1.2641.8646 DOI

Rogowska J. Cieszynska-Semenowicz M. Ratajczyk W. Wolska L. Micropollutants in treated wastewater. Ambio. 2020;49:487–503. PubMed PMC

Hu H. Jin Q. Kavan P. A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability. 2014;6:5820–5838.

Savic R. Ondrasek G. Zemunac R. Bubalo Kovacic M. Kranjcec F. Nikolic Jokanovic V. Bezdan A. Longitudinal distribution of macronutrients in the sediments of Jegricka watercourse in Vojvodina, Serbia. Sci. Total Environ. 2021;754:142138. doi: 10.1016/j.scitotenv.2020.142138. PubMed DOI

Chandra R. Sharma P. Yadav S. Tripathi S. Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation. Front. Microbiol. 2021;9:960. doi: 10.3389/fmicb.2018.00960. PubMed DOI PMC

Vidal O. Rostom F. François C. Giraud G. Global trends in metal consumption and supply: The raw material-energy nexus. Elements. 2017;13:319–324.

García-Olivares A. Ballabrera-Poy J. García-Ladona E. Turiel A. A global renewable mix with proven technologies and common materials. Energy Policy. 2012;41:561–574.

Covre W. P. Ramos S. J. Pereira W. V. da S. de Souza E. S. Martins G. C. Teixeira O. M. M. do Amarante C. B. Dias Y. N. Fernandes A. R. Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. J. Hazard. Mater. 2022;421:126688. PubMed

Li F. and Li F., Heavy Metal in Urban Soil: Health Risk Assessment and Management, Heavy Metals, InTech, 2018, 10.5772/intechopen.73256 DOI

Zhou L. Guo H. Wang X. Chu M. Zhang G. Zhang L. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis. Int. J. Coal Sci. Technol. 2019;6:235–246.

Pedrayes O. D. Lema D. G. Usamentiaga R. García D. F. Detection and localization of fugitive emissions in industrial plants using surveillance cameras. Comput. Ind. 2022;142:103731.

Chen Y. Du W. Zhuo S. Liu W. Liu Y. Shen G. Wu S. Li J. Zhou B. Wang G. Zeng E. Y. Cheng H. Liu W. Tao S. Stack and fugitive emissions of major air pollutants from typical brick kilns in China. Environ. Pollut. 2017;224:421–429. PubMed

Xu X. Cao X. Zhao L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere. 2013;92:955–961. PubMed

Skorbiłowicz M. Skorbiłowicz E. Rogowska W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals. 2021;11:1290.

Mukherjee A. Agrawal M. World air particulate matter: sources, distribution and health effects. Environ. Chem. Lett. 2017;15:283–309. doi: 10.1007/s10311-017-0611-9. DOI

Yang Q. Liu G. Falandysz J. Yang L. Zhao C. Chen C. Sun Y. Zheng M. Jiang G. Atmospheric emissions of particulate matter-bound heavy metals from industrial sources. Sci. Total Environ. 2024;947:174467. PubMed

Hocking P. J. The Composition of Phloem Exudate and Xylem Sap from Tree Tobacco (Nicotiana glauca Grah.) Ann. Bot. 1980;45:633–643.

Hazama K. Nagata S. Fujimori T. Yanagisawa S. Yoneyama T. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol. Plant. 2015;154:243–255. PubMed

Horvatinec J. Buczny J. Ondrasek G. Fly ash application impacts master physicochemical pedovariables: A multilevel meta-analysis. J. Environ. Manage. 2024;368:122066. doi: 10.1016/j.jenvman.2024.122066. PubMed DOI

Ondrasek G. Rengel Z. Clode P. L. Kilburn M. R. Guagliardo P. Romic D. Zinc and cadmium mapping by NanoSIMS within the root apex after short-term exposure to metal contamination. Ecotoxicol. Environ. Saf. 2019;171:571–578. PubMed

Ördög V., Plant physiology, https://www.slideshare.net/slideshow/plant-physiology-by-vince-ordog/75183793, accessed 13 January 2025

Salt D. E. Blaylock M. Kumar N. P. B. A. Dushenkov V. Ensley B. D. Chet I. Raskin I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology. 1995;13:468–474. PubMed

Hart J. J. Welch R. M. Norvell W. A. Sullivan L. A. Kochian L. V. Characterization of Cadmium Binding, Uptake, and Translocation in Intact Seedlings of Bread and Durum Wheat Cultivars. Plant Physiol. 1998;116:1413–1420. PubMed PMC

Hart J. J. Welch R. M. Norvell W. A. Kochian L. V. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol. Plant. 2002;116:73–78. PubMed

Nakanishi H. Ogawa I. Ishimaru Y. Mori S. Nishizawa N. K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006;52:464–469.

Saxena G. Purchase D. Mulla S. I. Saratale G. D. Bharagava R. N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Rev. Environ. Contam. Toxicol. 2019;249:71–131. PubMed

Ando Y. Nagata S. Yanagisawa S. Yoneyama T. Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct. Plant Biol. 2012;40:89–100. PubMed

Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88:1707–1719. PubMed

Yoneyama K. Awad A. A. Xie X. Yoneyama K. Takeuchi Y. Strigolactones as Germination Stimulants for Root Parasitic Plants. Plant Cell Physiol. 2010;51:1095–1103. PubMed PMC

Álvarez-Fernández A. Díaz-Benito P. Abadía A. López Millán A. F. Abadía J. Metal species involved in long distance metal transport in plants. Front. Plant Sci. 2014;5:82117. PubMed PMC

Sarwar N. Imran M. Shaheen M. R. Ishaque W. Kamran M. A. Matloob A. Rehim A. Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2017;171:710–721. PubMed

Sreeshma J. Sudandiradoss C. Identification of metal binding motifs in protein frameworks to develop novel remediation strategies for Hg2+ and Cr(VI) BioMetals. 2021;34:621–638. PubMed

Rellán-Álvarez R. Giner-Martínez-Sierra J. Orduna J. Orera I. Rodríguez-Castrilln J. Á. García-Alonso J. I. Abadía J. Álvarez-Fernández A. Identification of a Tri-Iron(III), Tri-Citrate Complex in the Xylem Sap of Iron-Deficient Tomato Resupplied with Iron: New Insights into Plant Iron Long-Distance Transport. Plant Cell Physiol. 2010;51:91–102. PubMed

Ariga T. Hazama K. Yanagisawa S. Yoneyama T. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci. Plant Nutr. 2014;60:460–469.

Krämer U. Cotter-Howells J. D. Charnock J. M. Baker A. J. M. Smith J. A. C. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996;379:635–638.

Akhatar O., Sharma H., Zoomi I., Chaudhary K. L. and Kumar M., Metallophytes, Heavy Metals in Plants Physiological to Molecular Approach, 2022, pp. 354–368

Kong L. L. Liu W. T. Zhou Q. X. Biochar: An effective amendment for remediating contaminated soil. Rev. Environ. Contam. Toxicol. 2014;228:83–99. PubMed

Mead A. Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Front. Plant Sci. 2019;14:697. doi: 10.3389/fpls.2019.00697. PubMed DOI PMC

Wang F. Wang X. Song N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021;784:147133. PubMed

Skuza L. Szućko-Kociuba I. Filip E. Bożek I. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Int. J. Mol. Sci. 2022;23:9335. doi: 10.3390/ijms23169335. PubMed DOI PMC

Ghori Z., Iftikhar H., Bhatti M. F., Um-Minullah N., Sharma I., Kazi A. G. and Ahmad P., Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil, Plant Metal Interaction: Emerging Remediation Techniques, 2016, pp. 385–409

Christenhusz M. J. M. Byng J. W. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261:201–217.

Cappa J. J. Pilon-Smits E. A. H. Evolutionary aspects of elemental hyperaccumulation. Planta. 2014;239:267–275. PubMed

Allen N. Dai C. Hu Y. Kubicki J. D. Kabengi N. Adsorption Study of Al 3+, Cr 3+, and Mn 2+ onto Quartz and Corundum using Flow Microcalorimetry, Quartz Crystal Microbalance and Density Functional Theory. ACS Earth Space Chem. 2019;3(3) doi: 10.1021/acsearthspacechem.8b00148. DOI

Ondrasek G. Bubalo Kovačić M. Carević I. Štirmer N. Stipičević S. Udiković-Kolić N. Filipović V. Romić D. Rengel Z. Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy. Renew. Sustain. Energy Rev. 2021;151:111540.

Mathur J. Goswami P. Gupta A. Srivastava S. Minkina T. Shan S. Rajput V. D. Nanomaterials for Water Remediation: An Efficient Strategy for Prevention of Metal(loid) Hazard. Water. 2022;14:24. doi: 10.3390/w14243998. DOI

Kicińska A. Pomykała R. Izquierdo-Diaz M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021;73:e13203. doi: 10.1111/EJSS.13203. DOI

Kanakaraju D. Norfadzila D. Nori H. Wahi R. Heavy metal leachability in fly ash remediated soil. J. Sustainability Sci. Manage. 2019;14:37–48.

Asokbunyarat V., Lens P. N. L. and Annachhatre A. P., Permeable Reactive Barriers for Heavy Metal Removal, 2017, pp. 65–100

Kumar U. Singh P. K. Kumar I. Sharma R. K. Heavy metal accumulation, yield and health risk assessment of wheat crop grown in contaminated soil amended with bioash for sustainable agriculture. J. Food Compos. Anal. 2025;139:107140.

Tomczyk A. Sokołowska Z. Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020;19:191–215.

Laird D. and Rogovska N., Biochar effects on nutrient leaching, in Biochar for Environmental Management: Science, Technology, and Implementation, Earthscan, 2nd edn, 2015, pp. 521–524

Li Y. Yu H. Liu L. Yu H. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J. Hazard. Mater. 2021;420:126655. PubMed

Li Y. Shao J. Wang X. Deng Y. Yang H. Chen H. Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy Fuel. 2014;28:5119–5127.

Puga A. P. Abreu C. A. Melo L. C. A. Beesley L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manage. 2015;159:86–93. PubMed

Lu K. Yang X. Gielen G. Bolan N. Ok Y. S. Niazi N. K. Xu S. Yuan G. Chen X. Zhang X. Liu D. Song Z. Liu X. Wang H. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage. 2017;186:285–292. PubMed

Sun Y. Gao B. Yao Y. Fang J. Zhang M. Zhou Y. Chen H. Yang L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014;240:574–578.

Shah V. Daverey A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020;18:100774.

Ahmad M. Rajapaksha A. U. Lim J. E. Zhang M. Bolan N. Mohan D. Vithanage M. Lee S. S. Ok Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014;99:19–33. PubMed

Khan S. Chao C. Waqas M. Peter H. Arp H. Zhu Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013;47(15) doi: 10.1021/es400554x. PubMed DOI

Rajapaksha A. U. Chen S. S. Tsang D. C. W. Zhang M. Vithanage M. Mandal S. Gao B. Bolan N. S. Ok Y. S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere. 2016;148:276–291. PubMed

Giwa A. S. Ndungutse J. M. Li Y. Mabi A. Liu X. Vakili M. Memon A. G. Ai L. Chenfeng Z. Sheng M. Modification of biochar with Fe3O4 and humic acid-salt for removal of mercury from aqueous solutions: a review. Environ. Pollut. Bioavailability. 2022;34:352–364. doi: 10.1080/26395940.2022.2115402. DOI

Anawar H. M. Akter F. Solaiman Z. M. Strezov V. Biochar: An Emerging Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage Wastes. Pedosphere. 2015;25:654–665.

Zhou R. Zhang M. Shao S. Optimization of target biochar for the adsorption of target heavy metal ion. Sci. Rep. 2022;12:1–17. PubMed PMC

Sajjadi B. Zubatiuk T. Leszczynska D. Leszczynski J. Chen W. Y. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev. Chem. Eng. 2018;35:777–815.

Ondrasek G. Kranjčec F. Filipović L. Filipović V. Bubalo Kovačić M. Badovinac I. J. Peter R. Petravić M. Macan J. Rengel Z. Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Sci. Total Environ. 2021;753:141902. PubMed

Xu Y. Deng F. Pang Q. He S. Xu Y. Luo G. Yao H. Development of waste-derived sorbents from biomass and brominated flame retarded plastic for elemental mercury removal from coal-fired flue gas. Chem. Eng. J. 2018;350:911–919.

Wei X. Li X. Tang L. Yu J. Deng J. Luo T. Liang J. Chen X. Zhou Y. Exploring the role of Fe species from biochar-iron composites in the removal and long-term immobilization of SeO42- against competing oxyanions. J. Hazard. Mater. 2021;418:126311. PubMed

Deng J. Li X. Wei X. Liu Y. Liang J. Song B. Shao Y. Huang W. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chem. Eng. J. 2020;387:124097.

Ngambia A. Ifthikar J. Shahib I. I. Jawad A. Shahzad A. Zhao M. Wang J. Chen Z. Chen Z. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(II) composite. Sci. Total Environ. 2019;691:306–321. PubMed

Dias D. Bernardo M. Matos I. Fonseca I. Pinto F. Lapa N. Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. J. Clean. Prod. 2020;267:121993.

Gao R. Fu Q. Hu H. Wang Q. Liu Y. Zhu J. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. J. Hazard. Mater. 2019;371:191–197. PubMed

Bolan N. Kunhikrishnan A. Thangarajan R. Kumpiene J. Park J. Makino T. Kirkham M. B. Scheckel K. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J. Hazard. Mater. 2014;266:141–166. PubMed

Yuan C. Gao B. Peng Y. Gao X. Fan B. Chen Q. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. Sci. Total Environ. 2021;756:144058. PubMed

Rashid M. I. Shah G. A. Sadiq M. ul Amin N. Ali A. M. Ondrasek G. Shahzad K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. Plants. 2023;12:1312. PubMed PMC

Palansooriya K. N. Li J. Dissanayake P. D. Suvarna M. Li L. Yuan X. Sarkar B. Tsang D. C. W. Rinklebe J. Wang X. Ok Y. S. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environ. Sci. Technol. 2022;56:4187–4198. PubMed PMC

Zheng L. Lin Y. Wu J. Zheng M. The Associations of Tobacco Use, Sexually Transmitted Infections, HPV Vaccination, and Screening With the Global Incidence of Cervical Cancer: An Ecological Time Series Modelling Study. SSRN Electron. J. 2023;45 doi: 10.2139/SSRN.4003222. PubMed DOI PMC

Cui W. Li X. Duan W. Xie M. Dong X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. Environ. Geochem. Health. 2023:1–37. PubMed

Zhao Y. Zhao M. Qi L. Zhao C. Zhang W. Zhang Y. Wen W. Yuan J. Coupled Relationship between Soil Physicochemical Properties and Plant Diversity in the Process of Vegetation Restoration. Forests. 2022;13(5):645.

Wang Y. Zheng K. Jiao Z. Zhan W. Ge S. Ning S. Fang S. Ruan X. Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics. 2022;10(6):316. PubMed PMC

Fayiga A. Nwoke O. Metal (Loid)s in Farmland Soils and Strategies to Reduce Bioavailability. Open J. Environ. Biol. 2017;2:009–024.

Haider F. U. Coulter J. A. Cai L. Hussain S. Cheema S. A. Wu J. Zhang R. An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere. 2022;32:107–130.

O'Laughlin J. and McElligott K., Biochar for Environmental Management: Science and Technology, ed. J. Lehmann and S. M. Joseph, Earthscan, London UK, 2009, vol. 11, pp. 535–536

Ongsulee P., Artificial Intelligence, Machine Learning and Deep Learning, IEEE, 10.1109/ICTKE.2017.8259629 DOI

Song R. Li D. Chang A. Tao M. Qin Y. Keller A. A. Suh S. Accelerating the pace of ecotoxicological assessment using artificial intelligence. Ambio. 2022;51:598–610. PubMed PMC

Bazoobandi A. Emamgholizadeh S. Ghorbani H. Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. Eur. J. Environ. Civ. Eng. 2022;26:933–951.

Sari M. Cosgun T. Yalcin I. E. Taner M. Ozyigit I. I. Deciding Heavy Metal Levels in Soil Based on Various Ecological Information through Artificial Intelligence Modeling. Appl. Artif. Intell. 36:2014189. doi: 10.1080/08839514.2021.2014189. DOI

Shi S. Hou M. Gu Z. Jiang C. Zhang W. Hou M. Li C. Xi Z. Estimation of Heavy Metal Content in Soil Based on Machine Learning Models. Land. 2022;11:1037.

Tawabini B. Yassin M. A. Benaafi M. Adetoro J. A. Al-Shaibani A. Abba S. I. Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling. Sustainability. 2022;14:2192.

Luo N. Methods for controlling heavy metals in environmental soils based on artificial neural networks. Sci. Rep. 2024;14:1–13. PubMed PMC

Bhagat S. K. Tung T. M. Yaseen Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 2021;403:123492. PubMed

Kumar Sarkar S. and Rafizul I. M., Analysis of Heavy Metal Concentration in Soils of a Waste Disposal Site in Khulna Using Artificial Intelligence Technique, ICCESD, 2020

Sun C. Tian Y. Gao L. Niu Y. Zhang T. Li H. Zhang Y. Yue Z. Delepine-Gilon N. Yu J. Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soils with Generalized LIBS Spectra. Sci. Rep. 2019;9:1–18. PubMed PMC

Tarasov D. A. Buevich A. G. Sergeev A. P. Shichkin A. V. Baglaeva E. M. Topsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarctic. AIP Conf. Proc. 2017;1836:020024.

Ma W., Tan K. and Du P., Predicting Soil Heavy Metal Based on Random Forest Model, IGARSS, 2016, pp. 4331–4334

Zhang H. Yin S. Chen Y. Shao S. Wu J. Fan M. Chen F. Gao C. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean. Prod. 2020;273:122858.

Yaseen Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere. 2021;277:130126. PubMed

Houben D. Evrard L. Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere. 2013;92:1450–1457. PubMed

Li Q. Wang Y. Li Y. Li L. Tang M. Hu W. Chen L. Ai S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022;825:153862. PubMed

Ball B. C. Hargreaves P. R. Watson C. A. A framework of connections between soil and people can help improve sustainability of the food system and soil functions. Ambio. 2018;47:269–283. doi: 10.1007/s13280-017-0965-z. PubMed DOI PMC

Barker A. J. Clausen J. L. Douglas T. A. Bednar A. J. Griggs C. S. Martin W. A. Environmental impact of metals resulting from military training activities: A review. Chemosphere. 2021;265:129110. PubMed

Fayiga A. O. Saha U. K. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016;216:135–144. doi: 10.1016/j.envpol.2016.05.062. PubMed DOI

Shukla S. Mbingwa G. Khanna S. Dalal J. Sankhyan D. Malik A. Badhwar N. Environment and health hazards due to military metal pollution: A review. Environ. Nanotechnol. Monit. Manag. 2023;20:100857.

Othman R. Mohd Latiff N. H. Baharuddin Z. M. Hashim K. S. H. Y. Lukman Hakim Mahamod L. H. Closed landfill heavy metal contamination distribution profiles at different soil depths and radiuses. Appl. Ecol. Environ. Res. 2019;17:8059–8067.

Shumilova O. Tockner K. Sukhodolov A. Khilchevskyi V. De Meester L. Stepanenko S. Trokhymenko G. Hernández-Agüero J. A. Gleick P. Impact of the Russia–Ukraine armed conflict on water resources and water infrastructure. Nat Sustainability. 2023;6:578–586.

Shebanina O. Kormyshkin I. Bondar A. Bulba I. Ualkhanov B. Ukrainian soil pollution before and after the Russian invasion. Int. J. Environ. Stud. 2024;81:208–215.

Yakymchuk A., Assessment of soil contamination of Ukraine with heavy metals during the war, Scientific Papers of Silesian University of Technology Organization and Management Series, 2024, vol. 196, 10.29119/1641-3466.2024.196.45 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...