Metal contamination - a global environmental issue: sources, implications & advances in mitigation
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
39936144
PubMed Central
PMC11811701
DOI
10.1039/d4ra04639k
PII: d4ra04639k
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Metal contamination (MC) is a growing environmental issue, with metals altering biotic and metabolic pathways and entering the human body through contaminated food, water and inhalation. With continued population growth and industrialisation, MC poses an exacerbating risk to human health and ecosystems. Metal contamination in the environment is expected to continue to increase, requiring effective remediation approaches and harmonised monitoring programmes to significantly reduce the impact on health and the environment. Bio-based methods, such as enhanced phytoextraction and chemical stabilisation, are being used worldwide to remediate contaminated sites. A systematic plant screening of potential metallophytes can identify the most effective candidates for phytoremediation. However, the detection and prediction of MC is complex, non-linear and chaotic, and it frequently overlaps with various other constraints. Rapidly evolving artificial intelligence (AI) algorithms offer promising tools for the detection, growth and activity modelling and management of metallophytes, helping to fill knowledge gaps related to complex metal-environment interactions in different scenarios. By integrating AI with advanced sensor technologies and field-based trials, future research could revolutionize remediation strategies. This interdisciplinary approach holds immense potential in mitigating the detrimental impacts of metal contamination efficiently and sustainably.
Center of Excellence in Environmental Studies King Abdulaziz University 22252 Jeddah Saudi Arabia
Faculty of Agriculture The University of Zagreb 10000 Zagreb Croatia
ICAR Indian Institute of Rice Research Hyderabad 500030 India
Institute for Adriatic Crops and Karst Reclamation 21000 Split Croatia
Zobrazit více v PubMed
Khan M. U. Malik R. N. Muhammad S. Human health risk from Heavy metal via food crops consumption with wastewater irrigation practices in Pakistan. Chemosphere. 2013;93:2230–2238. PubMed
Preetha J. S. Y. Arun M. Vidya N. Kowsalya K. Halka J. Ondrasek G. Biotechnology Advances in Bioremediation of Arsenic: A Review. Molecules. 2023;28:1474. PubMed PMC
Uchimiya M. Bannon D. Nakanishi H. McBride M. B. Williams M. A. Yoshihara T. Speciation C. Plant Uptake, and Toxicity of Heavy Metals in Agricultural Soils. J. Agric. Food Chem. 2020;68:12856–12869. PubMed
Inyang M. I. Gao B. Yao Y. Xue Y. Zimmerman A. Mosa A. Pullammanappallil P. Ok Y. S. Cao X. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Crit. Rev. Environ. Sci. Technol. 2015;46:406–433. doi: 10.1080/10643389.2015.1096880. DOI
Kumar M., Sawhney N. and Lal R., Chemistry of heavy metals in the environment, Heavy Metals in the Environment: Impact, Assessment, and Remediation, 2021, pp. 9–37
Du Y.-J., Liu S.-Y., Liu Z.-B., Chen L., Zhang F. and Jin F., An Overview of Stabilization/Solidification Technique for Heavy Metals Contaminated Soils, Advances in Environmental Geotechnics, 2010, pp. 760–766
Briffa J. Sinagra E. Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 6(9):e04691. doi: 10.1016/j.heliyon.2020.e04691. PubMed DOI PMC
Chen Q. Y. DesMarais T. Costa M. Metals and Mechanisms of Carcinogenesis. Annu. Rev. Pharmacol. Toxicol. 2019;59:537. PubMed PMC
Ondrasek G. Jelovica Badovinac I. Peter R. Petravić M. Macan J. Rengel Z. Humates and Chlorides Synergistically Increase Cd Phytoaccumulation in Strawberry Fruits, Heightening Health Risk from Cd in Human Diet. Exposure Health. 2022;14:393–410.
Huang B. Yuan Z. Li D. Zheng M. Nie X. Liao Y. Effects of soil particle size on the adsorption, distribution, and migration behaviors of heavy metal(loid)s in soil: A review, RSC. Environ. Sci.: Processes Impacts. 2020;8:1596. doi: 10.1039/d0em00189a. PubMed DOI
Brewer C. E. Chuang V. J. Masiello C. A. Gonnermann H. Gao X. Dugan B. Driver L. E. Panzacchi P. Zygourakis K. Davies C. A. New approaches to measuring biochar density and porosity. Biomass Bioenergy. 2014;66:176–185.
Shi J. Pang J. Liu Q. Luo Y. Ye J. Xu Q. Long B. Ye B. Yuan X. Simultaneous removal of multiple heavy metals from soil by washing with citric acid and ferric chloride. RSC Adv. 2020;10:7432–7442. PubMed PMC
Ondrasek G. Zovko M. Kranjčec F. Savić R. Romić D. Rengel Z. Wood biomass fly ash ameliorates acidic, low-nutrient hydromorphic soil & reduces metal accumulation in maize. J. Clean. Prod. 2021;283:124650. doi: 10.1016/j.jclepro.2020.124650. DOI
Ondrasek G. Clode P. L. Kilburn M. R. Guagliardo P. Romić D. Rengel Z. Zinc and cadmium mapping in the apical shoot and hypocotyl tissues of radish by high-resolution secondary ion mass spectrometry (NanoSIMS) after short-term exposure to metal contamination. Int. J. Environ. Res. Publ. Health. 2019;16:3. doi: 10.3390/ijerph16030373. PubMed DOI PMC
Ondrasek G. Romić D. Tanaskovik V. Savić R. Rathod S. Horvatinec J. Rengel Z. Humates mitigate Cd uptake in the absence of NaCl salinity, but combined application of humates and NaCl enhances Cd mobility & phyto-accumulation. Sci. Total Environ. 2022;848:157649. doi: 10.1016/j.scitotenv.2022.157649. PubMed DOI
WHO. Ambient (outdoor) air pollution, 2021, https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health, accessed 20 October 2022
Ondrasek G. Bakić Begić H. Zovko M. Filipović L. Meriño-Gergichevich C. Savić R. Rengel Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019;658:1559–1573. PubMed
Miler M. Gosar M. Assessment of contribution of metal pollution sources to attic and household dust in Pb-polluted area. Indoor Air. 2019;29:487–498. PubMed
Lal R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability. 2015;7:5875–5895.
Kumari S., Mishra A., Kumari S. and Mishra A., Heavy Metal Contamination, Soil Contamination - Threats and Sustainable Solutions, 10.5772/INTECHOPEN.93412 DOI
Naccarato A. Tassone A. Cavaliere F. Elliani R. Pirrone N. Sprovieri F. Tagarelli A. Giglio A. Agrochemical treatments as a source of heavy metals and rare earth elements in agricultural soils and bioaccumulation in ground beetles. Sci. Total Environ. 2020;749:141438. PubMed
Sajn R. Using attic dust and soil for the separation of anthropogenic and geogenic elemental distributions in an old metallurgic area (Celje, Slovenia) Geochemistry. 2005;5:59–67.
Šajn R. Aliu M. Stafilov T. Alijagić J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë, Kosovo/Kosovë. J. Geochem. Explor. 2013;134:1–16.
Yu H. Li C. Yan J. Ma Y. Zhou X. Yu W. Kan H. Meng Q. Xie R. Dong P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023;6:3505–3519. PubMed PMC
Bouida L. Rafatullah M. Kerrouche A. Qutob M. Alosaimi A. M. Alorfi H. S. Hussein M. A. A Review on Cadmium and Lead Contamination: Sources, Fate, Mechanism, Health Effects and Remediation Methods. Water. 2022;14:21. doi: 10.3390/w14213432. DOI
Rizwan M. Ali S. Hussain A. Ali Q. Shakoor M. B. Zia-ur-Rehman M. Farid M. Asma M. Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere. 2017;187:35–42. PubMed
Kaur H. Garg N. Zinc toxicity in plants: a review. Planta. 2021;253:129. PubMed
Li X. Huang S. McBride M. B. Rhizosphere effect on Pb solubility and phytoavailability in Pb-Contaminated soils. Environ. Pollut. 2021;268:115840. PubMed
Pourrut B. Shahid M. Douay F. Dumat C. Pinelli E. Molecular mechanisms involved in lead uptake, toxicity and detoxification in higher plants. Heavy Met. Stress Plants. 2013:121–147.
Sun P. Chen Y. Liu J. Lu S. Guo J. Zhang Z. Zheng X. Quantitative evaluation of the synergistic effect of biochar and plants on immobilization of Pb. J. Environ. Manage. 2022;316:115200. PubMed
Nanda S. Abraham J. Impact of heavy metals on the rhizosphere microflora of Jatropha multifida and their effective remediation. Afr. J. Biotechnol. 2013;10:11948–11955.
Asare M. O. Száková J. Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils—a comprehensive review. Environ. Sci. Pollut. Res. 2022;30:11378–11398. PubMed PMC
Ali M. Nas F. S. The effect of lead on plants in terms of growing and biochemical parameters: a review. Moj Ecol. Environ. Sci. 2018;3:265–268. doi: 10.15406/mojes.2018.03.00098. DOI
Herath I. Kumarathilaka P. Navaratne A. Rajakaruna N. Vithanage M. Immobilization and phytotoxicity reduction of heavy metals in serpentine soil using biochar. J. Soils Sediments. 2015;15:126–138.
Sun J. Fan Q. Ma J. Cui L. Quan G. Yan J. Wu L. Hina K. Abdul B. Wang H. Effects of biochar on cadmium (Cd) uptake in vegetables and its natural downward movement in saline-alkali soil. Environ. Pollut. Bioavailability. 2020;32:36–46.
Usman K. Abu-Dieyeh M. H. Zouari N. Al-Ghouti M. A. Lead (Pb) bioaccumulation and antioxidative responses in Tetraena qataranse. Sci. Rep. 2020;10:1–10. PubMed PMC
Haque A. Tang C. K. Islam S. Ranjith P. G. Bui H. H. Biochar Sequestration in Lime-Slag Treated Synthetic Soils: A Green Approach to Ground Improvement. J. Mater. Civ. Eng. 2014;26:06014024.
Kováčik J. Rotková G. Bujdoš M. Babula P. Peterková V. Matúš P. Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J. Hazard. Mater. 2017;339:200–207. PubMed
Moulick D. Samanta S. Sarkar S. Mukherjee A. Pattnaik B. K. Saha S. Awasthi J. P. Bhowmick S. Ghosh D. Samal A. C. Mahanta S. Mazumder M. K. Choudhury S. Bramhachari K. Biswas J. K. Santra S. C. Arsenic contamination, impact and mitigation strategies in rice agro-environment: An inclusive insight. Sci. Total Environ. 2021;800:149477. PubMed
Sharma A. Kapoor D. Wang J. Shahzad B. Kumar V. Bali A. S. Jasrotia S. Zheng B. Yuan H. Yan D. Chromium bioaccumulation and its impacts on plants: An overview. Plants. 2020;13(9):100. doi: 10.3390/plants9010100. PubMed DOI PMC
Liu S. Huang J. H. Zhang W. Shi L. X. Yi K. X. Yu H. B. Zhang C. Y. Li S. Z. Li J. N. Microplastics as a vehicle of heavy metals in aquatic environments: A review of adsorption factors, mechanisms, and biological effects. J. Environ. Manage. 2022;302:113995. PubMed
Sharma P. Pandey A. K. Udayan A. Kumar S. Role of microbial community and metal-binding proteins in phytoremediation of heavy metals from industrial wastewater. Bioresour. Technol. 2021;326:124750. PubMed
Zunaidi A. A. Lim L. H. Metali F. Assessments of Heavy Metals in Commercially Available Fertilizers in Brunei Darussalam. Agric. Res. 2021;10:234–242.
Dror I. Yaron B. Berkowitz B. Microchemical contaminants as forming agents of anthropogenic soils. Ambio. 2017;46:109–120. PubMed PMC
Gosar M. Šajn R. Teršič T. Distribution pattern of mercury in the Slovenian soil: Geochemical mapping based on multiple geochemical datasets. J. Geochem. Explor. 2016;167:38–48.
Zoffoli H. J. O. Do Amaral-Sobrinho N. M. B. Zonta E. Luisi M. V. Marcon G. Tolón-Becerra A. Inputs of heavy metals due to agrochemical use in tobacco fields in Brazil's Southern Region. Environ. Monit. Assess. 2013;185:2423–2437. PubMed
Michalak I. Dziergowska K. Alagawany M. Farag M. R. El-Shall N. A. Tuli H. S. Bin Emran T. Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet. Q. 2022;42:68–94. PubMed PMC
Mroczek-Sosnowska N. Sawosz E. Vadalasetty K. P. Łukasiewicz M. Niemiec J. Wierzbicki M. Kutwin M. Jaworski S. Chwalibog A. Nanoparticles of copper stimulate angiogenesis at systemic and molecular level. Int. J. Mol. Sci. 2015;16:4838–4849. PubMed PMC
Ouyang Z. Ren P. Zheng D. Huang L. Wei T. Yang C. Kong X. Yin Y. He S. He Q. Hydrothermal synthesis of a new porous zinc oxide and its antimicrobial evaluation in weanling piglets. Livest. Sci. 2021;248:104499.
Hu C. H. Li Y. L. Xiong L. Zhang H. M. Song J. Xia M. S. Comparative effects of nano elemental selenium and sodium selenite on selenium retention in broiler chickens. Anim. Feed Sci. Technol. 2012;177:204–210.
Mohammadi F. Ahmadi F. Andi A. M. Effect of zinc oxide nanoparticles on carcass parameters, relative weight of digestive and lymphoid organs of broiler fed wet diet during the starter period. Int. J. Biosci. 2015;6:389–394.
Alloway B. J., Sources of Heavy Metals and Metalloids in Soils, in Heavy Metals in Soils. Trace Metals and Metalloids in Soils and Their Bioavailability, ed. Alloway, B. J., Springer, Dordrecht, The Netherlands, 2013, pp. 11–50
Nicholson F. A. Smith S. R. Alloway B. J. Carlton-Smith C. Chambers B. J. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003;311:205–219. PubMed
Luo L. Ma Y. Zhang S. Wei D. Zhu Y. G. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage. 2009;90:2524–2530. PubMed
Yang Y. Xiao C. Wang F. Peng L. Zeng Q. Luo S. Assessment of the potential for phytoremediation of cadmium polluted soils by various crop rotation patterns based on the annual input and output fluxes. J. Hazard. Mater. 2022;423:127183. PubMed
FAO, 2024, https://www.fao.org/faostat/en/#data/RP, accessed 13 January 2025
Alengebawy A. Abdelkhalek S. T. Qureshi S. R. Wang M. Q. Heavy Metals and Pesticides Toxicity in Agricultural Soil and Plants: Ecological Risks and Human Health Implications. Toxics. 2021;9:42. PubMed PMC
Ondrasek G. Rengel Z. Taylor R. G. Zhuo L. Centers for optimizing water management in agroecosystems & global food security. Front. Sustain. Food Syst. 2024;8:1398454.
Sharma A. Kumar V. Shahzad B. Tanveer M. Sidhu G. P. S. Handa N. Kohli S. K. Yadav P. Bali A. S. Parihar R. D. Dar O. I. Singh K. Jasrotia S. Bakshi P. Ramakrishnan M. Kumar S. Bhardwaj R. Thukral A. K. Worldwide pesticide usage and its impacts on ecosystem. SN Appl. Sci. 2019;1:1–16.
Alexoaei A. P. Robu R. G. Cojanu V. Miron D. Holobiuc A. M. Good practices in reforming the common agricultural policy to support the European green deal – a perspective on the consumption of pesticides and fertilizers. Amfiteatru Econ. 2022;24:525–545.
Wu H. Lai C. Zeng G. Liang J. Chen J. Xu J. Dai J. Li X. Liu J. Chen M. Lu L. Hu L. Wan J. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit. Rev. Biotechnol. 2016;37:754–764. PubMed
Ondrasek G. Meriño-Gergichevich C. Manterola-Barroso C. Seguel Fuentealba A. Romero S. M. Savić R. Cholin S. S. Horvatinec J. Bio-based resources: systemic & circular solutions for (agro)environmental services. RSC Adv. 2024;14:23466. PubMed PMC
Hejna M. Gottardo D. Baldi A. Dell'Orto V. Cheli F. Zaninelli M. Rossi L. Review: Nutritional ecology of heavy metals. Animal. 2018;12:2156–2170. PubMed
Adekanmi A. T. and Adekanmi A. T., Health Hazards of Toxic and Essential Heavy Metals from the Poultry Waste on Human and Aquatic Organisms, Veterinary Medicine and Science, IntechOpen, 2022, 10.5772/INTECHOPEN.99549 DOI
Regulation (EC) 1831/2003, https://eur-lex.europa.eu/eli/reg/2003/1831/oj, accessed 21 February 2024
Walk C. L. Wilcock P. Magowan E. Evaluation of the effects of pharmacological zinc oxide and phosphorus source on weaned piglet growth performance, plasma minerals and mineral digestibility. Animal. 2015;9:1145–1152. PubMed
National Research Council (NRC), A Framework for K-12 Science Education Practices, Crosscutting Concepts, and Core Ideas, National Academies Press. - References - Scientific Research Publishing, Washington DC The, 2012, https://www.scirp.org/reference/referencespapers?referenceid=1302130, accessed 22 February 2024
Lamastra L. Suciu N. A. Trevisan M. Sewage sludge for sustainable agriculture: Contaminants' contents and potential use as fertilizer. Chem. Biol. Technol. Agric. 2018;5:1–6.
Marchuk S. Tait S. Sinha P. Harris P. Antille D. L. McCabe B. K. Biosolids-derived fertilisers: A review of challenges and opportunities. Sci. Total Environ. 2023;875:162555. PubMed
Gianico A. Braguglia C. M. Gallipoli A. Montecchio D. Mininni G. Land application of biosolids in europe: Possibilities, con-straints and future perspectives. Water. 2021;13:1. doi: 10.3390/w13010103. DOI
Le Q. Price G. W. A review of the influence of heat drying, alkaline treatment, and composting on biosolids characteristics and their impacts on nitrogen dynamics in biosolids-amended soils. Waste Manage. 2024;176:85–104. PubMed
Wang B. Gao B. Fang J. Recent advances in engineered biochar productions and applications. Crit. Rev. Environ. Sci. Technol. 2018;47:2158–2207.
Council Directive 86/278/EEC, https://eur-lex.europa.eu/eli/dir/1986/278/oj/eng, accessed 13 January 2025
Hossain M. K. Strezov Vladimir V. Chan K. Y. Ziolkowski A. Nelson P. F. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. J. Environ. Manage. 2011;92:223–228. PubMed
Collivignarelli M. C. Abbà A. Frattarola A. Miino M. C. Padovani S. Katsoyiannis I. Torretta V. Legislation for the reuse of biosolids on agricultural land in Europe: Overview. Sustainability. 2019;11:6015. doi: 10.3390/su11216015. DOI
NN 71/2019 (26.7.2019.), Pravilnik o zaštiti poljoprivrednog zemljišta od onečišćenja - Zakon.hr, https://www.zakon.hr/cms.htm?id=39921, accessed 19 June 2024
Ye S. Zeng G. Wu H. Liang J. Zhang C. Dai J. Xiong W. Song B. Wu S. Yu J. The effects of activated biochar addition on remediation efficiency of co-composting with contaminated wetland soil. Resour. Conserv. Recycl. 2019;140:278–285.
Schimmelpfennig S. Glaser B. One Step Forward toward Characterization: Some Important Material Properties to Distinguish Biochars. J. Environ. Qual. 2012;41:1001–1013. PubMed
Salleh A. F. and Hettiarachchi H., Safe Use of Wastewater in Agriculture (SUWA): Reflecting on the Journey of Supporting the UN Sustainable Development Goals since, UNU-FLORES, 2015, 10.53325/FCVG7887 DOI
Ondrasek G., Water scarcity and water stress in agriculture, Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment, 2014, vol. 1, pp. 75–96
Nedelciu C. E. Ragnarsdóttir K. V. Stjernquist I. From waste to resource: A systems dynamics and stakeholder analysis of phosphorus recycling from municipal wastewater in Europe. Ambio. 2019;48:741–751. PubMed PMC
Chisanga C. B., Use of wastewater for irrigation in vegetable growing in the Kaufe Lagoon areas and along Ngwerere river, Report PMA, 2004, vol. 24, 10.13140/RG.2.1.2641.8646 DOI
Rogowska J. Cieszynska-Semenowicz M. Ratajczyk W. Wolska L. Micropollutants in treated wastewater. Ambio. 2020;49:487–503. PubMed PMC
Hu H. Jin Q. Kavan P. A study of heavy metal pollution in China: Current status, pollution-control policies and countermeasures. Sustainability. 2014;6:5820–5838.
Savic R. Ondrasek G. Zemunac R. Bubalo Kovacic M. Kranjcec F. Nikolic Jokanovic V. Bezdan A. Longitudinal distribution of macronutrients in the sediments of Jegricka watercourse in Vojvodina, Serbia. Sci. Total Environ. 2021;754:142138. doi: 10.1016/j.scitotenv.2020.142138. PubMed DOI
Chandra R. Sharma P. Yadav S. Tripathi S. Biodegradation of endocrine-disrupting chemicals and residual organic pollutants of pulp and paper mill effluent by biostimulation. Front. Microbiol. 2021;9:960. doi: 10.3389/fmicb.2018.00960. PubMed DOI PMC
Vidal O. Rostom F. François C. Giraud G. Global trends in metal consumption and supply: The raw material-energy nexus. Elements. 2017;13:319–324.
García-Olivares A. Ballabrera-Poy J. García-Ladona E. Turiel A. A global renewable mix with proven technologies and common materials. Energy Policy. 2012;41:561–574.
Covre W. P. Ramos S. J. Pereira W. V. da S. de Souza E. S. Martins G. C. Teixeira O. M. M. do Amarante C. B. Dias Y. N. Fernandes A. R. Impact of copper mining wastes in the Amazon: Properties and risks to environment and human health. J. Hazard. Mater. 2022;421:126688. PubMed
Li F. and Li F., Heavy Metal in Urban Soil: Health Risk Assessment and Management, Heavy Metals, InTech, 2018, 10.5772/intechopen.73256 DOI
Zhou L. Guo H. Wang X. Chu M. Zhang G. Zhang L. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis. Int. J. Coal Sci. Technol. 2019;6:235–246.
Pedrayes O. D. Lema D. G. Usamentiaga R. García D. F. Detection and localization of fugitive emissions in industrial plants using surveillance cameras. Comput. Ind. 2022;142:103731.
Chen Y. Du W. Zhuo S. Liu W. Liu Y. Shen G. Wu S. Li J. Zhou B. Wang G. Zeng E. Y. Cheng H. Liu W. Tao S. Stack and fugitive emissions of major air pollutants from typical brick kilns in China. Environ. Pollut. 2017;224:421–429. PubMed
Xu X. Cao X. Zhao L. Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars. Chemosphere. 2013;92:955–961. PubMed
Skorbiłowicz M. Skorbiłowicz E. Rogowska W. Heavy Metal Concentrations in Roadside Soils on the Białystok-Budzisko Route in Northeastern Poland. Minerals. 2021;11:1290.
Mukherjee A. Agrawal M. World air particulate matter: sources, distribution and health effects. Environ. Chem. Lett. 2017;15:283–309. doi: 10.1007/s10311-017-0611-9. DOI
Yang Q. Liu G. Falandysz J. Yang L. Zhao C. Chen C. Sun Y. Zheng M. Jiang G. Atmospheric emissions of particulate matter-bound heavy metals from industrial sources. Sci. Total Environ. 2024;947:174467. PubMed
Hocking P. J. The Composition of Phloem Exudate and Xylem Sap from Tree Tobacco (Nicotiana glauca Grah.) Ann. Bot. 1980;45:633–643.
Hazama K. Nagata S. Fujimori T. Yanagisawa S. Yoneyama T. Concentrations of metals and potential metal-binding compounds and speciation of Cd, Zn and Cu in phloem and xylem saps from castor bean plants (Ricinus communis) treated with four levels of cadmium. Physiol. Plant. 2015;154:243–255. PubMed
Horvatinec J. Buczny J. Ondrasek G. Fly ash application impacts master physicochemical pedovariables: A multilevel meta-analysis. J. Environ. Manage. 2024;368:122066. doi: 10.1016/j.jenvman.2024.122066. PubMed DOI
Ondrasek G. Rengel Z. Clode P. L. Kilburn M. R. Guagliardo P. Romic D. Zinc and cadmium mapping by NanoSIMS within the root apex after short-term exposure to metal contamination. Ecotoxicol. Environ. Saf. 2019;171:571–578. PubMed
Ördög V., Plant physiology, https://www.slideshare.net/slideshow/plant-physiology-by-vince-ordog/75183793, accessed 13 January 2025
Salt D. E. Blaylock M. Kumar N. P. B. A. Dushenkov V. Ensley B. D. Chet I. Raskin I. Phytoremediation: A Novel Strategy for the Removal of Toxic Metals from the Environment Using Plants. Bio/Technology. 1995;13:468–474. PubMed
Hart J. J. Welch R. M. Norvell W. A. Sullivan L. A. Kochian L. V. Characterization of Cadmium Binding, Uptake, and Translocation in Intact Seedlings of Bread and Durum Wheat Cultivars. Plant Physiol. 1998;116:1413–1420. PubMed PMC
Hart J. J. Welch R. M. Norvell W. A. Kochian L. V. Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol. Plant. 2002;116:73–78. PubMed
Nakanishi H. Ogawa I. Ishimaru Y. Mori S. Nishizawa N. K. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci. Plant Nutr. 2006;52:464–469.
Saxena G. Purchase D. Mulla S. I. Saratale G. D. Bharagava R. N. Phytoremediation of Heavy Metal-Contaminated Sites: Eco-environmental Concerns, Field Studies, Sustainability Issues, and Future Prospects. Rev. Environ. Contam. Toxicol. 2019;249:71–131. PubMed
Ando Y. Nagata S. Yanagisawa S. Yoneyama T. Copper in xylem and phloem saps from rice (Oryza sativa): the effect of moderate copper concentrations in the growth medium on the accumulation of five essential metals and a speciation analysis of copper-containing compounds. Funct. Plant Biol. 2012;40:89–100. PubMed
Clemens S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006;88:1707–1719. PubMed
Yoneyama K. Awad A. A. Xie X. Yoneyama K. Takeuchi Y. Strigolactones as Germination Stimulants for Root Parasitic Plants. Plant Cell Physiol. 2010;51:1095–1103. PubMed PMC
Álvarez-Fernández A. Díaz-Benito P. Abadía A. López Millán A. F. Abadía J. Metal species involved in long distance metal transport in plants. Front. Plant Sci. 2014;5:82117. PubMed PMC
Sarwar N. Imran M. Shaheen M. R. Ishaque W. Kamran M. A. Matloob A. Rehim A. Hussain S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere. 2017;171:710–721. PubMed
Sreeshma J. Sudandiradoss C. Identification of metal binding motifs in protein frameworks to develop novel remediation strategies for Hg2+ and Cr(VI) BioMetals. 2021;34:621–638. PubMed
Rellán-Álvarez R. Giner-Martínez-Sierra J. Orduna J. Orera I. Rodríguez-Castrilln J. Á. García-Alonso J. I. Abadía J. Álvarez-Fernández A. Identification of a Tri-Iron(III), Tri-Citrate Complex in the Xylem Sap of Iron-Deficient Tomato Resupplied with Iron: New Insights into Plant Iron Long-Distance Transport. Plant Cell Physiol. 2010;51:91–102. PubMed
Ariga T. Hazama K. Yanagisawa S. Yoneyama T. Chemical forms of iron in xylem sap from graminaceous and non-graminaceous plants. Soil Sci. Plant Nutr. 2014;60:460–469.
Krämer U. Cotter-Howells J. D. Charnock J. M. Baker A. J. M. Smith J. A. C. Free histidine as a metal chelator in plants that accumulate nickel. Nature. 1996;379:635–638.
Akhatar O., Sharma H., Zoomi I., Chaudhary K. L. and Kumar M., Metallophytes, Heavy Metals in Plants Physiological to Molecular Approach, 2022, pp. 354–368
Kong L. L. Liu W. T. Zhou Q. X. Biochar: An effective amendment for remediating contaminated soil. Rev. Environ. Contam. Toxicol. 2014;228:83–99. PubMed
Mead A. Legal and regulatory issues governing cannabis and cannabis-derived products in the United States. Front. Plant Sci. 2019;14:697. doi: 10.3389/fpls.2019.00697. PubMed DOI PMC
Wang F. Wang X. Song N. Polyethylene microplastics increase cadmium uptake in lettuce (Lactuca sativa L.) by altering the soil microenvironment. Sci. Total Environ. 2021;784:147133. PubMed
Skuza L. Szućko-Kociuba I. Filip E. Bożek I. Natural Molecular Mechanisms of Plant Hyperaccumulation and Hypertolerance towards Heavy Metals. Int. J. Mol. Sci. 2022;23:9335. doi: 10.3390/ijms23169335. PubMed DOI PMC
Ghori Z., Iftikhar H., Bhatti M. F., Um-Minullah N., Sharma I., Kazi A. G. and Ahmad P., Phytoextraction: The Use of Plants to Remove Heavy Metals from Soil, Plant Metal Interaction: Emerging Remediation Techniques, 2016, pp. 385–409
Christenhusz M. J. M. Byng J. W. The number of known plants species in the world and its annual increase. Phytotaxa. 2016;261:201–217.
Cappa J. J. Pilon-Smits E. A. H. Evolutionary aspects of elemental hyperaccumulation. Planta. 2014;239:267–275. PubMed
Allen N. Dai C. Hu Y. Kubicki J. D. Kabengi N. Adsorption Study of Al 3+, Cr 3+, and Mn 2+ onto Quartz and Corundum using Flow Microcalorimetry, Quartz Crystal Microbalance and Density Functional Theory. ACS Earth Space Chem. 2019;3(3) doi: 10.1021/acsearthspacechem.8b00148. DOI
Ondrasek G. Bubalo Kovačić M. Carević I. Štirmer N. Stipičević S. Udiković-Kolić N. Filipović V. Romić D. Rengel Z. Bioashes and their potential for reuse to sustain ecosystem services and underpin circular economy. Renew. Sustain. Energy Rev. 2021;151:111540.
Mathur J. Goswami P. Gupta A. Srivastava S. Minkina T. Shan S. Rajput V. D. Nanomaterials for Water Remediation: An Efficient Strategy for Prevention of Metal(loid) Hazard. Water. 2022;14:24. doi: 10.3390/w14243998. DOI
Kicińska A. Pomykała R. Izquierdo-Diaz M. Changes in soil pH and mobility of heavy metals in contaminated soils. Eur. J. Soil Sci. 2021;73:e13203. doi: 10.1111/EJSS.13203. DOI
Kanakaraju D. Norfadzila D. Nori H. Wahi R. Heavy metal leachability in fly ash remediated soil. J. Sustainability Sci. Manage. 2019;14:37–48.
Asokbunyarat V., Lens P. N. L. and Annachhatre A. P., Permeable Reactive Barriers for Heavy Metal Removal, 2017, pp. 65–100
Kumar U. Singh P. K. Kumar I. Sharma R. K. Heavy metal accumulation, yield and health risk assessment of wheat crop grown in contaminated soil amended with bioash for sustainable agriculture. J. Food Compos. Anal. 2025;139:107140.
Tomczyk A. Sokołowska Z. Boguta P. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Biotechnol. 2020;19:191–215.
Laird D. and Rogovska N., Biochar effects on nutrient leaching, in Biochar for Environmental Management: Science, Technology, and Implementation, Earthscan, 2nd edn, 2015, pp. 521–524
Li Y. Yu H. Liu L. Yu H. Application of co-pyrolysis biochar for the adsorption and immobilization of heavy metals in contaminated environmental substrates. J. Hazard. Mater. 2021;420:126655. PubMed
Li Y. Shao J. Wang X. Deng Y. Yang H. Chen H. Characterization of Modified Biochars Derived from Bamboo Pyrolysis and Their Utilization for Target Component (Furfural) Adsorption. Energy Fuel. 2014;28:5119–5127.
Puga A. P. Abreu C. A. Melo L. C. A. Beesley L. Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium. J. Environ. Manage. 2015;159:86–93. PubMed
Lu K. Yang X. Gielen G. Bolan N. Ok Y. S. Niazi N. K. Xu S. Yuan G. Chen X. Zhang X. Liu D. Song Z. Liu X. Wang H. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manage. 2017;186:285–292. PubMed
Sun Y. Gao B. Yao Y. Fang J. Zhang M. Zhou Y. Chen H. Yang L. Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chem. Eng. J. 2014;240:574–578.
Shah V. Daverey A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020;18:100774.
Ahmad M. Rajapaksha A. U. Lim J. E. Zhang M. Bolan N. Mohan D. Vithanage M. Lee S. S. Ok Y. S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere. 2014;99:19–33. PubMed
Khan S. Chao C. Waqas M. Peter H. Arp H. Zhu Y.-G. Sewage Sludge Biochar Influence upon Rice (Oryza sativa L) Yield, Metal Bioaccumulation and Greenhouse Gas Emissions from Acidic Paddy Soil. Environ. Sci. Technol. 2013;47(15) doi: 10.1021/es400554x. PubMed DOI
Rajapaksha A. U. Chen S. S. Tsang D. C. W. Zhang M. Vithanage M. Mandal S. Gao B. Bolan N. S. Ok Y. S. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modification. Chemosphere. 2016;148:276–291. PubMed
Giwa A. S. Ndungutse J. M. Li Y. Mabi A. Liu X. Vakili M. Memon A. G. Ai L. Chenfeng Z. Sheng M. Modification of biochar with Fe3O4 and humic acid-salt for removal of mercury from aqueous solutions: a review. Environ. Pollut. Bioavailability. 2022;34:352–364. doi: 10.1080/26395940.2022.2115402. DOI
Anawar H. M. Akter F. Solaiman Z. M. Strezov V. Biochar: An Emerging Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage Wastes. Pedosphere. 2015;25:654–665.
Zhou R. Zhang M. Shao S. Optimization of target biochar for the adsorption of target heavy metal ion. Sci. Rep. 2022;12:1–17. PubMed PMC
Sajjadi B. Zubatiuk T. Leszczynska D. Leszczynski J. Chen W. Y. Chemical activation of biochar for energy and environmental applications: a comprehensive review. Rev. Chem. Eng. 2018;35:777–815.
Ondrasek G. Kranjčec F. Filipović L. Filipović V. Bubalo Kovačić M. Badovinac I. J. Peter R. Petravić M. Macan J. Rengel Z. Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish. Sci. Total Environ. 2021;753:141902. PubMed
Xu Y. Deng F. Pang Q. He S. Xu Y. Luo G. Yao H. Development of waste-derived sorbents from biomass and brominated flame retarded plastic for elemental mercury removal from coal-fired flue gas. Chem. Eng. J. 2018;350:911–919.
Wei X. Li X. Tang L. Yu J. Deng J. Luo T. Liang J. Chen X. Zhou Y. Exploring the role of Fe species from biochar-iron composites in the removal and long-term immobilization of SeO42- against competing oxyanions. J. Hazard. Mater. 2021;418:126311. PubMed
Deng J. Li X. Wei X. Liu Y. Liang J. Song B. Shao Y. Huang W. Hybrid silicate-hydrochar composite for highly efficient removal of heavy metal and antibiotics: Coadsorption and mechanism. Chem. Eng. J. 2020;387:124097.
Ngambia A. Ifthikar J. Shahib I. I. Jawad A. Shahzad A. Zhao M. Wang J. Chen Z. Chen Z. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(II) composite. Sci. Total Environ. 2019;691:306–321. PubMed
Dias D. Bernardo M. Matos I. Fonseca I. Pinto F. Lapa N. Activation of co-pyrolysis chars from rice wastes to improve the removal of Cr3+ from simulated and real industrial wastewaters. J. Clean. Prod. 2020;267:121993.
Gao R. Fu Q. Hu H. Wang Q. Liu Y. Zhu J. Highly-effective removal of Pb by co-pyrolysis biochar derived from rape straw and orthophosphate. J. Hazard. Mater. 2019;371:191–197. PubMed
Bolan N. Kunhikrishnan A. Thangarajan R. Kumpiene J. Park J. Makino T. Kirkham M. B. Scheckel K. Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? J. Hazard. Mater. 2014;266:141–166. PubMed
Yuan C. Gao B. Peng Y. Gao X. Fan B. Chen Q. A meta-analysis of heavy metal bioavailability response to biochar aging: Importance of soil and biochar properties. Sci. Total Environ. 2021;756:144058. PubMed
Rashid M. I. Shah G. A. Sadiq M. ul Amin N. Ali A. M. Ondrasek G. Shahzad K. Nanobiochar and Copper Oxide Nanoparticles Mixture Synergistically Increases Soil Nutrient Availability and Improves Wheat Production. Plants. 2023;12:1312. PubMed PMC
Palansooriya K. N. Li J. Dissanayake P. D. Suvarna M. Li L. Yuan X. Sarkar B. Tsang D. C. W. Rinklebe J. Wang X. Ok Y. S. Prediction of Soil Heavy Metal Immobilization by Biochar Using Machine Learning. Environ. Sci. Technol. 2022;56:4187–4198. PubMed PMC
Zheng L. Lin Y. Wu J. Zheng M. The Associations of Tobacco Use, Sexually Transmitted Infections, HPV Vaccination, and Screening With the Global Incidence of Cervical Cancer: An Ecological Time Series Modelling Study. SSRN Electron. J. 2023;45 doi: 10.2139/SSRN.4003222. PubMed DOI PMC
Cui W. Li X. Duan W. Xie M. Dong X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: a review. Environ. Geochem. Health. 2023:1–37. PubMed
Zhao Y. Zhao M. Qi L. Zhao C. Zhang W. Zhang Y. Wen W. Yuan J. Coupled Relationship between Soil Physicochemical Properties and Plant Diversity in the Process of Vegetation Restoration. Forests. 2022;13(5):645.
Wang Y. Zheng K. Jiao Z. Zhan W. Ge S. Ning S. Fang S. Ruan X. Simultaneous Removal of Cu2+, Cd2+ and Pb2+ by Modified Wheat Straw Biochar from Aqueous Solution: Preparation, Characterization and Adsorption Mechanism. Toxics. 2022;10(6):316. PubMed PMC
Fayiga A. Nwoke O. Metal (Loid)s in Farmland Soils and Strategies to Reduce Bioavailability. Open J. Environ. Biol. 2017;2:009–024.
Haider F. U. Coulter J. A. Cai L. Hussain S. Cheema S. A. Wu J. Zhang R. An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere. 2022;32:107–130.
O'Laughlin J. and McElligott K., Biochar for Environmental Management: Science and Technology, ed. J. Lehmann and S. M. Joseph, Earthscan, London UK, 2009, vol. 11, pp. 535–536
Ongsulee P., Artificial Intelligence, Machine Learning and Deep Learning, IEEE, 10.1109/ICTKE.2017.8259629 DOI
Song R. Li D. Chang A. Tao M. Qin Y. Keller A. A. Suh S. Accelerating the pace of ecotoxicological assessment using artificial intelligence. Ambio. 2022;51:598–610. PubMed PMC
Bazoobandi A. Emamgholizadeh S. Ghorbani H. Estimating the amount of cadmium and lead in the polluted soil using artificial intelligence models. Eur. J. Environ. Civ. Eng. 2022;26:933–951.
Sari M. Cosgun T. Yalcin I. E. Taner M. Ozyigit I. I. Deciding Heavy Metal Levels in Soil Based on Various Ecological Information through Artificial Intelligence Modeling. Appl. Artif. Intell. 36:2014189. doi: 10.1080/08839514.2021.2014189. DOI
Shi S. Hou M. Gu Z. Jiang C. Zhang W. Hou M. Li C. Xi Z. Estimation of Heavy Metal Content in Soil Based on Machine Learning Models. Land. 2022;11:1037.
Tawabini B. Yassin M. A. Benaafi M. Adetoro J. A. Al-Shaibani A. Abba S. I. Spatiotemporal Variability Assessment of Trace Metals Based on Subsurface Water Quality Impact Integrated with Artificial Intelligence-Based Modeling. Sustainability. 2022;14:2192.
Luo N. Methods for controlling heavy metals in environmental soils based on artificial neural networks. Sci. Rep. 2024;14:1–13. PubMed PMC
Bhagat S. K. Tung T. M. Yaseen Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 2021;403:123492. PubMed
Kumar Sarkar S. and Rafizul I. M., Analysis of Heavy Metal Concentration in Soils of a Waste Disposal Site in Khulna Using Artificial Intelligence Technique, ICCESD, 2020
Sun C. Tian Y. Gao L. Niu Y. Zhang T. Li H. Zhang Y. Yue Z. Delepine-Gilon N. Yu J. Machine Learning Allows Calibration Models to Predict Trace Element Concentration in Soils with Generalized LIBS Spectra. Sci. Rep. 2019;9:1–18. PubMed PMC
Tarasov D. A. Buevich A. G. Sergeev A. P. Shichkin A. V. Baglaeva E. M. Topsoil pollution forecasting using artificial neural networks on the example of the abnormally distributed heavy metal at Russian subarctic. AIP Conf. Proc. 2017;1836:020024.
Ma W., Tan K. and Du P., Predicting Soil Heavy Metal Based on Random Forest Model, IGARSS, 2016, pp. 4331–4334
Zhang H. Yin S. Chen Y. Shao S. Wu J. Fan M. Chen F. Gao C. Machine learning-based source identification and spatial prediction of heavy metals in soil in a rapid urbanization area, eastern China. J. Clean. Prod. 2020;273:122858.
Yaseen Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere. 2021;277:130126. PubMed
Houben D. Evrard L. Sonnet P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere. 2013;92:1450–1457. PubMed
Li Q. Wang Y. Li Y. Li L. Tang M. Hu W. Chen L. Ai S. Speciation of heavy metals in soils and their immobilization at micro-scale interfaces among diverse soil components. Sci. Total Environ. 2022;825:153862. PubMed
Ball B. C. Hargreaves P. R. Watson C. A. A framework of connections between soil and people can help improve sustainability of the food system and soil functions. Ambio. 2018;47:269–283. doi: 10.1007/s13280-017-0965-z. PubMed DOI PMC
Barker A. J. Clausen J. L. Douglas T. A. Bednar A. J. Griggs C. S. Martin W. A. Environmental impact of metals resulting from military training activities: A review. Chemosphere. 2021;265:129110. PubMed
Fayiga A. O. Saha U. K. Soil pollution at outdoor shooting ranges: Health effects, bioavailability and best management practices. Environ. Pollut. 2016;216:135–144. doi: 10.1016/j.envpol.2016.05.062. PubMed DOI
Shukla S. Mbingwa G. Khanna S. Dalal J. Sankhyan D. Malik A. Badhwar N. Environment and health hazards due to military metal pollution: A review. Environ. Nanotechnol. Monit. Manag. 2023;20:100857.
Othman R. Mohd Latiff N. H. Baharuddin Z. M. Hashim K. S. H. Y. Lukman Hakim Mahamod L. H. Closed landfill heavy metal contamination distribution profiles at different soil depths and radiuses. Appl. Ecol. Environ. Res. 2019;17:8059–8067.
Shumilova O. Tockner K. Sukhodolov A. Khilchevskyi V. De Meester L. Stepanenko S. Trokhymenko G. Hernández-Agüero J. A. Gleick P. Impact of the Russia–Ukraine armed conflict on water resources and water infrastructure. Nat Sustainability. 2023;6:578–586.
Shebanina O. Kormyshkin I. Bondar A. Bulba I. Ualkhanov B. Ukrainian soil pollution before and after the Russian invasion. Int. J. Environ. Stud. 2024;81:208–215.
Yakymchuk A., Assessment of soil contamination of Ukraine with heavy metals during the war, Scientific Papers of Silesian University of Technology Organization and Management Series, 2024, vol. 196, 10.29119/1641-3466.2024.196.45 DOI