The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review
Language English Country Germany Media print-electronic
Document type Journal Article, Systematic Review
Grant support
CZ.02.1.01/0.0/0.0/ 16_019/0000845
Nutrisk project (European Regional Development Fund
PubMed
36529801
PubMed Central
PMC9760545
DOI
10.1007/s11356-022-24776-x
PII: 10.1007/s11356-022-24776-x
Knihovny.cz E-resources
- Keywords
- Antioxidant, Bioavailability, Biogeochemical property, Mobility, Risk element, Secondary metabolites, Translocation,
- MeSH
- Antioxidants MeSH
- Biodegradation, Environmental MeSH
- Cadmium metabolism MeSH
- Soil Pollutants * analysis MeSH
- Lead MeSH
- Soil chemistry MeSH
- Metals, Heavy * analysis MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
- Names of Substances
- Antioxidants MeSH
- Cadmium MeSH
- Soil Pollutants * MeSH
- Lead MeSH
- Soil MeSH
- Metals, Heavy * MeSH
The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.
See more in PubMed
Adra A, Morin G, Ona-Nguema G, Brest J. Arsenate and arsenite adsorption onto Al-containing ferrihydrites. Implications for arsenic immobilization after neutralization of acid mine drainage. Appl Geochem. 2015;64:2–9. doi: 10.1016/j.apgeochem.2015.09.015. DOI
Agre P, Kozono D. Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett. 2003;555:72–78. doi: 10.1016/S0014-5793(03)01083-4. PubMed DOI
Aharoni A, Galili G. Metabolic engineering of the plant primary–secondary metabolism interface. Curr Opin Biotechnol. 2011;22:239–244. doi: 10.1016/j.copbio.2010.11.004. PubMed DOI
Ahmed IM, Nadira UA, Bibi N, Cao F, He X, Zhang G, Wu F. Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley. Environ Exp Bot. 2015;111:1–12. doi: 10.1016/j.envexpbot.2014.10.003. DOI
Akhter MF, Omelon CR, Gordon RA, Moser D. Localization and chemical speciation of cadmium in the roots of barley and lettuce. Environ Exp Bot. 2014;100:10–19. doi: 10.1016/j.envexpbot.2013.12.005. DOI
Ali W, Mao K, Zhang H, Junaid M, Xu N, Rasool A, Feng X, Yang Z. Comprehensive review of the basic chemical behaviors, sources, processes, and endpoints of trace element contamination in paddy soil-rice systems in rice-growing countries. J Hazard Mater. 2020;397:122720. doi: 10.1016/j.jhazmat.2020.122720. PubMed DOI
Aliferis KA, Chamoun R, Jabaji S (2015) Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling Front Plant Sci 6. 10.3389/fpls.2015.00344 PubMed PMC
Ana Á-F, Pablo D-B, Anunciación A, Ana-Flor L-M, Javier A. Metal species involved in long-distance metal transport in plants. Front Plant Sci. 2014;397:122720. doi: 10.3389/fpls.2014.00105. PubMed DOI PMC
Anderson MA, Ferguson JF, Jerome Gavis J. Arsenate adsorption on amorphous aluminum hydroxide. J Coll Inter Sci. 1976;54:391–399. doi: 10.1016/0021-9797(76)90318-0. DOI
Arias JA, Peralta-Videa JR, Ellzey JT, Ren M, Viveros MN, Gardea-Torresdey JL. Effects of Glomus deserticola inoculation on Prosopis: enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES, and TEM techniques. Environ Exp Bot. 2010;68:139–148. doi: 10.1016/j.envexpbot.2009.08.009. DOI
Armendariz AL, Talano MA, Villasuso AL, Travaglia C, Racagni GE, Reinoso H, Agostini E. Arsenicstress induces changes in lipid signaling and evokes the stomata closure in soybean. Plant Physiol Biochem. 2016;103:45–52. doi: 10.1016/j.plaphy.2016.02.041. PubMed DOI
Arnold PA, Kruuk LE, Nicotra AB. How to analyze plant phenotypic plasticity in response to a changing climate. New Phytol. 2019;222:1235–1241. doi: 10.1111/nph.15656. PubMed DOI
Arora S, Saradhi PP. Light-induced enhancement in proline levels in Vigna radiata exposed to environmental stresses. Aust J Plant Physiol. 1995;22:383–386.
Ashworth DJ, Alloway BJ. Influence of dissolved organic matter on the solubility of heavy metals in sewage-sludge-amended soils. Commun Soil Sci Plant Anal. 2008;39:538–550. doi: 10.1080/00103620701826787. DOI
Aten GF, Bourke JB, Martini JH, Walton JC. Arsenic and lead in an orchard environment. Bull Environ Contam Toxicol. 1980;24:108–115. doi: 10.1007/BF01608083. PubMed DOI
Aydinalp C, Marinova S. Distribution and forms of heavy metals in some agricultural soils. Polish J Environ Stud. 2003;12:629–633.
Bayçu G. Phytochelatin biosynthesis and cadmium detoxification. J Cell Mol Biol. 2002;1:45–55.
Berni R, Luyckx M, Xu X, Legay S, Sergeant K, Hausman J-F, Lutts S, Cai G, Guerrierod G (2018) Reactive oxygen species and heavy metal stress in plants: impact on the cell wall and secondary metabolism. Environ Exp Bot. 10.1016/j.envexpbot.2018.10.017
Bhattacharya A, Sood P, Citovsky V. The roles of plant phenolics in defense and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol. 2010;11:705–719. PubMed PMC
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants metabolites: possibility of natural therapeutics against the COVID-19 pandemic. Front Med. 2020;7:444. doi: 10.3389/fmed.2020.00444. PubMed DOI PMC
Bienert GP, Thorsen M, Schüssler MD, Nilsson HR, Wagner A, Tamás MJ, Jahn TP. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008;6:26. doi: 10.1186/1741-7007-6-26. PubMed DOI PMC
Broadley MR, White PJ, Hammond JP, Zelko I, Lux A. Zinc in plants. New Phytol. 2007;173:677–702. doi: 10.1111/j.1469-8137.2007.01996.x. PubMed DOI
Cabała J, Warchulski R, Rozmus D, Środek D, Szełęg E. Pb-rich slags, minerals, and pollution resulted from a medieval Ag-Pb smelting and mining operation in the Silesian-Cracovian region (Southern Poland) Minerals. 2020;10:28. doi: 10.3390/min10010028. DOI
Campillo-Cora C, Conde-Cid M, Arias-Estévez M, Fernández-Calviño D, Alonso-Vega F. Specific adsorption of heavy metals in soils: individual and competitive experiments. J Agron. 2020;10:1113. doi: 10.3390/agronomy10081113. DOI
Carey A-M, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Price AH, Meharg AA. Grain unloading of arsenic species in rice. Plant Physiol. 2010;152:309–319. doi: 10.1104/pp.109.146126. PubMed DOI PMC
Cecchi M, Dumat C, Alric A, Felix-Faure B, Pradere P, Guiresse M. Multi-metal contamination of a calcic cambisol by fallout from a lead-recycling plant. Geoderma. 2008;144:287–298. doi: 10.1016/j.geoderma.2007.11.023. DOI
Cenkci S, Cigerci IH, Yildiz M, Özay C, Bozdag A, Terzi H. Lead contamination reduces chlorophyll biosynthesis and genomic template stability in Brassica rapa L. Environ Exp Bot. 2010;67:467–473. doi: 10.1016/j.envexpbot.2009.10.001. DOI
Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel MH, Masclaux-Daubresse C. Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard throughan amino acid storage strategy. Plant Cell Physiol. 2004;45:1681–1693. doi: 10.1093/pcp/pch192. PubMed DOI
Chandrakar V, Dubey A, Keshavkant S. Modulation of antioxidant enzymes by salicylic acid in arsenic exposed Glycine max L. J Soil Sci Plant Nutr. 2016;16:662–676. doi: 10.4067/S0718-95162016005000048. DOI
Chen P-H, Peng C-Y, Pai H-C, Teng C-M, Chen C-C, Yang R. Denbinobin suppresses breast cancer metastasis through the inhibition of Src-mediated signaling pathways. J Nutr Biochem. 2010;22:732–740. doi: 10.1016/j.jnutbio.2010.06.004. PubMed DOI
Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methyl arsenate and the poultry growth promoter rox-arsone. Mol Microbiol. 2015;96:1042–1052. doi: 10.1111/mmi.12988. PubMed DOI PMC
Costa G, Spitz E. Influence of cadmium on soluble carbohydrates, free amino acids, protein content of in vitro cultured Lupinus albus. Plant Sci. 1997;128:131–140. doi: 10.1016/S0168-9452(97)00148-9. DOI
Cui H, Zhang X, Wu Q, Zhang S, Xu L, Zhou J, Zheng X, Zhou J. Hematite enhances the immobilization of copper, cadmium, and phosphorus in soil amended with hydroxyapatite under flooded conditions. Sci Total Environ. 2020;708:134590. doi: 10.1016/j.scitotenv.2019.134590. PubMed DOI
Curtis TY, Bo V, Tucker A, Halford NG. Construction of a network describing asparagine metabolism in plants and its application to the identification of genes affecting asparagine metabolism in wheat under drought and nutritional stress. Food Energy Sec. 2018;7:e00126. doi: 10.1002/fes3.126. PubMed DOI PMC
Dai J, Mumper RJ. Plant phenolics: extraction, analysis and their antioxidant, and anticancer properties. Molecules. 2010;15:7313–7352. doi: 10.3390/molecules15107313. PubMed DOI PMC
De Luca V, Salim V, Atsumi SM, Yu F. Mining the biodiversity of plants: a revolution in the making. Science. 2012;336:1658–1661. doi: 10.1126/science.1217410. PubMed DOI
Demidchik V, Shabala S, Isayenkov S, Cuin TA, Pottosin I. Calcium transport across plant membranes: mechanisms and functions. New Phytol. 2018;220:49–69. doi: 10.1111/nph.15266. PubMed DOI
Dixit S, Herring JG. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals:implications for arsenic mobility. Environ Sci Technol. 2003;37:4182–4189. doi: 10.1021/es030309t. PubMed DOI
Dixon RA. Natural products and plant disease resistance. Nature. 2001;411:843–847. doi: 10.1038/35081178. PubMed DOI
Dogan M, Karatas M, Aasim M. Cadmium and lead bioaccumulation potentials of an aquatic macrophyte Ceratophyllum demersum L.: a laboratory study. Ecotoxicol Environ Saf. 2018;148:431–440. doi: 10.1016/j.ecoenv.2017.10.058. PubMed DOI
Dong Q, Fei L, Wang C, Hu S, Wang Z. Cadmium excretion via leaf hydathodes in tall fescue and its phytoremediation potential, Environmental Pollution 252. Part B. 2019;2019:1406–1411. doi: 10.1016/j.envpol.2019.06.079. PubMed DOI
Eapen S, D'Souza SF. Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv. 2005;23:97–114. doi: 10.1016/j.biotechadv.2004.10.001. PubMed DOI
Edreva A, Velikova V, Tsonev T, Dagnon S, Gürel A, Aktaş L, Gesheva E. Stress-protective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol. 2008;34:67–78.
European Council Directive (1986) 86/278/EEC on the protection of the environment, and in particular of the soil when sewage sludge is used in agriculture. Retrieved from https://op.europa.eu/en/publicationdetail/-/publication/f76faa39-2b27-42f2-be1e-9332f795e324/language-en. Accessed on 20 Oct 2022
Fahr M, Laplaze L, Bendaou N, Hocher V, El Mzibri M, Bogusz D, Smouni A. Effect of lead on root growth. Front Plant Sci. 2013;4:175. doi: 10.3389/fpls.2013.00175. PubMed DOI PMC
Farooq Muhammad A, Gill Rafaqat A, Faisal I, Basharat A, Hongbo L, Jianxiang X, Huiping H, Weijun Z (2016) Methyl Jasmonate regulates antioxidant defense and suppresses arsenic uptake in Brassica napus L. Front Plant Sci 7. 10.3389/fpls.2016.00468 PubMed PMC
Finnegan PM, Chen W. Arsenic toxicity: the effects on plant metabolism. Front Physiol. 2012;3:182. doi: 10.3389/fphys.2012.00182. PubMed DOI PMC
Finster ME, Gray KA, Binns HJ. Lead levels of edibles grown in contaminated residential soils: a field survey. Sci Total Environ. 2004;320:245–257. doi: 10.1016/j.scitotenv.2003.08.009. PubMed DOI
Furze JM, Rhodes MJC, Parr AJ, et al. Abiotic factors elicit sesquiterpenoid phytoalexin production but not alkaloid production in transformed root cultures of Datura stramonium. Plant Cell Rep. 1991;10:111–114. doi: 10.1007/BF00232039. PubMed DOI
García-Calderón M, Pons-Ferrer T, Mrazova A, Pal'Ove-Balang P, Vilkova M, Pérez-Delgado C, Vega J, Eliašová A, Repčák M, Márquez A, Betti M (2015) Modulation of phenolic metabolism under stress conditions in a Lotus japonicus mutant lacking plastidic glutamine synthetase. Front Plant Sci 6. 10.3389/fpls.2015.00760 PubMed PMC
Geiszinger A, Goessler W, Kosmus W. Organoarsenic compounds in plants and soil on top of an ore vein. Appl Organomet Chem. 2002;16:245–249. doi: 10.1002/aoc.294. DOI
Goharrizi KJ, Karami S, Basaki T, Dehnavi MM, Momeni Nejat MA, MM, Meru G, Transcriptomic and proteomic mechanisms underlying cold tolerance in plants. Biologia Plantarum. 2022;66:240–254. doi: 10.32615/bp.2022.030. DOI
Gong L, Wang J, Abbas T, Zhang Q, Cai M, Tahir M, Wu D, Di H. Immobilization of exchangeable Cd in soil using mixed amendment and its effect on soil microbial communities under paddy upland rotation system. Chemosphere. 2021;262:127828. doi: 10.1016/j.chemosphere.2020.127828. PubMed DOI
Gorny J, Billon G, Lesven L, Dumoulin D, Madé B, Noiriel C. Arsenic behavior in river sediments under redox gradient: a review. Sci Total Environ. 2015;505:423–434. doi: 10.1016/j.scitotenv.2014.10.011. PubMed DOI
Guerriero G, Berni IDR, Muñoz-Sanchez JA, Apone F, Abdel-Salam EM, Qahtan AA, Alatar AA, Cantini C, Cai G, Hausman J-F, Siddiqui IDKS, et al. Production of plant secondary metabolites: examples, tips, and suggestions for biotechnologists. Genes. 2018;9:309. doi: 10.3390/genes9060309. PubMed DOI PMC
Gupta DK, Nicoloso FT, Schetinger MRC, Rossato LV, Pereira LB, Castro GY, Srivastava S, Tripathi RD. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. J Hazard Mater. 2009;172:479–484. doi: 10.1016/j.jhazmat.2009.06.141. PubMed DOI
Gustafsson JP, Tiberg C, Edkymish A, Berggren Kleja D. Modelling lead (II) sorption to ferrihydrite and soil organic matter. Environ Chem. 2011;8:485–492. doi: 10.1071/EN11025. DOI
Hall JL. Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot. 2002;53:1–11. doi: 10.1093/jexbot/53.366.1. PubMed DOI
Harper DJ. Early Chinese medical literature. The Mawangdui medical manuscripts. London: Kegan Paul Intern; 1998.
Hou X, Han H, Cai L, Liu A, Ma X, Zhou C, Wang G, Meng F. Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzyme activities, and organic acid contents of Pogonatherum crinitum seedlings. Flora. 2018;240:82–88. doi: 10.1016/j.flora.2018.01.006. DOI
Hu PJ, Qiu RL, Senthilkumar P, Jiang D, Chen ZW, Tang YT, Liu FJ. Tolerance accumulation and distribution of zinc and cadmium in hyperaccumulator Potentilla griffithii. Environ Exp Bot. 2009;66:317–325. doi: 10.1016/j.envexpbot.2009.02.014. DOI
Hu W, Wang H, Dong L, Huang B, Borggaard OK, Bruun HC, Hansen Y, He PE. Holm source identification of heavy metals in peri-urban agricultural soils of southeast China: an integrated approach. Environ Pollut. 2018;237:650–661. doi: 10.1016/j.envpol.2018.02.070. PubMed DOI
Hu Y, Li J, Lou B, Wu R, Wang G, Lu C, Wang H, Pi J, Xu Y. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 2020;10:1–30. doi: 10.3390/biom10020240. PubMed DOI PMC
Huang Y, Hatayama M, Inoue C. Characterization of As efflux from the roots of As hyperaccumulator Pteris vittata L. Planta. 2011;234:1275–1284. doi: 10.1007/s00425-011-1480-2. PubMed DOI
Huang H, Farhan U, Dao-Xiu Z, Ming Y, Yu Z. (2019) Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci 10. 10.3389/fpls.2019.00800 PubMed PMC
Ibrahim MH, Kong YC, Zain NAM. Effect of cadmium and copper exposure on growth, secondary metabolites and antioxidant activity in the medicinal plant Sambung Nyawa (Gynura procumbens (Lour.) Merr) Molecules. 2017;22:1623. doi: 10.3390/molecules22101623. PubMed DOI PMC
Jan R, Asaf S, Numan M, Kim KM. Plant secondary metabolite biosynthesis and transcriptional regulation in response to biotic and abiotic stress conditions. Agron J. 2021;11:968. doi: 10.3390/agronomy11050968. DOI
Janousková M, Pavlíková D. Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil. 2010;332:511–520. doi: 10.1007/s11104-010-0317-2. DOI
Jiang L, Wang W, Chen Z, Gao Q, Xu Q, Cao H. A role for APX1 gene in lead tolerance inArabidopsis thaliana. Plant Sci. 2017;256:94–102. doi: 10.1016/j.plantsci.2016.11.015. PubMed DOI
Joseph T, Dubey B, McBean EA. Human health risk assessment from arsenic exposures in Bangladesh. Sci Total Environ. 2015;527:552–560. doi: 10.1016/j.scitotenv.2015.05.053. PubMed DOI
Kabata-Pendias A, Pendias H. Trace elements in soils and plants. 3. Boca Raton: CRC Press; 2001.
Kalita J, Pradhan AK, Shandilya ZM, Tanti B. Arsenic stress responses and tolerance in rice: physiological, cellular and molecular approaches. Rice Sci. 2018;2:235–249. doi: 10.1016/j.rsci.2018.06.007. DOI
Kaur G, Singh HP, Batish DR, Kohli RK. A time course assessment of changes in reactive oxygen species generation and antioxidant defense in hydroponically grown wheat in response to lead ions (Pb2+) Protoplasma. 2012;249:1091–1100. doi: 10.1007/s00709-011-0353-7. PubMed DOI
Khalid S, Shahid M, Dumat C, Niazi NK, Bibi I, Gul Bakhat HFS, Abbas G, Murtaza B, Javeed HMR. Influence of groundwater and wastewater irrigation on lead accumulation in soil and vegetables: implications for health risk assessment and phytoremediation. Int J Phytoremed. 2017;19:1037–1046. doi: 10.1080/15226514.2017.1319330. PubMed DOI
Khalid S, Shahid M, Niazi NK, Rafiq M, Bakhat HF, Imran M, Abbas T, Bibi I, Dumat C (2017a) Arsenic behavior in soil-plant system: biogeochemical reactions and chemical speciation influences. In: Anjum NA, Gill SS, Tuteja N (eds) Enhancing Cleanup of Environmental Pollutants, Vol 2: Non- Biological Approaches, Springer International Publishing, Switzerland, pp 97–140
Kim Y-Y, Yang Y-Y, Lee Y. Pb and Cd uptake in rice roots. Physiol Plant. 2002;116(3):368–372. doi: 10.1034/j.1399-3054.2002.1160312.x. DOI
Kiran BR, Prasad MNV. Responses of Ricinus communis L. (castor bean, phytoremediation crop) seedlings to lead (Pb) toxicity in hydroponics. Selcuk J Agri Food Sci. 2017;31:73–80.
Kishor PK, Sangam S, Amrutha R, Laxmi PS, Naidu KS, Rao KRSS, Rao S, Reddy KG, Theriappan P, Sreenivasulu N. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci. 2005;88:424–438.
Kohli SK, Handa N, Sharma A, Gautam V, Arora S, Bhardwaj R, Alyemeni MN, Wijaya L, Ahmad P. Combined effect of 24-epibrassinolide and salicylic acid mitigates lead (Pb) toxicity by modulating various metabolites in Brassica juncea L. seedlings. Protoplasma. 2018;255:11–24. doi: 10.1007/s00709-017-1124-x. PubMed DOI
Kopittke PM, Asher CJ, Kopittke RA, Menzies NW. Toxic effects of Pb2+ on growth of cowpea (Vigna unguiculata) Environ Pollut. 2007;150:280–287. doi: 10.1016/j.envpol.2007.01.011. PubMed DOI
Kováčik J, Klejdus B. Dynamics of phenolic acids and lignin accumulation in metal-treated Matricaria chamomilla roots. Plant Cell Rep. 2008;27:605–615. doi: 10.1007/s00299-007-0490-9. PubMed DOI
Kovács A, Vasas A, Hohmann J. Natural phenanthrenes and their biological activity. Phytochemistry. 2008;69:1084–1110. doi: 10.1016/j.phytochem.2007.12.005. PubMed DOI
Kroymann J. Natural diversity and adaptation in plant secondary metabolism. Current Opin Plant Biol. 2011;14:246–251. doi: 10.1016/j.pbi.2011.03.021. PubMed DOI
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750. doi: 10.1155/2013/162750. PubMed DOI PMC
Kumar A, Prasad MNV, Mohan V, Achary M, Panda BB. Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res. 2013;20:4551–4561. doi: 10.1007/s11356-012-1354-6. PubMed DOI
Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK. Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int. 2015;74:221–230. doi: 10.1016/j.envint.2014.10.019. PubMed DOI
Lapie C, Leglize P, Paris C. Profiling of main metabolites in root exudates and mucilage collected frommaize submitted to cadmium stress. Environ Sci Pollut Res. 2019;26:17520–17534. doi: 10.1007/s11356-019-05168-0. PubMed DOI
Lee M, Lee K, Lee J, Noh EW, Lee Y. AtPDR12 contributes to lead resistance in Arabidopsis. Plant Physiol. 2005;138:827–836. doi: 10.1104/pp.104.058107. PubMed DOI PMC
Li R-Y, Ago Y, Liu W-J, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao F-J. The rice aquaporin Lsi1 mediates the uptake of methylated arsenic species. Plant Physiol. 2009;150:2071–2080. doi: 10.1104/pp.109.140350. PubMed DOI PMC
Li H-B, Li J, Zhu Y-G, Juhasz AL, Ma LQ. Comparison of arsenic bioaccessibility in house dust and contaminated soils based on four in vitro assays. Sci Total Environ. 2015;532:803–811. doi: 10.1016/j.scitotenv.2015.06.060. PubMed DOI
Li Y, Zhou C, Huang M, Luo J, Hou X, Wu P, Ma X. Lead tolerance mechanism in Conyza canadensis: subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. J Plant Res. 2016;129:251–262. doi: 10.1007/s10265-015-0776-x. PubMed DOI
Li Q, Guo J, Zhang X, Yu H, Huang F, Zhang L, Zhang M, Li T. Changes of non-protein thiols in root and organic acids in xylem sap involved in cadmium translocation of cadmium-safe rice line (Oryza sativa L.) Plant Soil. 2019;439:475–486. doi: 10.1007/s11104-019-04051-8. DOI
Li CF, Zhou KH, Qin WQ, Tian CJ, Qi M, Yan XM, Han WB. A review on heavy metals contamination in soil: effects, sources, and remediation techniques. Soil Sedim Contamin. 2019;28:380–394. doi: 10.1080/15320383.2019.1592108. DOI
Liang X, Zhang L, Kumar SN, Becker DF (2013) Antioxidants & redox signaling. Dickman M (ed), Proline Mechanisms of stress survival. Plant Redox. 10.1089/ars.2012.5074 PubMed PMC
Lin J, He F, Owens G, Chen Z. How do phytogenic iron oxide nanoparticles drive redox reactions to reduce cadmium availability in a flooded paddy soil? J Hazard Mater. 2021;403:12. doi: 10.1016/j.jhazmat.2020.123736. PubMed DOI
Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED. A fern that hyperaccumulates arsenic. Nature. 2001;409:579. doi: 10.1038/35054664. PubMed DOI
Maccaferri M, Harris NS, Twardziok SO, Pasam RK, Gundlach H, Spannagl M, Cattivelli L. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat Genet. 2019;51:885–895. doi: 10.1038/s41588-019-0381-3. PubMed DOI
Maestri E, Marmiroli M, Visioli G, Marmiroli N. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot. 2010;68:1–13. doi: 10.1016/j.envexpbot.2009.10.011. DOI
Mahajan M, Kuiry R, Pal PK. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J Appl Res Med Aromatic Plants. 2020;18:100255. doi: 10.1016/j.jarmap.2020.100255. DOI
Mao K, Yang J, Wang M, Liu H, Guo X, Zhao X, Dong Q, Ma F. Genome-wide analysis of the apple CaCA superfamily reveals that MdCAX proteins are involved in the abiotic stress response as calcium transporters. BMC Plant Biol. 2021;21:81. doi: 10.1186/s12870-021-02866-1. PubMed DOI PMC
Marin AR, Masscheleyn PH, Patrick WH. Soil redox-pH stability of arsenic species and its influence on arsenic uptake by rice. Plant Soil. 1993;52:245–325. doi: 10.1007/BF00029094. DOI
Martínez-Sánchez M, Martínez-López S, García-Lorenzo M, Martínez-Martínez L, Pérez-Sirvent C. Evaluation of arsenic in soils and plant uptake using various chemical extraction methods in soils affected by old mining activities. Geoderma. 2011;160:535–541. doi: 10.1016/j.geoderma.2010.11.001. DOI
Masscheleyn PH, Delaune RD, Patrick WH. Effect of redox potential and pH on arsenic speciation and solubility in contaminated soil. Environ Sci Technol. 1991;25:1414–1419. doi: 10.1021/es00020a008. DOI
Maurel C, Verdoucq L, Luu D-T, Santoni V. Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol. 2008;59:595–624. doi: 10.1146/annurev.arplant.59.032607.092734. PubMed DOI
Melato FA, Regnier T, McCrindle RI, Mokgalaka NS. Impact of metals on secondary metabolites production and plant morphology in Vetiver grass (Chrysopogon zizanioides) S Afr J Chem. 2012;65:178–183.
Mendoza-Cózatl DG, Butko E, Springer F, Torpey JW, Komives EA, Kehr J, Schroeder JI. Identification of high levels of phytochelatins, glutathione, and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008;54:249–259. doi: 10.1111/j.1365-313X.2008.03410.x. PubMed DOI PMC
Michalak A. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Pol J Environ Stud. 2006;15:523–530.
Mitani-Ueno N, Yamaji N, Zhao F-J, Ma JF. The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Ex Bot. 2011;62:4391–4398. doi: 10.1093/jxb/err158. PubMed DOI PMC
Mombo S, Foucault Y, Deola F, Gaillard I, Goix S, Shahid M, Schreck E, Pierart A, Dumat C. Management of human health risk in the context of kitchen gardens polluted by lead and cadmium near a lead recycling company. J Soils Sedim. 2016;16:1214–1224. doi: 10.1007/s11368-015-1069-7. DOI
Moreno-Jiménez E, Esteban E, Peñalosa JM. The fate of arsenic in soil-plant systems. Rev Environ Contam Toxicol. 2012;215:1–37. doi: 10.1007/978-1-4614-1463-6_1. PubMed DOI
Mori S, Uraguchi S, Ishikawa S, Arao T. Xylem loading process is a critical factor in determining Cd accumulation in the shoots of Solanum melongena and Solanum torvum. Environ Exp Bot. 2009;67:127–132. doi: 10.1016/j.envexpbot.2009.05.006. DOI
MovahediYaghutiWei AAAIZHP, Rutland W, SunMousaviLiZhuge MDQ. Plant secondary metabolites with an overview of Populus. Int J Mol Sci. 2021;22:6890. doi: 10.3390/ijms22136890. PubMed DOI PMC
Müsel G, Schindler T, Bergfeld R, Ruel K, Jacquet G, Lapierre C, Speth V, Schopfer P. Structure and distribution of lignin in primary and secondary cell walls of maize coleoptiles analyzed by chemical and immunological probes. Planta. 1997;201:146–159. doi: 10.1007/BF01007699. DOI
Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. In: Whitacre D (Eds) Reviews of environmental contamination and toxicology. Reviews of environmental contamination and toxicology Continuation of residue reviews, p. 203. Springer, New York. 10.1007/978-1-4419-1352-4_5 PubMed
Neidhardt H, Kramar U, Tang X, Guo H, Norra S. Arsenic accumulation in the roots of Helianthus annuus and Zea mays by irrigation with arsenic-rich groundwater: Insights from synchrotron X-ray fluorescence imaging. Geochem. 2015;75:261–270. doi: 10.1016/j.chemer.2015.04.001. DOI
Niazi NK, Bibi I, Fatimah A, Shahid M, Javed MT, Wang H, Ok YS, Bashir S, Murtaza B, Saqib ZA. Phosphate-assisted phytoremediation of arsenic by Brassica napus and Brassica juncea: morphological and physiological response. Int J Phytoremed. 2017;19:670–678. doi: 10.1080/15226514.2016.1278427. PubMed DOI
Okem A, Southway C, Stirk WA, Street RA, Finnie JF, Staden J. Effect of cadmium and aluminum on growth, metabolite content and biological activity in Drimia elata (Jacq.) Hyacinthaceae. South African J Bot. 2015;98:142–147. doi: 10.1016/j.sajb.2015.02.013. DOI
Panda S, Upadhyay R, Nath S. Arsenic stress in plants. J Agron Crop Sci. 2010;196:161–174. doi: 10.1111/j.1439-037X.2009.00407.x. DOI
Parvin S, Md Ehsanul Haque, Fahmida Akhter, Mubarak Ali (2022) Determination of arsenic in minor cereals (Barley, Foxtail Millet, Proso-Millet, Finger- Millet, Pearl -Millet, Buckwheat. Oat, Quinoa and Sorghum) in Gazipur, Bangladesh. Journal of Agricultural Research Pesticides and Biofertilizers, 3(1).
Patra M, Bhowmik N, Bandopadhyay B, Sharma A. Comparison of mercury, lead, and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot. 2004;52:199–223. doi: 10.1016/j.envexpbot.2004.02.009. DOI
Paunov M, Koleva L, Vassilev A, Vangronsveld J, Goltsev V. Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci. 2018;19:787. doi: 10.3390/ijms19030787. PubMed DOI PMC
Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content. Acta Biochim Pol. 2011;58:211–216. doi: 10.18388/abp.2011_2267. PubMed DOI
Perveen S, Anis M, Aref IM. In vitro morphogenic response and metal accumulation in Albizia lebbeck (L.) cultures grown under metal stress. Eur J for Res. 2012;131:669–681. doi: 10.1007/s10342-011-0540-2. DOI
Pourrut B, Shahid M, Dumat C, Winterton P, Pinelli E. Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol. 2011;213:113–136. doi: 10.1007/978-1-4419-9860-6_4. PubMed DOI
Prasad MNV. Cadmium toxicity and tolerance in vascular plants. Environ Exp Bot. 2005;35:525–545. doi: 10.1016/0098-8472(95)00024-0. DOI
Prasad A, Kumar S, Khaliq A, Pandey A. Heavy metals and arbuscular mycorrhizal (AM) fungi can alterthe yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.) Biol Fertil Soils. 2011;47:853–861. doi: 10.1007/s00374-011-0590-0. DOI
Probst A, Liu H, Fanjul M, Liao B, Hollande E. Response of Vicia faba L. to metal toxicity on mine tailing substrate: geochemical and morphological changes in leaf and root. Environ Exp Bot. 2009;66:297–308. doi: 10.1016/j.envexpbot.2009.02.003. DOI
Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P. Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)] J Hazard Mater. 2010;177:465–474. doi: 10.1016/j.jhazmat.2009.12.056. PubMed DOI
Raab A, Wright SH, Jaspars M, Meharg AA. Feldmann J Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed. 2007;46:2594–2597. doi: 10.1002/anie.200604805. PubMed DOI
Raab A, Williams PN, Meharg A, Feldmann J. Uptake and translocation of inorganic and methylated arsenic species by plants. Environ Chem. 2007;4:197–203. doi: 10.1071/EN06079. DOI
Rafiq M, Shahid M, Shamshad S, Khalid S, Niazi NK, Abbas G, Saeed MF, Ali M, Murtaza B. A comparative study to evaluate efficiency of EDTA and calcium in alleviating arsenic toxicity to germinating and young Vicia faba L. seedlings. J Soils Sedim. 2017;1:11. doi: 10.1007/s11368-017-1693-5. DOI
Ramírez-Solis A, Mukopadhyay R, Rosen BP, Stemmler TL. Experimental and theoretical characterization of arsenite in water: insights into the coordination environment of As-O. Inorg. 2004;43:2954–2959. doi: 10.1021/ic0351592. PubMed DOI PMC
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 2011;180:169–181. doi: 10.1016/j.plantsci.2010.08.016. PubMed DOI
Redjala T, Zelko I, Sterckeman T, Legué V, Lux A. Relationship between root structure and root cadmium uptake in maize. Environ Exp Bot. 2011;71:241–248. doi: 10.1016/j.envexpbot.2010.12.010. DOI
Redondo-Gómez S, Mateos-Naranjo E, Andrades-Moreno L. Accumulation and tolerance characteristics of cadmium in a halophytic Cd-hyperaccumulator Arthrocnemum macrostachyum. J Hazard Mater. 2010;184:299–307. doi: 10.1016/j.jhazmat.2010.08.036. PubMed DOI
Reeves R. Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N, editors. Phytoremediation of Metal Contaminated Soils. Dordrecht: NATO Science, Springer; 2006.
Reeves RD, Schwartz C, Morel JL, Edmondson J. Distribution and metal accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int J Phytoremediation. 2001;3:145–172. doi: 10.1080/15226510108500054. DOI
Retief F, Cilliers L. Lead poisoning in ancient Rome. Acta Theologica. 2006;26:2. doi: 10.4314/actat.v26i2.52570. DOI
Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol. 1994;65(27–33):10. doi: 10.1080/09553009414550041. PubMed DOI
Rinklebe J, Shaheen SM. Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water Air Soil Pollut. 2014;225:2039. doi: 10.1007/s11270-014-2039-1. DOI
Rinklebe J, Shaheen SM, Yu K. Release of As, Ba, Cd, Cu, Pb, and Sr under pre-definite redox conditions in different rice paddy soils originating from the USA and Asia. Geoderma. 2016;270:21–32. doi: 10.1016/j.geoderma.2015.10.011. DOI
Rizwan M, Ali S, Rehman MZu, Javed MR, Bashir A. Lead toxicity in cereals and its management strategies: a critical review. Water Air Soil Pollut. 2018;229:211. doi: 10.1007/s11270-018-3865-3. DOI
Rout GR, Das P. Effect of metal toxicity on plant growth and metabolism. Agronomie. 2003;23:3–11. doi: 10.1051/agro:2002073. DOI
Sadana US, Samal D, Claassen N. Differences in manganese efficiency of wheat (Triticum aestivum L.) and Raya (Brassica juncea L.) as related to root-shoot relations and manganese influx. J Plant Nutr Soil Sci. 2003;166:385–389. doi: 10.1002/jpln.200390059. DOI
Sadiq M. Arsenic chemistry in soils: an overview of thermodynamic predictions and field observations. Water Air Soil Pollut. 1997;93:117–136. doi: 10.1007/BF02404751. DOI
Sauve S, McBride M, Hendershot W. Soil solution speciation of lead(II): effects of organic matter and pH. Soil Sci Soc Am J. 1998;62:618–621. doi: 10.2136/sssaj1998.03615995006200030010x. DOI
Scheckel KG, Ryan JA, Allen D, Lescano NV. Determining speciation of Pb in phosphate-amended soils: method limitations. Sci Total Environ. 2005;350:261–272. doi: 10.1016/j.scitotenv.2005.01.020. PubMed DOI
Seregin IV, Ivanov VB. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 2001;48:523–525. doi: 10.1023/A:1016719901147. DOI
Seregin IV, Shpigun LK, Ivanov VB. Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol. 2004;51:525–533. doi: 10.1023/B:RUPP.0000035747.42399.84. DOI
Shaaria NEM, Tajudina MTFM, Khandakera MM, Majrashib A, Alenazic MM, Abdullahia UA, Mohda KS. Cadmium toxicity symptoms and uptake mechanism in plants: a review. Braz J Biol. 2022;7(84):e252143. doi: 10.1590/1519-6984.252143. PubMed DOI
Shaheen SM, Rinklebe J. Sugar beet factory lime affects the mobilization of Cd Co, Cr, Cu, Mo, Ni, Pb, and Zn under dynamic redox conditions in a contaminated floodplain soil. J Environ Manage. 2017;186:253–260. doi: 10.1016/j.jenvman.2016.07.060. PubMed DOI
Shaheen SM, Rinklebe J, Frohne T, White JR, DeLaune RD. Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake Deltaic freshwater marsh soils. Chemosphere. 2016;150:740–748. doi: 10.1016/j.chemosphere.2015.12.043. PubMed DOI
Shaheen SM, Shams MS, Khalifa MR, El-Dali MA, Rinklebe J. Various soil amendments and environmental wastes affect the (im)mobilization and phytoavailability of potentially toxic elements in a sewage effluent irrigated sandy soil. Ecotoxicol Environ Saf. 2017;142:375–387. doi: 10.1016/j.ecoenv.2017.04.026. PubMed DOI
Shahid M, Pinelli E, Dumat C. Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater. 2012;219:1–12. doi: 10.1016/j.jhazmat.2012.01.060. PubMed DOI
Shahid M, Xiong T, Castrec-Rouelle M, Leveque T, Dumat C. Water extraction kinetics of metals, arsenic and dissolved organic carbon from industrial contaminated poplar leaves. J Environ Sci. 2013;25:2451–2459. doi: 10.1016/S1001-0742(12)60197-1. PubMed DOI
Shahid M, Dumat C, Pourrut B, Silvestre J, Laplanche C, Pinelli E. Influence of EDTA and citric acid on lead-induced oxidative stress to Vicia faba roots. J Soils Sedim. 2014;14:835–843. doi: 10.1007/s11368-013-0724-0. DOI
Shahid M, Dumat C, Khalid S, Niazi NK, Antunes PMC (2016) Cadmium bioavailability, uptake, toxicity and detoxification in soil-plant system. In: de Voogt, P. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, 241. Springer, Cham. 10.1007/398_2016_8 PubMed
Shakoor MB, Niazi NK, Bibi I, Rahman MM, Naidu R, Dong Z, Shahid M, Arshad M. Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health. 2015;12:12371–12390. doi: 10.3390/ijerph121012371. PubMed DOI PMC
Sharma P, Dubey RS. Lead toxicity in plants. Braz J Plant Physiol. 2005;17:35–52. doi: 10.1590/S1677-04202005000100004. DOI
Šichorová K, Tlustoš P, Száková J, Kořínek K, Balík JK. Horizontal and vertical variability of heavy metals in the soil of a polluted area. Plant Soil Environ. 2004;50:525–534. doi: 10.17221/4069-PSE. DOI
Siddiqui F, Tandon PK, Srivastava S. Analysis of arsenic-induced physiological and biochemical responses in a medicinal plant, Withania somnifera. Physiol Mol Biol Plants. 2015;21:61–69. doi: 10.1007/s12298-014-0278-7. PubMed DOI PMC
Signes-Pastor A, Burló F, Mitra K, Carbonell-Barrachina A. Arsenic biogeochemistry as affected by phosphorus fertilizer addition, redox potential, and pH in a west Bengal (India) soil. Geoderma. 2007;137:504–510. doi: 10.1016/j.geoderma.2006.10.012. DOI
Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep. 2017;7:3592. doi: 10.1038/s41598-017-03923-2. PubMed DOI PMC
Srivastava RK, Pandey P, Rajpoot R, Rani A, Dubey RS. Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma. 2014;251:1047–1065. doi: 10.1007/s00709-014-0614-3. PubMed DOI
Stancheva I, Genevaa M, Hristozkova M, Markovska Y, Salamon I. Antioxidant capacity of sage grown on heavy metal-polluted soil. Russ J Plant Physiol. 2010;57:799–805. doi: 10.1134/S1021443710060087. DOI
Sterckeman T, Thomine S. Mechanisms of cadmium accumulation in plants. Crit Rev Plant Sci. 2020;39:322–359. doi: 10.1080/07352689.2020.1792179. DOI
Stoessl A, Arditti J (1984) Orchid phytoalexins. In: Arditti J (ed) Orchid biology, reviews, and perspectives, III. Cornell University Press, Ithaca, New York.
Subašić M, Šamec D, Selović A, Karalija E. Phytoremediation of cadmium polluted soils: current status and approaches for enhancing soil. System. 2022;6:3. doi: 10.3390/soilsystems6010003. DOI
Sungur A, Kavdir Y, Özcan H, İlay R, Soylak M. Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. Catena. 2020;197:2021.
Száková J, Dziaková M, Kozáková A, Tlustoš P. The risk element uptake by chamomile (Matricaria recutita (L.) Rauschert) growing in four different soils. Arch Environ Prot. 2018;44:12–21.
Talukdar D. Balancing roles of reactive oxygen species in plants response to metalloid exposure: boon or bane—revisiting the role of ROS. Hobokem: Wiley; 2017. Reactive oxygen species in plants.
Tariq H (2018) Effect of lead on plants and animals. Retrieved (11/02/2022). https://www.slideshare.net/hazz12/effect-of-lead-on-plants-and-animals-86577938. Accessed on 22 Oct 2022
Tatipamula VB, Kukavica B. Phenolic compounds as antidiabetic, anti-inflammatory, and anticancer agents and improvement of their bioavailability by liposomes. Cell Biochem Funct. 2021;39:926–944. doi: 10.1002/cbf.3667. PubMed DOI
Teoh ES. Secondary Metabolites of plants. Med Orchids Asia. 2015;2015:59–73. doi: 10.1007/978-3-319-24274-3_5. DOI
Tlustoš P, Száková J, Daniela P, Balik A. The accumulation of arsenic and cadmium by different species of vegetables. Ac. 2002;571:217–224. doi: 10.17660/ActaHortic.2002.571.26. DOI
Tremlová J, Sehnal M, Száková J, Goessler W, Steiner O, Najmanová J, Horáková T, Tlustoš P. A profile of arsenic species in different vegetables growing in arsenic-contaminated soils. Arch Agron Soil Sci. 2017;63:918–927. doi: 10.1080/03650340.2016.1242721. DOI
Uzu G, Sobanska S, Aliouane Y, Pradere P, Dumat C. Study of lead phytoavailability for atmosphericindustrial micronic and sub-micronic particles in relation with lead speciation. Environ Pollut. 2009;157:1178–1185. doi: 10.1016/j.envpol.2008.09.053. PubMed DOI
Vega F, Andrade M, Covelo E. Influence of soil properties on the sorption and retention of cadmium, copper, and lead, separately and together, by 20 soil horizons: comparison of linear regression and tree regression analyses. J Hazard Mater. 2010;174:522–533. doi: 10.1016/j.jhazmat.2009.09.083. PubMed DOI
Verbruggen N, Hermans C, Schat H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol. 2009;12:364–372. doi: 10.1016/j.pbi.2009.05.001. PubMed DOI
Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 2009;181:759–776. doi: 10.1111/j.1469-8137.2008.02748.x. PubMed DOI
Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic-contaminated land. EnvironPollut. 2002;118:453461. PubMed
Vukmirovic D, Rollo D, Seymour C, Mothersill C. Cytotoxic profiling of plant secondary metabolites on P53 variant human colon carcinoma cell lines. Dose-Response. 2018;15(4):1559325817748121. doi: 10.1177/1559325817748121. PubMed DOI PMC
Wallace IS, Choi W-G, Roberts DM. The structure, function, and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta. 2006;1758:1165–1175. doi: 10.1016/j.bbamem.2006.03.024. PubMed DOI
Wang S, Mulligan CN. Effect of natural organic matter on arsenic release from soils and sediments into groundwater. Environ Geochem Health. 2006;28:197–214. doi: 10.1007/s10653-005-9032-y. PubMed DOI
Wang H, Shan X, Wen B, Owens G, Fang J, Zhang S. Effect of indole-3-acetic acid on lead accumulation in maize (Zea mays L.) seedlings and the relevant antioxidant response. Environ Exp Bot. 2007;61:246–253. doi: 10.1016/j.envexpbot.2007.06.004. DOI
Wang C, Lu J, Zhang SH, Wang PF, Hou J, Qian J. Effects of Pb stress on nutrient uptake and secondary metabolism in submerged macrophyte Vallisneria natans. Ecotoxicol Environ Saf. 2011;74:1297–1303. doi: 10.1016/j.ecoenv.2011.03.005. PubMed DOI
Warren G, Alloway B. Reduction of arsenic uptake by lettuce with ferrous sulfate applied to contaminated soil. J Environ Q. 2003;32:767–772. doi: 10.2134/jeq2003.7670. PubMed DOI
Weng L, Temminghoff EJ, Lofts S, Tipping E, Van Riemsdijk WH. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil. Environ Sci Technol. 2002;36:4804–4810. doi: 10.1021/es0200084. PubMed DOI
WHO (2007) Guidelines for assessing quality of herbal medicines with reference to contaminants and residue. WHO Press, Geneva
Wiggenhauser M, Aucour AM, Bureau S, Campillo S, Telouk P, Romani M, Ma JF, Landrot G, Sarret G. Cadmium transfer in contaminated soil-rice systems: insights from solid-state speciation analysis and stable isotope fractionation. Environ Pollut. 2021;269:115934. doi: 10.1016/j.envpol.2020.115934. PubMed DOI
Wu C, Shi L, Xue S, Li W, Jiang X, Rajendran M, Qian Z. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci Total Environ. 2019;647:1158–1168. doi: 10.1016/j.scitotenv.2018.08.087. PubMed DOI
Xie Y, Hu L, Du Z, Sun X, Amombo E, Fan J, Fu J. Effects of cadmium exposure on growth and metabolic profile of bermudagrass [Cynodon dactylon (L.) Pers. PLoS One. 2014;29(9):115279. doi: 10.1371/journal.pone.0115279. PubMed DOI PMC
Xu J, Sun J, Du L, Liu X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012;196:110–124. doi: 10.1111/j.1469-8137.2012.04235.x. PubMed DOI
Yadav SK. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot. 2010;76:167–179. doi: 10.1016/j.sajb.2009.10.007. DOI
Yamaguchi N, Mori S, Baba K, Kaburagi-Yada S, Arao T, Kitajima N, Terada Y. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies. Environ Exp Bot. 2011;71:198–206. doi: 10.1016/j.envexpbot.2010.12.002. DOI
Yan X, Zhang M, Liao X, Tu S. Influence of amendments on soil arsenic fractionation and phytoavailability by Pteris vittata L. Chemosphere. 2012;88:240–244. doi: 10.1016/j.chemosphere.2012.03.015. PubMed DOI
Yan G, Fan X, Tan L, Yin C, Li T, Liang Y. Root silicon deposition and its resultant reduction of sodium bypass flow is modulated by OsLsi1 and OsLsi2 in rice. Plant Physiol Biochem. 2021;158:219–227. doi: 10.1016/j.plaphy.2020.11.015. PubMed DOI
Yibin L, Zhongxiang S, Zhenfang L, Rongrong X, Weikang C, Shaozhi S, Tingting L, Rensen Z, Yuanyuan S (2019) Deficiency in silicon transporter lsi1 compromises inducibility of anti-herbivore defense in rice plants. Front Plant Sci 10. 10.3389/fpls.2019.00652 PubMed PMC
Yoshinaga M, Cai Y, Rosen BP. Demethylation of methylarsonic acid by a microbial community. Environ Microbiol. 2011;13:1205–1215. doi: 10.1111/j.1462-2920.2010.02420.x. PubMed DOI PMC
Yu R, Jiang Q, Xv C, Li L, Bu S, Shi G. Comparative proteomics analysis of peanut roots revealsdifferential mechanisms of cadmium detoxification and translocation between two cultivars differing in cadmium accumulation. BMC Plant Biol. 2019;19:137. doi: 10.1186/s12870-019-1739-5. PubMed DOI PMC
Yuan H, Zhang Y, Huang Yang SY, Gu C. Effects of exogenous glutathione and cysteine on growth, lead accumulation, and tolerance of Iris lactea var. Chinensis Environ Sci Pollut Res. 2015;22:2808–2816. doi: 10.1007/s11356-014-3535-y. PubMed DOI
Zemanová V, Popov M, Pavlíková D, et al. Effect of arsenic stress on 5-methylcytosine, photosynthetic parameters and nutrient content in arsenic hyperaccumulator Pteris cretica L. var. Albo-lineata. BMC Plant Biol. 2020;20:130. doi: 10.1186/s12870-020-2325-6. PubMed DOI PMC
Zhang J, Chen J, Wu Y-F, Wang Z-P, Qiu J-G, Li X-L, Cai F, Xiao K-Q, Sun X-X, Barry P, Zhao F-J (2021) Oxidation of organoarsenicals and antimonite by a novel flavin monooxygenase widely present in soil bacteria. Environ Microbiol 00:00-00. 10.1111/1462-2920.15488 PubMed PMC
Zhao FJ, Ma JF, Meharg AA, McGrath SP. Arsenic uptake and metabolism in plants. New Phytol. 2009;181:777–794. doi: 10.1111/j.1469-8137.2008.02716.x. PubMed DOI
Zheljazkov VD, Craker LE, Xing B. Effects of Cd, Pb, and Cu on growth and essential oil contents in dill, peppermint, and basil. Environ Exp Bot. 2006;58:9–16. doi: 10.1016/j.envexpbot.2005.06.008. DOI
Zheng L, Peer T, Seybold V, Lütz-Meindl U. Pb-induced ultrastructural alterations and subcellular localization of Pb in two species of Lespedeza by TEM-coupled electron energy loss spectroscopy. Environ Exp Bot. 2012;77:196–206. doi: 10.1016/j.envexpbot.2011.11.018. DOI
Zhou T, Radaev S, Rosen BP, Gatti DL. Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. EMBO J. 2000;19:1–8. doi: 10.1093/emboj/19.17.4838. PubMed DOI PMC
Zhou C, Huang M, Li Y, Luo J, Cai L. Changes in subcellular distribution and antioxidant compounds involved in Pb accumulation and detoxification in Neyraudia reynaudiana. Environ Sci Pollut Res. 2016;23:21794–21804. doi: 10.1007/s11356-016-7362-1. PubMed DOI
Zhu FY, Li L, Lam PY, Chen MX, Chye ML, Lo C. Sorghum extracellular leucine-rich repeat protein SbLRR2 mediates lead tolerance in transgenic Arabidopsis. Plant Cell Physiol. 2013;54:1549–1559. doi: 10.1093/pcp/pct101. PubMed DOI
Metal contamination - a global environmental issue: sources, implications & advances in mitigation