Abilities of herbaceous plant species to phytoextract Cd, Pb, and Zn from arable soils after poly-metallic mining and smelting
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/ 16_019/0000845).
European Regional Development Fund
PubMed
40097695
PubMed Central
PMC11968566
DOI
10.1007/s11356-025-36241-6
PII: 10.1007/s11356-025-36241-6
Knihovny.cz E-zdroje
- Klíčová slova
- Equisetum arvense, Leucanthemum vulgare, Alluvial sediment, Phytoextraction, Phytoremediation, Shoot accumulation,
- MeSH
- biodegradace MeSH
- hornictví MeSH
- kadmium metabolismus MeSH
- látky znečišťující půdu * metabolismus MeSH
- olovo metabolismus MeSH
- půda chemie MeSH
- rostliny * metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- kadmium MeSH
- látky znečišťující půdu * MeSH
- olovo MeSH
- půda MeSH
- zinek MeSH
Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.
Zobrazit více v PubMed
Aladesanmi OT, Oroboade JG, Osisiogu CP, Osewole AO (2019) Bioaccumulation factor of selected heavy metals in Zea mays. J Health Pollut 9:1–19 PubMed PMC
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9:42. 10.3390/toxics9030042 PubMed DOI PMC
Alsafran M, Saleem MH, Al Jabri H, Rizwan M, Usman K (2022) Principles and applicability of integrated remediation strategies for heavy metal removal/recovery from contaminated environments. J Plant Growth Regul 42:3419–3440. 10.1007/s00344-022-10803-1 DOI
Amer N, Al Chami Z, Al Bital L, Mondelli D, Dumontet S (2013) Evaluation of PubMed DOI
Ariyanti AL, Chien MF, Inoue C (2023) The benefit of the
Asare MO, Száková J (2023) Are anthropogenic soils from dumpsites suitable for arable fields? Evaluation of soil fertility and transfer of potentially toxic elements to plants. Plant Soil 486:307–322. 10.1007/s11104-023-05870-6 DOI
Asare MO, Száková J, Tlustoš P (2022) The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. Environ Sci Pollut Res 30:11378–11398. 10.1007/s11356-022-24776-x PubMed DOI PMC
Asare MO, Pellegrini E, Száková J, Najmanová J, Tlustoš P, de Nobili M, Contin M (2023a) Potential of herbaceous plant species for copper (Cu) accumulation. Environ Sci Pollut Res 31:5331–5343. 10.1007/s11356-023-31579-1 PubMed DOI
Asare MO, Pellegrini E, Száková J, Blöcher JR, Najmanová J, Tlustoš P, Contin M (2024) Organic amendments to short rotation coppice (SRC) plantation affect species richness and metal accumulation of spontaneously growing herbaceous plants. J Soil Sci Plant Nutr 24:1474–1488. 10.1007/s42729-024-01652-w DOI
Asare MO, Száková J, Tlustoš P (2023b) Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere. Front Environ Sci 11. 10.3389/fenvs.2023.1157415.
Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. 10.1016/j.ecoenv.2019.02.068 PubMed
Aybar M, Sağlam B, Dağhan H, Tüfekçioğlu A, Köleli N, Yilmaz FN (2023) Phytoextraction of heavy metal (Cu, Zn, Pb) from mining area by sunflower (
Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266 PubMed
Berhongaray MS, Verlinden LS, Broeckx R, Ceulemans G (2015) Changes in belowground biomass after coppice in two
Bernal MP, Alvarenga P, Carmody K, Pogrzeba M, Soja G (2020) Protecting agricultural soils from contamination. Retrieved from https://ec.europa.eu/eip/agriculture/sites/default/files/fg37_mp3_remediation_final.pdf. Accessed 21.01.2023
Bidar G, Verdin A, Garcon G, Pruvot C, Laruelle F, Grandmougin FA, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants ( DOI
Boeing T, Moreno T, Gasparotto KG, Junior A, Mota da Silva L, de Souza P (2021) Phytochemistry and pharmacology of the genus Equisetum (Equisetaceae): a narrative review of the species with therapeutic potential for kidney diseases. Evid Based Complement Alternat Med 6658434. 10.1155/2021/6658434 PubMed PMC
Borůvka L, Vácha R (2006) Litavka River Alluvium as a model area heavily polluted with potentially risk elements some methods for studying polluted soils. In book: Phytoremediation of Metal-Contaminated Soils. 10.1007/1-4020-4688-X_9
Calabró MR, Roqueiro G, Tapia R, Crespo DC, Bargiela MF, Young BJ (2022) Chronic toxicity, bioavailability and bioaccumulation of Zn, Cu and Pb in PubMed
Castaňares E, Lojka B (2020) Potential hyperaccumulator plants for sustainable environment in tropical habitats. IOP Conf Ser Earth Environ Sci 528:010120. 10.1088/17551315/528/1/012045 DOI
Castañeda-Espinoza J, Salinas-Sánchez DO, Mussali-Galante P, Castrejón-Godínez ML, Rodríguez A, González-Cortazar M, Zamilpa-Álvarez A, Tovar-Sánchez E (2023) Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environ Sci Pollut Res 30:2509–2529 PubMed
Chapman EEV, Moore C, Campbell LM (2019) Native plants for revegetation of mercury- and arsenic-contaminated historical mining waste—can a low-dose selenium additive improve seedling growth and decrease contaminant bioaccumulation? Water Air Soil Pollut 230:225. 10.1007/s11270-019-4267-x DOI
Chen Y, Zhao HX, Xie ZH, Huang HY, Zang SY, Lian B (2015) Heavy metal pollution characteristics in the Kaili coal mining region, Guizhou province, China. J Resid Sci Technol 12:S123–S131
Chen Yi-T, Wang Y, Yeh K-C (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72. 10.1016/j.pbi.2017.06.004 PubMed DOI
Ćirić V, Prekop N, Šeremešić S, Vojnov B, Pejić B, Radovanović D, Marinković D (2023) The implication of cation exchange capacity (CEC) assessment for soil quality management and improvement. Agric Forest 69:113–133. 10.17707/AgricultForest.69.4.08 DOI
Commission Directive 2010/6/EU of 9 February 2010 amending Annex I to Directive 2002/32/EC of the European Parliament. Retrieved from https://eur-lex.europa.eu/legal-content/CS/TXT/PDF/?uri=CELEX:32010L0006. Accessed 20 June 2024
Czech Geological Survey (2012) Geological map of the Czech Republic. http://www.geology.cz/extranet-eng/publications. Accessed 5 Oct 2022
DIN ISO 19730 (2008) Soil quality—extraction of trace elements from soil using ammonium nitrate solution. Deutsches Institut für Normung E.V Standards, Berlin
Dlouhá Š, Petrovský E, Kapička A, Borůvka L, Ash C, Drábek O (2013) Investigation of polluted alluvial soils by magnetic susceptibility methods: a case study of the Litavka River. Soil Water Res 8:151–157
Dradrach A, Karczewska A, Szopka K, Lewińska K (2020) Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. Int J Environ Res Public Health 11:3342. 10.3390/ijerph17093342 PubMed DOI PMC
Estrella-Gómez N, Mendoza-Cózatl D, Moreno-Sánchez R, González-Mendoza D, Zapata-Pérez O, Martínez-Hernández A, Santamaría JM (2009) The Pb-hyperaccumulator aquatic fern PubMed DOI
Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J (2005) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Přıbram, Czech Republic. Environ Pollut 142:409–417. 10.1016/j.envpol.2005.10.024 PubMed DOI
European Medicine Agency (2016) Assessment report on
Faměra M, Kotková K, Tůmová Š, Elznicová J, Matys-Grygar T (2018) Pollution distribution in floodplain structure visualized by electrical resistivity imaging in the floodplain of the Litavka River, the Czech Republic. CATENA 165:157–172
FAO (2024) FAO soils portal. Retrieved from https://www.fao.org/soils-portal/data-hub/soil-classification/numerical-systems/chemical-properties/ru/. Accessed 19.02.24
Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci 6:124. 10.3389/fenvs.2018.00124 DOI
Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nutr 15:2. 10.4067/S0718-95162015005000022 DOI
Githuku CR, Musyoka NJ, Salim WR, Badejo AA, Adedayo A (2021) Treatment potential and phytoextraction capacity of
Grignet A, Sahraoui ALH, Teillaud S, Fontaine J, Papin A, Bert V (2022) Phytoextraction of Zn and Cd with PubMed DOI
Hanousková B, Száková J, Rychlíková E, Najmanová J, Košnář Z, Tlustoš P (2021) The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. Environ Monit Assess 193:68. 10.1007/s10661-020-08825-x PubMed DOI
Hazelton PA, Murphy BW (2011) Understanding soils in urban environments, 2nd edn. CSIRO Publishing, Australia
ISO 11260 (2018) Soil quality-determination of effective cation exchange capacity and base saturation level using barium chloride solution, 2nd edn. ISO, p 12
Jungová M, Asare MO, Jurasová V, Hejcman M (2022) Distribution of micro- (Fe, Zn, Cu, and Mn) and risk (Al, As, Cr, Ni, Pb, and Cd) elements in the organs of DOI
Кabata-Pendias A (2011) Trace elements in soils and plants. CRC Taylor Fr Group, London New York
Kotková K, Nováková T, Tůmová Š, Kiss T, Popelka J, Faměra M (2019) Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphol 329:46–57. 10.1016/j.geomorph.2018.12.010 DOI
Kumbhakar SK, Chauhan R, Jadhav SK, Quraishi A (2023) Lead induced-toxicity in vegetables, its mitigation strategies, and potential health risk assessment: a review. Int J Environ Sci Technol 20:5773–5798
Kurniati E, Imai T, Higuchi T, Sekine M (2014) Lead and chromium removal from leachate using horsetail (
Lambrechts T, Lequeue G, Lobet G, Godin B, Bielders CL, Lutts S (2014) Comparative analysis of Cd and Zn impacts on root distribution and morphology of DOI
Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399. 10.1016/j.ecoenv.2014.12.025 PubMed DOI
Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella JP (2003) Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun Soil Sci Plant Anal 34:1421–1434. 10.1081/CSS-120020454 DOI
Luo Y, Zheng Z, Wu P, Wu Y (2022) Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: implications for phytoremediation. Chemosphere 286:131678 PubMed
Magnusson B, Örnemark U (2014) Eurachem Guide: The fitness for purpose of analytical methods–a laboratory guide to method validation and related topics, (2nd ed.). www.eurachem.org. Accessed 10.04.2024
Małecka A, Konkolewska A, Hanć A, Barałkiewicz D, Ciszewska L, Ratajczak E, Staszak AM, Kmita H, Jarmuszkiewicz W (2019) Insight into the phytoremediation capability of PubMed PMC
Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654. 10.1080/10643380701798272 DOI
Memon AR (2016) Metal hyperaccumulators: mechanisms of hyperaccumulation and metal tolerance. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham. 10.1007/978-3-319-40148-5_8
Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous PubMed DOI PMC
Misra S (2013) Traditional and modern approaches to plant taxonomy. J Geol Soc India 81:590–590. 10.1007/s12594-013-0079-6 DOI
Mohtadi A, Ghaderian SM, Schat H (2012) A comparison of lead accumulation and tolerance among heavy metal hyper-accumulating and non-hyperaccumulating metallophytes. Plant Soil 352:267–327
Moreira H., Pereira SIA, Mench M, Garbisu C, Kidd P, Castro PML (2021) Phytomanagement of metal(loid)-contaminated soils: options, efficiency and value. Front Environ Sci 9 10.3389/fenvs.2021.661423
Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Molec Sci 17:1205. 10.3390/ijms17081205 PubMed DOI PMC
Mussali-Galante P, Santoyo-Martínez M, Castrejón-Godínez ML, Breton-Deval L, Rodríguez-Solis A, Valencia-Cuevas L, Tovar-Sánchez E (2023) The bioaccumulation potential of heavy metals by PubMed
Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life, and human health. Int J Environ Res Public Health 25:2204. 10.3390/ijerph17072204 PubMed DOI PMC
Pavlović P, Sawidis T, Breuste J, Kostić O, Čakmak D, Đorđević D, Pavlović D, Pavlović M, Perović V, Mitrovic M (2021) Fractionation of potentially toxic elements (PTEs) in urban soils from Salzburg, Thessaloniki, and Belgrade: an insight into source identification and human health risk assessment. Int J Environ Res Public Health 18:6014. 10.3390/ijerph18116014 PubMed DOI PMC
Pietrzykowski M, Antonkiewicz J, Gruba P, Pająk M (2018) Content of Zn, Cd, and Pb in purple moor grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chem 16:1143–1152. 10.1515/chem-2018-0129 DOI
Pošćić F, Fellet G, Vischi M, Casolo V, Schat H, Marchiol L (2015) Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte PubMed DOI
Pradas del Real AE, Pérez-Sanz A, Lobo MC, McNear DH (2014) The chromium detoxification pathway in the multimetal accumulator PubMed DOI
Prica M, Andrejić G, Šinžar-Sekulić J, Rakić T, Dželetović Ž (2019) Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation. Bot Serb 43:85–95
Ricachenevsky FK, Punshon T, Salt DE, Fett JP, Guerinot ML (2021) PubMed DOI PMC
Salas-Muñoz S, Valdez-Valdez E, Mauricio-Castillo JA, Salazar-Badillo FB, Vega-Carrillo HR, Salas-Luevano MA (2022) Accumulation of As and Pb in vegetables grown in agricultural soils polluted by historical mining in Zacatecas, Mexico. Environ Earth Sci 81:374
Santoyo-Martínez M, Mussali-Galante P, Hernández-Plata I, Valencia-Cuevas L, Flores-Morales A, Ortiz-Hernández L, Flores-Trujillo K, Ramos-Quintana F, Tovar-Sánchez E (2020) Heavy metal bioaccumulation and morphological changes in PubMed
Sardar SW, Ur Rehman SA, Nawab J, Khan S, Ali A, Ur Rahman Z, Baig SA, Khan MQ (2021) Quantification of potentially toxic elements in degraded mining soils and medicinal plants: a case study of Indus Kohistan region Northern Pakistan. Environ Earth Sci 80:641
Siyar R, Doulati AF, Norouzi P, Maghsoudy S, Yavarzadeh M, Taherdangkoo R, Butscher C (2022) Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water 14:3597. 10.3390/w14223597 DOI
Skuza L, Szućko-Kociuba I, Filip E, Bożek I (2022) Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int J Mol Sci 23:9335. 10.3390/ijms23169335 PubMed DOI PMC
Solly EF, Weber V, Zimmermann S, Walthert L, Hagedorn F, Schmidt MWI (2020) A Critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Front for Glob Change 3:98. 10.3389/ffgc.2020.00098 DOI
Souza SCR, Souza LA, Schiavinato MA, de Oliveira SFM, de Andrade SAL (2020) Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Safe 195:110450. 10.1016/j.ecoenv.2020.110450 PubMed DOI
Stefanowicz AM, Stanek M, Woch MW, Kapusta P (2016) The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environ Sci Pollut Res 23:6524–6534. 10.1007/s11356-015-5859-7 PubMed DOI PMC
Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476. 10.3389/fpls.2018.01476 PubMed DOI PMC
Sun L, Cao X, Tan C, Deng Y, Cai R, Peng X, Bai J (2020) Analysis of the effect of cadmium stress on root exudates of PubMed DOI
Sungur A, Kavdir Y, Özcan H, İlay R, Soylak M (2021) Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. CATENA 197:104995
Teodoro M, Hejcman M, Vítková M, Wu S, Komárek M (2020) Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci Total Environ 703:134710. 10.1016/j.scitotenv.2019.134710 PubMed DOI
Tlustoš P, Břendová K, Száková J, Najmanová J, Koubová K (2016) The long-term variation of Cd and Zn hyperaccumulation by PubMed
van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334
Vaněk A, Ettler V, Grygar T, Borůvka L, Šebek O, Drábek O (2008) Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18:464–478. 10.1016/S1002-0160(08)60037-5 DOI
Verma S, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technol Environ Policy 23:1–23. 10.1007/s10098-021-02029-8 DOI
Wang SL, Liao W, Yu FQ (2008) Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environ Earth Sci 58:471–476. 10.1007/s00254-008-1519-2 DOI
WHO (1996) Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva
Yan A, Wang Y, Tan SN, Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. 10.3389/fpls.2020.00359Phytoremediation PubMed PMC
Yang Q, Wang S, Nan Z (2022) Migration, accumulation, and risk assessment of potentially toxic elements in soil-plant (shrub and herbage) systems at typical polymetallic mines in Northwest China. Environ Sci Pollut Res 30:46092–46106. 10.1007/s11356-023-25464-0 PubMed DOI
Yang Z, Wang M, Dong Z, Tan Z, Guo X (2023) Potentially toxic elements contamination, risk and source analysis in sediments of Beiyun River supplied with reclaimed water, China. Ecol Indic 154: 110622. 10.1016/j.ecolind.2023.110622
Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P (2015) Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb, and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut Res 22:18801–18813. 10.1007/s11356-015-5043-0 PubMed DOI
Zhou W, Han G, Liu M, Li X (2019) Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. Peer J 15:e7880. 10.7717/peerj.7880 PubMed DOI PMC