Abilities of herbaceous plant species to phytoextract Cd, Pb, and Zn from arable soils after poly-metallic mining and smelting

. 2025 Mar ; 32 (14) : 8834-8849. [epub] 20250317

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40097695

Grantová podpora
CZ.02.1.01/0.0/0.0/ 16_019/0000845). European Regional Development Fund

Odkazy

PubMed 40097695
PubMed Central PMC11968566
DOI 10.1007/s11356-025-36241-6
PII: 10.1007/s11356-025-36241-6
Knihovny.cz E-zdroje

Potentially toxic element (PTE) contamination deteriorates agricultural land. This study explored the accumulation of excess PTEs (Cd, Pb, and Zn) in soils by shoots of herbaceous plants growing on alluvial sediments of an abandoned mining/smelting site near the Litavka River, Czech Republic, as a means of soil remediation. Determination of total Cd, Pb, and Zn, contents in soil and plant samples decomposed with HNO3 + HCl + HF, HNO3, and H2O2, respectively, were carried out by inductively coupled optical emission spectrometry. The soil Cd, Pb, and Zn contents in the studied site ranged from 40 to 65, 3183 to 3897, and 5108 to 6553 mg kg-1, respectively, indicating serious soil contamination compared to the limits allowed by the FAO/WHO and the Czech Republic. Slightly acidic soil reactions and negative correlations between the pH, C, and N supported the assumption of relative solubility, mobility, and accumulation of studied PTEs by herbaceous species. Shoot accumulation of Cd, Pb, and Zn varied in 22 of 23 species recording a Cd content above the permissible limit. The Zn content in all plants was above the WHO limit. Except for Arabidopsis halleri, with a bioaccumulation factor (BAFshoot) > 1 for Cd and Zn, Equisetum arvense recorded a comparatively higher Cd content (10.3-28 mg kg-1) than all other species. Silene vulgaris (Moench), Leucanthemum vulgare, E. arvense, Achillea millefolium, Carex sp., Dianthus deltoides, Campanula patula, Plantago lanceolata, and Rumex acetosa accumulated more Zn than many plants (> 300 mg kg-1). Although E. arvense had a BAF < 1, it accumulated > 1000 mg Zn kg-1 and supported the phytoextraction of Zn. Only 10 species accumulated Pb above the limit permissible in plants, with L. vulgare recording the highest concentration (40 mg kg-1) among all species. Therefore, the shoots of several plant species showed promising PTE accumulation abilities and deserve more detailed studies concerning their potential use for phytoremediation of Cd-, Pb-, or Zn-contaminated soils.

Zobrazit více v PubMed

Aladesanmi OT, Oroboade JG, Osisiogu CP, Osewole AO (2019) Bioaccumulation factor of selected heavy metals in Zea mays. J Health Pollut 9:1–19 PubMed PMC

Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ (2021) Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9:42. 10.3390/toxics9030042 PubMed PMC

Alsafran M, Saleem MH, Al Jabri H, Rizwan M, Usman K (2022) Principles and applicability of integrated remediation strategies for heavy metal removal/recovery from contaminated environments. J Plant Growth Regul 42:3419–3440. 10.1007/s00344-022-10803-1

Amer N, Al Chami Z, Al Bital L, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina, and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremed 15:498–512. 10.1080/15226514.2012.716102 PubMed

Ariyanti AL, Chien MF, Inoue C (2023) The benefit of the Arabidopsis halleri ssp. gemmifera root exudate in cadmium extraction from the cadmium-contaminated soil. J Degrad Min Lands Manag 10:4107–4117

Asare MO, Száková J (2023) Are anthropogenic soils from dumpsites suitable for arable fields? Evaluation of soil fertility and transfer of potentially toxic elements to plants. Plant Soil 486:307–322. 10.1007/s11104-023-05870-6

Asare MO, Száková J, Tlustoš P (2022) The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. Environ Sci Pollut Res 30:11378–11398. 10.1007/s11356-022-24776-x PubMed PMC

Asare MO, Pellegrini E, Száková J, Najmanová J, Tlustoš P, de Nobili M, Contin M (2023a) Potential of herbaceous plant species for copper (Cu) accumulation. Environ Sci Pollut Res 31:5331–5343. 10.1007/s11356-023-31579-1 PubMed

Asare MO, Pellegrini E, Száková J, Blöcher JR, Najmanová J, Tlustoš P, Contin M (2024) Organic amendments to short rotation coppice (SRC) plantation affect species richness and metal accumulation of spontaneously growing herbaceous plants. J Soil Sci Plant Nutr 24:1474–1488. 10.1007/s42729-024-01652-w

Asare MO, Száková J, Tlustoš P (2023b) Mechanisms of As, Cd, Pb, and Zn hyperaccumulation by plants and their effects on soil microbiome in the rhizosphere. Front Environ Sci 11. 10.3389/fenvs.2023.1157415.

Ashraf S, Ali Q, Zahir ZA, Ashraf S, Asghar HN (2019) Phytoremediation: environmentally sustainable way for reclamation of heavy metal polluted soils. Ecotoxicol Environ Saf 174:714–727. 10.1016/j.ecoenv.2019.02.068 PubMed

Aybar M, Sağlam B, Dağhan H, Tüfekçioğlu A, Köleli N, Yilmaz FN (2023) Phytoextraction of heavy metal (Cu, Zn, Pb) from mining area by sunflower (Helianthus annuus). Kastamonu Univ J For Fac 23:75–85

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266 PubMed

Berhongaray MS, Verlinden LS, Broeckx R, Ceulemans G (2015) Changes in belowground biomass after coppice in two Populus genotypes. Ecol Manag 337:1–10

Bernal MP, Alvarenga P, Carmody K, Pogrzeba M, Soja G (2020) Protecting agricultural soils from contamination. Retrieved from https://ec.europa.eu/eip/agriculture/sites/default/files/fg37_mp3_remediation_final.pdf. Accessed 21.01.2023

Bidar G, Verdin A, Garcon G, Pruvot C, Laruelle F, Grandmougin FA, Douay F, Shirali P (2008) Changes in fatty acid composition and content of two plants (Lolium perenne and Trifolium repens) grown during 6 and 18 months in a metal (Pb, Cd, Zn) contaminated field. Water Air Soil Pollut 192:281–291. 10.1007/s11270-008-9655-6G

Boeing T, Moreno T, Gasparotto KG, Junior A, Mota da Silva L, de Souza P (2021) Phytochemistry and pharmacology of the genus Equisetum (Equisetaceae): a narrative review of the species with therapeutic potential for kidney diseases. Evid Based Complement Alternat Med 6658434. 10.1155/2021/6658434 PubMed PMC

Borůvka L, Vácha R (2006) Litavka River Alluvium as a model area heavily polluted with potentially risk elements some methods for studying polluted soils. In book: Phytoremediation of Metal-Contaminated Soils. 10.1007/1-4020-4688-X_9

Calabró MR, Roqueiro G, Tapia R, Crespo DC, Bargiela MF, Young BJ (2022) Chronic toxicity, bioavailability and bioaccumulation of Zn, Cu and Pb in Lactuca sativa exposed to waste from an abandoned gold mine. Chemosphere 307:135855 PubMed

Castaňares E, Lojka B (2020) Potential hyperaccumulator plants for sustainable environment in tropical habitats. IOP Conf Ser Earth Environ Sci 528:010120. 10.1088/17551315/528/1/012045

Castañeda-Espinoza J, Salinas-Sánchez DO, Mussali-Galante P, Castrejón-Godínez ML, Rodríguez A, González-Cortazar M, Zamilpa-Álvarez A, Tovar-Sánchez E (2023) Dodonaea viscosa (Sapindaceae) as a phytoremediator for soils contaminated by heavy metals in abandoned mines. Environ Sci Pollut Res 30:2509–2529 PubMed

Chapman EEV, Moore C, Campbell LM (2019) Native plants for revegetation of mercury- and arsenic-contaminated historical mining waste—can a low-dose selenium additive improve seedling growth and decrease contaminant bioaccumulation? Water Air Soil Pollut 230:225. 10.1007/s11270-019-4267-x

Chen Y, Zhao HX, Xie ZH, Huang HY, Zang SY, Lian B (2015) Heavy metal pollution characteristics in the Kaili coal mining region, Guizhou province, China. J Resid Sci Technol 12:S123–S131

Chen Yi-T, Wang Y, Yeh K-C (2017) Role of root exudates in metal acquisition and tolerance. Curr Opin Plant Biol 39:66–72. 10.1016/j.pbi.2017.06.004 PubMed

Ćirić V, Prekop N, Šeremešić S, Vojnov B, Pejić B, Radovanović D, Marinković D (2023) The implication of cation exchange capacity (CEC) assessment for soil quality management and improvement. Agric Forest 69:113–133. 10.17707/AgricultForest.69.4.08

Commission Directive 2010/6/EU of 9 February 2010 amending Annex I to Directive 2002/32/EC of the European Parliament. Retrieved from https://eur-lex.europa.eu/legal-content/CS/TXT/PDF/?uri=CELEX:32010L0006. Accessed 20 June 2024

Czech Geological Survey (2012) Geological map of the Czech Republic. http://www.geology.cz/extranet-eng/publications. Accessed 5 Oct 2022

DIN ISO 19730 (2008) Soil quality—extraction of trace elements from soil using ammonium nitrate solution. Deutsches Institut für Normung E.V Standards, Berlin

Dlouhá Š, Petrovský E, Kapička A, Borůvka L, Ash C, Drábek O (2013) Investigation of polluted alluvial soils by magnetic susceptibility methods: a case study of the Litavka River. Soil Water Res 8:151–157

Dradrach A, Karczewska A, Szopka K, Lewińska K (2020) Accumulation of arsenic by plants growing in the sites strongly contaminated by historical mining in the Sudetes region of Poland. Int J Environ Res Public Health 11:3342. 10.3390/ijerph17093342 PubMed PMC

Estrella-Gómez N, Mendoza-Cózatl D, Moreno-Sánchez R, González-Mendoza D, Zapata-Pérez O, Martínez-Hernández A, Santamaría JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and phytochelatin synthase activity. Aquat Toxicol 91:320–328. 10.1016/j.aquatox.2008.11.002 PubMed

Ettler V, Mihaljevič M, Šebek O, Molek M, Grygar T, Zeman J (2005) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Přıbram, Czech Republic. Environ Pollut 142:409–417. 10.1016/j.envpol.2005.10.024 PubMed

European Medicine Agency (2016) Assessment report on Equisetum arvense L., herba. https://www.ema.europa.eu/en/documents/herbal-report/final-assessment-report-equisetum-arvense-l-herba_en.pdf. Accessed 31 Aug 2022

Faměra M, Kotková K, Tůmová Š, Elznicová J, Matys-Grygar T (2018) Pollution distribution in floodplain structure visualized by electrical resistivity imaging in the floodplain of the Litavka River, the Czech Republic. CATENA 165:157–172

FAO (2024) FAO soils portal. Retrieved from https://www.fao.org/soils-portal/data-hub/soil-classification/numerical-systems/chemical-properties/ru/. Accessed 19.02.24

Gajić G, Djurdjević L, Kostić O, Jarić S, Mitrović M, Pavlović P (2018) Ecological potential of plants for phytoremediation and ecorestoration of fly ash deposits and mine wastes. Front Environ Sci 6:124. 10.3389/fenvs.2018.00124

Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nutr 15:2. 10.4067/S0718-95162015005000022

Githuku CR, Musyoka NJ, Salim WR, Badejo AA, Adedayo A (2021) Treatment potential and phytoextraction capacity of Phragmites australis in the removal of heavy metals from constructed wetlands. Int J Environ Waste Manag 27:310–344

Grignet A, Sahraoui ALH, Teillaud S, Fontaine J, Papin A, Bert V (2022) Phytoextraction of Zn and Cd with Arabidopsis halleri: a focus on fertilization and biological amendment as a means of increasing biomass and Cd and Zn concentrations. Environ Sci Pollut Res 29:22675–22686. 10.1007/s11356-021-17256-1 PubMed

Hanousková B, Száková J, Rychlíková E, Najmanová J, Košnář Z, Tlustoš P (2021) The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. Environ Monit Assess 193:68. 10.1007/s10661-020-08825-x PubMed

Hazelton PA, Murphy BW (2011) Understanding soils in urban environments, 2nd edn. CSIRO Publishing, Australia

ISO 11260 (2018) Soil quality-determination of effective cation exchange capacity and base saturation level using barium chloride solution, 2nd edn. ISO, p 12

Jungová M, Asare MO, Jurasová V, Hejcman M (2022) Distribution of micro- (Fe, Zn, Cu, and Mn) and risk (Al, As, Cr, Ni, Pb, and Cd) elements in the organs of Rumex alpinus L. in the Alps and Krkonoše Mountains. Plant Soil 477:553–575. 10.1007/s11104-022-05440-2

Кabata-Pendias A (2011) Trace elements in soils and plants. CRC Taylor Fr Group, London New York

Kotková K, Nováková T, Tůmová Š, Kiss T, Popelka J, Faměra M (2019) Migration of risk elements within the floodplain of the Litavka River, the Czech Republic. Geomorphol 329:46–57. 10.1016/j.geomorph.2018.12.010

Kumbhakar SK, Chauhan R, Jadhav SK, Quraishi A (2023) Lead induced-toxicity in vegetables, its mitigation strategies, and potential health risk assessment: a review. Int J Environ Sci Technol 20:5773–5798

Kurniati E, Imai T, Higuchi T, Sekine M (2014) Lead and chromium removal from leachate using horsetail (Equisetum hyemale). J Degrad Min Land Manag 1:93–96

Lambrechts T, Lequeue G, Lobet G, Godin B, Bielders CL, Lutts S (2014) Comparative analysis of Cd and Zn impacts on root distribution and morphology of Lolium perenne and Trifolium repens: implications for phytostabilization. Plant Soil 376:229–244. 10.1007/s11104-013-1975-7

Li P, Lin C, Cheng H, Duan X, Lei K (2015) Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol Environ Saf 113:391–399. 10.1016/j.ecoenv.2014.12.025 PubMed

Long XX, Yang XE, Ni WZ, Ye ZQ, He ZL, Calvert DV, Stoffella JP (2003) Assessing zinc thresholds for phytotoxicity and potential dietary toxicity in selected vegetable crops. Commun Soil Sci Plant Anal 34:1421–1434. 10.1081/CSS-120020454

Luo Y, Zheng Z, Wu P, Wu Y (2022) Effect of different direct revegetation strategies on the mobility of heavy metals in artificial zinc smelting waste slag: implications for phytoremediation. Chemosphere 286:131678 PubMed

Magnusson B, Örnemark U (2014) Eurachem Guide: The fitness for purpose of analytical methods–a laboratory guide to method validation and related topics, (2nd ed.). www.eurachem.org. Accessed 10.04.2024

Małecka A, Konkolewska A, Hanć A, Barałkiewicz D, Ciszewska L, Ratajczak E, Staszak AM, Kmita H, Jarmuszkiewicz W (2019) Insight into the phytoremediation capability of Brassicajuncea (v. Malopolska): metal accumulation and antioxidant enzyme activity. Int J Mol Sci 20:4355 PubMed PMC

Marques APGC, Rangel AOSS, Castro PML (2009) Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Crit Rev Environ Sci Technol 39:622–654. 10.1080/10643380701798272

Memon AR (2016) Metal hyperaccumulators: mechanisms of hyperaccumulation and metal tolerance. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham. 10.1007/978-3-319-40148-5_8

Mesa V, Navazas A, González-Gil R, González A, Weyens N, Lauga B, Gallego JR, Sánchez J, Peláez AI (2017) Use of endophytic and rhizosphere bacteria to improve phytoremediation of arsenic-contaminated industrial soils by autochthonous Betula celtiberica. Appl Environ Microbiol 83:3411–3416. 10.1128/AEM.03411-16 PubMed PMC

Misra S (2013) Traditional and modern approaches to plant taxonomy. J Geol Soc India 81:590–590. 10.1007/s12594-013-0079-6

Mohtadi A, Ghaderian SM, Schat H (2012) A comparison of lead accumulation and tolerance among heavy metal hyper-accumulating and non-hyperaccumulating metallophytes. Plant Soil 352:267–327

Moreira H., Pereira SIA, Mench M, Garbisu C, Kidd P, Castro PML (2021) Phytomanagement of metal(loid)-contaminated soils: options, efficiency and value. Front Environ Sci 9 10.3389/fenvs.2021.661423

Musilova L, Ridl J, Polivkova M, Macek T, Uhlik O (2016) Effects of secondary plant metabolites on microbial populations: changes in community structure and metabolic activity in contaminated environments. Int J Molec Sci 17:1205. 10.3390/ijms17081205 PubMed PMC

Mussali-Galante P, Santoyo-Martínez M, Castrejón-Godínez ML, Breton-Deval L, Rodríguez-Solis A, Valencia-Cuevas L, Tovar-Sánchez E (2023) The bioaccumulation potential of heavy metals by Gliricidia sepium (Fabaceae) in mine tailings. Environ Sci Pollut Res 30:38982–38999 PubMed

Okereafor U, Makhatha M, Mekuto L, Uche-Okereafor N, Sebola T, Mavumengwana V (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life, and human health. Int J Environ Res Public Health 25:2204. 10.3390/ijerph17072204 PubMed PMC

Pavlović P, Sawidis T, Breuste J, Kostić O, Čakmak D, Đorđević D, Pavlović D, Pavlović M, Perović V, Mitrovic M (2021) Fractionation of potentially toxic elements (PTEs) in urban soils from Salzburg, Thessaloniki, and Belgrade: an insight into source identification and human health risk assessment. Int J Environ Res Public Health 18:6014. 10.3390/ijerph18116014 PubMed PMC

Pietrzykowski M, Antonkiewicz J, Gruba P, Pająk M (2018) Content of Zn, Cd, and Pb in purple moor grass in soils heavily contaminated with heavy metals around a zinc and lead ore tailing landfill. Open Chem 16:1143–1152. 10.1515/chem-2018-0129

Pošćić F, Fellet G, Vischi M, Casolo V, Schat H, Marchiol L (2015) Variation in heavy metal accumulation and genetic diversity at a regional scale among metallicolous and non-metallicolous populations of the facultative metallophyte Biscutella laevigata subsp. laevigata. Int J Phytoremed 17:464–475. 10.1080/15226514.2014.922921 PubMed

Pradas del Real AE, Pérez-Sanz A, Lobo MC, McNear DH (2014) The chromium detoxification pathway in the multimetal accumulator Silene vulgaris. Environ Sci 48:11479–11486. 10.1021/es502099g PubMed

Prica M, Andrejić G, Šinžar-Sekulić J, Rakić T, Dželetović Ž (2019) Bioaccumulation of heavy metals in common reed (Phragmites australis) growing spontaneously on highly contaminated mine tailing ponds in Serbia and potential use of this species in phytoremediation. Bot Serb 43:85–95

Ricachenevsky FK, Punshon T, Salt DE, Fett JP, Guerinot ML (2021) Arabidopsis thaliana zinc accumulation in leaf trichomes is correlated with zinc concentration in leaves. Sci Rep 11:5278. 10.1038/s41598-021-84508-y PubMed PMC

Salas-Muñoz S, Valdez-Valdez E, Mauricio-Castillo JA, Salazar-Badillo FB, Vega-Carrillo HR, Salas-Luevano MA (2022) Accumulation of As and Pb in vegetables grown in agricultural soils polluted by historical mining in Zacatecas, Mexico. Environ Earth Sci 81:374

Santoyo-Martínez M, Mussali-Galante P, Hernández-Plata I, Valencia-Cuevas L, Flores-Morales A, Ortiz-Hernández L, Flores-Trujillo K, Ramos-Quintana F, Tovar-Sánchez E (2020) Heavy metal bioaccumulation and morphological changes in Vachellia campechiana (Fabaceae) reveal its potential for phytoextraction of Cr, Cu, and Pb in mine tailings. Environ Sci Pollut Res 27:11260–11276 PubMed

Sardar SW, Ur Rehman SA, Nawab J, Khan S, Ali A, Ur Rahman Z, Baig SA, Khan MQ (2021) Quantification of potentially toxic elements in degraded mining soils and medicinal plants: a case study of Indus Kohistan region Northern Pakistan. Environ Earth Sci 80:641

Siyar R, Doulati AF, Norouzi P, Maghsoudy S, Yavarzadeh M, Taherdangkoo R, Butscher C (2022) Phytoremediation potential of native hyperaccumulator plants growing on heavy metal-contaminated soil of Khatunabad copper smelter and refinery, Iran. Water 14:3597. 10.3390/w14223597

Skuza L, Szućko-Kociuba I, Filip E, Bożek I (2022) Natural molecular mechanisms of plant hyperaccumulation and hypertolerance towards heavy metals. Int J Mol Sci 23:9335. 10.3390/ijms23169335 PubMed PMC

Solly EF, Weber V, Zimmermann S, Walthert L, Hagedorn F, Schmidt MWI (2020) A Critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Front for Glob Change 3:98. 10.3389/ffgc.2020.00098

Souza SCR, Souza LA, Schiavinato MA, de Oliveira SFM, de Andrade SAL (2020) Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Safe 195:110450. 10.1016/j.ecoenv.2020.110450 PubMed

Stefanowicz AM, Stanek M, Woch MW, Kapusta P (2016) The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environ Sci Pollut Res 23:6524–6534. 10.1007/s11356-015-5859-7 PubMed PMC

Suman J, Uhlik O, Viktorova J, Macek T (2018) Phytoextraction of heavy metals: a promising tool for clean-up of polluted environment? Front Plant Sci 9:1476. 10.3389/fpls.2018.01476 PubMed PMC

Sun L, Cao X, Tan C, Deng Y, Cai R, Peng X, Bai J (2020) Analysis of the effect of cadmium stress on root exudates of Sedum plumbizincicola based on metabolomics. Ecotoxicol Environ Safe 205:111152. 10.1016/j.ecoenv.2020.111152 PubMed

Sungur A, Kavdir Y, Özcan H, İlay R, Soylak M (2021) Geochemical fractions of trace metals in surface and core sections of aggregates in agricultural soils. CATENA 197:104995

Teodoro M, Hejcman M, Vítková M, Wu S, Komárek M (2020) Seasonal fluctuations of Zn, Pb, As and Cd contents in the biomass of selected grass species growing on contaminated soils: Implications for in situ phytostabilization. Sci Total Environ 703:134710. 10.1016/j.scitotenv.2019.134710 PubMed

Tlustoš P, Břendová K, Száková J, Najmanová J, Koubová K (2016) The long-term variation of Cd and Zn hyperaccumulation by Noccaea caerulescens and Arabidopsis halleri plants in both pot and field conditions. Int J Phytoremed 18:110–115 PubMed

van der Ent A, Baker AJM, Reeves RD, Pollard AJ, Schat H (2013) Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362:319–334

Vaněk A, Ettler V, Grygar T, Borůvka L, Šebek O, Drábek O (2008) Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18:464–478. 10.1016/S1002-0160(08)60037-5

Verma S, Bhatt P, Verma A, Mudila H, Prasher P, Rene ER (2021) Microbial technologies for heavy metal remediation: effect of process conditions and current practices. Clean Technol Environ Policy 23:1–23. 10.1007/s10098-021-02029-8

Wang SL, Liao W, Yu FQ (2008) Hyperaccumulation of lead, zinc, and cadmium in plants growing on a lead/zinc outcrop in Yunnan Province, China. Environ Earth Sci 58:471–476. 10.1007/s00254-008-1519-2

WHO (1996) Permissible limits of heavy metals in soil and plants. World Health Organization, Geneva

Yan A, Wang Y, Tan SN, Yusof ML, Ghosh S, Chen Z (2020) Phytoremediation: a promising approach for revegetation of heavy metal-polluted land. Front Plant Sci 11:359. 10.3389/fpls.2020.00359Phytoremediation PubMed PMC

Yang Q, Wang S, Nan Z (2022) Migration, accumulation, and risk assessment of potentially toxic elements in soil-plant (shrub and herbage) systems at typical polymetallic mines in Northwest China. Environ Sci Pollut Res 30:46092–46106. 10.1007/s11356-023-25464-0 PubMed

Yang Z, Wang M, Dong Z, Tan Z, Guo X (2023) Potentially toxic elements contamination, risk and source analysis in sediments of Beiyun River supplied with reclaimed water, China. Ecol Indic 154: 110622. 10.1016/j.ecolind.2023.110622

Zárubová P, Hejcman M, Vondráčková S, Mrnka L, Száková J, Tlustoš P (2015) Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb, and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements. Environ Sci Pollut Res 22:18801–18813. 10.1007/s11356-015-5043-0 PubMed

Zhou W, Han G, Liu M, Li X (2019) Effects of soil pH and texture on soil carbon and nitrogen in soil profiles under different land uses in Mun River Basin, Northeast Thailand. Peer J 15:e7880. 10.7717/peerj.7880 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...