Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment?

. 2018 ; 9 () : 1476. [epub] 20181016

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid30459775

Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.

Zobrazit více v PubMed

Abdullah S. N. A., Cheah S. C., Murphy D. J. (2002). Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiol. Biochem. 40, 255–263. 10.1016/S0981-9428(02)01366-9 DOI

Ali H., Khan E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals' – proposal of a comprehensive definition. Toxicol. Environ. Chem. 100, 6–19. 10.1080/02772248.2017.1413652 DOI

Arazi T., Sunkar R., Kaplan B., Fromm H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20, 171–182. 10.1046/j.1365-313x.1999.00588.x PubMed DOI

Arena C., Figlioli F., Sorrentino M. C., Izzo L. G., Capozzi F., Giordano S., et al. . (2017). Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicol. Environ. Saf. 145, 83–89. 10.1016/j.ecoenv.2017.07.015 PubMed DOI

Assuncao A. G. L., Bleeker P., ten Bookum W. M., Vooijs R., Schat H. (2008). Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303, 289–299. 10.1007/s11104-007-9508-x DOI

Baker A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy-metals. J. Plant Nutr. 3, 643–654. 10.1080/01904168109362867 DOI

Baker A. J. M., Brooks R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.

Baker A. J. M., McGrath S. P., Sidoli C. M. D., Reeves R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11, 41–49. 10.1016/0921-3449(94)90077-9 DOI

Banerjee K., Helwick R. P., Gupta S. (1999). A treatment process for removal of mixed inorganic and organic arsenic species from groundwater. Environ. Progr. 18, 280–284. 10.1002/ep.670180415 DOI

Bani A., Echevarria G., Sulce S., Morel J. L. (2015a). Improving the agronomy of alyssum murale for extensive phytomining: a five-year field study. Int. J. Phytoremed. 17 (1-6), 117–127. 10.1080/15226514.2013.862204 PubMed DOI

Bani A., Echevarria G., Zhang X., Benizri E., Laubie B., Morel J. L., et al. (2015b). The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Austral. J. Botany 63, 72–77. 10.1071/BT14285 DOI

Bañuelos G., Terry N., Leduc D. L., Pilon-Smits E. A. H., Mackey B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 39, 1771–1777. 10.1021/es049035f PubMed DOI

Benáková M., Ahmadi H., Ducaiova Z., Tylova E., Clemens S., Tuma J. (2017). Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ. Sci. Pollution Res. 24, 20705–20716. 10.1007/s11356-017-9697-7 PubMed DOI

Bennett L. E., Burkhead J. L., Hale K. L., Terry N., Pilon M., Pilon-Smits E. A. H. (2003). Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440. 10.2134/jeq2003.4320 PubMed DOI

Bhargava A., Carmona F. F., Bhargava M., Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105, 103–120. 10.1016/j.jenvman.2012.04.002 PubMed DOI

Bhuiyan M. S. U., Min S. R., Jeong W. J., Sultana S., Choi K. S., Lee Y., et al. (2011a). Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Culture 107, 69–77. 10.1007/s11240-011-9958-y DOI

Bhuiyan M. S. U., Min S. R., Jeong W. J., Sultana S., Choi K. S., Song W. Y., et al. (2011b). Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Culture 105, 85–91. 10.1007/s11240-010-9845-y DOI

Bittsánszky A., Kömives T., Gullner G., Gyulai G., Kiss J., Heszky L., et al. . (2005). Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ. Int. 31, 251–254. 10.1016/j.envint.2004.10.001 PubMed DOI

Bizily S. P., Rugh C. L., Summers A. O., Meagher R. B. (1999). Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. U.S.A. 96, 6808–6813. 10.1073/pnas.96.12.6808 PubMed DOI PMC

Borrill P., Connorton J. M., Balk J., Miller A. J., Sanders D., Uauy C. (2014). Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front. Plant Sci. 5:53. 10.3389/fpls.2014.00053 PubMed DOI PMC

Bortesi L., Fischer R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41–52. 10.1016/j.biotechadv.2014.12.006 PubMed DOI

Brooks R. R., Chambers M. F., Nicks L. J., Robinson B. H. (1998). Phytomining. Trends Plant Sci. 3, 359–362. 10.1016/S1360-1385(98)01283-7 DOI

Brooks R. R., Morrison R. S., Reeves R. D., Dudley T. R., Akman Y. (1979). Hyper-accumulation of nickel by Alyssum linnaeus (Cruciferae). Proc. R. Soc. B Biol. Sci. 203, 387–403. 10.1098/rspb.1979.0005 PubMed DOI

Brooks R. R., Radford C. C. (1978). Nickel accumulation by European species of genus Alyssum. Proc. R. Soc. B Biol. Sci. 200, 217–224. 10.1098/rspb.1978.0016 DOI

Chandra R., Kang H. (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci. Technol. 12, 55–61. 10.1080/21580103.2015.1044024 DOI

Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. S., et al. . (1997). Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8, 279–284. 10.1016/S0958-1669(97)80004-3 PubMed DOI

Chapman P. M., Thornton I., Persoone G., Janssen C., Godtfredsen K., Z'Graggen M. N. (1996). International harmonization related to persistence and bioavailability. Human Ecol. Risk Assess. An Int. J. 2, 393–404. 10.1080/10807039609383618 DOI

Che D., Meagher R. B., Heaton A. C. P., Lima A., Rugh C. L., Merkle S. A. (2003). Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol. J. 1, 311–319. 10.1046/j.1467-7652.2003.00031.x PubMed DOI

Cherian S., Oliveira M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environ. Sci. Technol. 39, 9377–9390. 10.1021/es051134l PubMed DOI

Clemens S., Persoh D. (2009). Multi-tasking phytochelatin synthases. Plant Sci. 177, 266–271. 10.1016/j.plantsci.2009.06.008 DOI

Cristaldi A., Conti G. O., Jho E. H., Zuccarello P., Grasso A., Copat C., et al. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 8, 309–326. 10.1016/j.eti.2017.08.002 DOI

Cunningham S. D., Berti W. R., Huang J. W. W. (1995). Phytoremediation of contaminated soils. Trends Biotechnol. 13, 393–397. 10.1016/S0167-7799(00)88987-8 DOI

Cunningham S. D., Ow D. W. (1996). Promises and prospects of phytoremediation. Plant Physiol. 110, 715–719. 10.1104/pp.110.3.715 PubMed DOI PMC

Curie C., Panaviene Z., Loulergue C., Dellaporta S. L., Briat J.-F., Walker E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349. 10.1038/35053080 PubMed DOI

de Borne F. D., Elmayan T., de Roton C., de Hys L., Tepfer M. (1998). Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecul. Breed. 4, 83–90. 10.1023/A:1009669412489 DOI

Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., et al. . (1985). Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788. 10.1093/nar/13.13.4777 PubMed DOI PMC

Dhankher O. P., Shasti N. A., Rosen B. P., Fuhrmann M., Meagher R. B. (2003). Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. N. Phytol. 159, 431–441. 10.1046/j.1469-8137.2003.00827.x PubMed DOI

Dixit P., Singh S., Vancheeswaran R., Patnala K., Eapen S. (2010). Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ. 33, 1697–1707. 10.1111/j.1365-3040.2010.02174.x PubMed DOI

Dushenkov V., Kumar P., Motto H., Raskin I. (1995). Rhizofiltration-the use of plants to remove heavy-metals from aqueous streams. Environ. Sci. Technol. 29, 1239–1245. 10.1021/es00005a015 PubMed DOI

EFSA Panel On Geneticlay Modified Organisms (GMO) (2010). Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 8:1879 10.2903/j.efsa.2010.1879 DOI

Einspahr D. W. (1976a). Influence of short-rotation forestry and paper quality. I, Short-rotation conifers. Tappi 59, 53–56.

Einspahr D. W. (1976b). Influence of short-rotation forestry on pulp and paper quality. II, Short-rotation hardwood. Tappi 59, 63–66.

Evans K. M., Gatehouse J. A., Lindsay W. P., Shi J., Tommey A. M., Robinson N. J. (1992). Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol. Biol. 20, 1019–1028. 10.1007/BF00028889 PubMed DOI

Gomes M. P., Marques T. C. L. L. S. M., Carneiro M. M. L. C., Soares Â. M. (2012). Anatomical characteristics and nutrient uptake and distribution associated with the Cd-phytoremediation capacity of Eucalyptus camaldulenses Dehnh. J. Soil Sci. Plant Nutr. 12, 481–496. 10.4067/S0718-95162012005000010 DOI

Greger M., Landberg T. (1999). Use of willow in phytoextraction. Int. J. Phytoremediation 1, 115–123. 10.1080/15226519908500010 PubMed DOI

Grichko V. P., Filby B., Glick B. R. (2000). Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81, 45–53. 10.1016/S0168-1656(00)00270-4 PubMed DOI

Grispen V. M. J., Hakvoort H. W. J., Bliek T., Verkleij J. A. C., Schat H. (2011). Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ. Exp. Bot. 72, 71–76. 10.1016/j.envexpbot.2010.01.005 DOI

Guo J., Dai X., Xu W., Ma M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72, 1020–1026. 10.1016/j.chemosphere.2008.04.018 PubMed DOI

Ha S. B., Smith A. P., Howden R., Dietrich W. M., Bugg S., O'Connell M. J., et al. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11, 1153–1164. 10.1105/tpc.11.6.1153 PubMed DOI PMC

Halpin C. (2005). Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3, 141–155. 10.1111/j.1467-7652.2004.00113.x PubMed DOI

Hanikenne M., Talke I. N., Haydon M. J., Lanz C., Nolte A., Motte P., et al. . (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395. 10.1038/nature06877 PubMed DOI

He Y. K., Sun J. G., Feng X. Z., Czako M., Marton L. (2001). Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 11, 231–236. 10.1038/sj.cr.7290091 PubMed DOI

Heaton A. C. P., Rugh C. L., Kim T., Wang N. J., Meagher R. B. (2003). Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 22, 2940–2947. 10.1897/02-442 PubMed DOI

Hilbeck A., Meier M., Römbke J., Jänsch S., Teichmann H., Tappeser B. (2011). Environmental risk assessment of genetically modified plants-concepts and controversies. Environ. Sci. Eur. 23:13 10.1186/2190-4715-23-13 PubMed DOI

Hinchee M., Rottmann W., Mullinax L., Zhang C. S., Chang S. J., Cunningham M., et al. . (2009). Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell. Dev. Biol. Plant 45, 619–629. 10.1007/s11627-009-9235-5 PubMed DOI PMC

Hsieh J. L., Chen C. Y., Chiu M. H., Chein M. F., Chang J. S., Endo G., et al. . (2009). Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J. Hazard. Mater. 161, 920–925. 10.1016/j.jhazmat.2008.04.079 PubMed DOI

Ibañez S., Talano M., Ontanon O., Suman J., Medina M. I., Macek T., et al. . (2016). Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N. Biotechnol. 33, 625–635. 10.1016/j.nbt.2015.11.008 PubMed DOI

Ivanova L. A., Ronzhina D. A., Ivanov L. A., Stroukova L. V., Peuke A. D., Rennenberg H. (2011). Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biol. 13, 649–659. 10.1111/j.1438-8677.2010.00422.x PubMed DOI

Jacobs A., Drouet T., Sterckeman T., Noret N. (2017). Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges' in field trials. Environ. Sci. Pollut. Res. Int. 24, 8176–8188. 10.1007/s11356-017-8504-9 PubMed DOI

Jacobsen E., Schouten H. J. (2009). Cisgenesis: an important sub-invention for traditional plant breeding companies. Euphytica 170:235 10.1007/s10681-009-0037-y DOI

Jaffré T., Brooks R. R., Lee J., Reeves R. D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193, 579–580. PubMed

Kamthan A., Chaudhuri A., Kamthan M., Datta A. (2016). Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor. Appl. Genet. 129, 1639–1655. 10.1007/s00122-016-2747-6 PubMed DOI

Kavuličová J., Kaduková J., Ivánová D. (2012). The evaluation of heavy metal toxicity in plants using the biochemical Tests. 11, 101–110. 10.2478/v10296-012-0011-2 DOI

Kawashima C. G., Noji M., Nakamura M., Ogra Y., Suzuki K. T., Saito K. (2004). Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol. Lett. 26, 153–157. 10.1023/B:BILE.0000012895.60773.ff PubMed DOI

Khalid S., Shahid M., Niazi N. K., Murtaza B., Bibi I., Dumat C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182, 247–268. 10.1016/j.gexplo.2016.11.021 DOI

Kidd P., Mench M., Alvarez-Lopez V., Bert V., Dimitriou I., Friesl-Hanl W., et al. . (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediation 17, 1005–1037. 10.1080/15226514.2014.1003788 PubMed DOI

Kille P., Winge D. R., Harwood J. L., Kay J. (1991). A plants metallothionein produced in Escherichia coli. FEBS Lett. 295, 171–175. 10.1016/0014-5793(91)81411-Z PubMed DOI

Kim Y. N., Kim J. S., Seo S. G., Lee Y., Baek S. W., Kim I. S., et al. . (2011). Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol. Rep. 5, 323–329. 10.1007/s11816-011-0186-z PubMed DOI PMC

Kiyono M., Oka Y., Sone Y., Tanaka M., Nakamura R., Sato M. H., et al. . (2012). Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta 235, 841–850. 10.1007/s00425-011-1543-4 PubMed DOI

Koprivova A., Kopriva S., Jager D., Will B., Jouanin L., Rennenberg H. (2002). Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol. 4, 664–670. 10.1055/s-2002-37399 DOI

Kotrba P., Najmanova J., Macek T., Ruml T., Mackova M. (2009). Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27, 799–810. 10.1016/j.biotechadv.2009.06.003 PubMed DOI

Krystofova O., Zitka O., Krizkova S., Hynek D., Shestivska V., Adam V., et al. (2012). Accumulation of cadmium by transgenic tobacco plants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int. J. Electrochem. Sci. 7, 886–907.

Krzciuk K., Gałuszka A. (2015). Prospecting for hyperaccumulators of trace elements: a review. Crit. Rev. Biotechnol. 35, 522–532. 10.3109/07388551.2014.922525 PubMed DOI

Krzesłowska M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33, 35–51. 10.1007/s11738-010-0581-z DOI

Lang M., Hao M., Fan Q., Wang W., Mo S., Zhao W. C., et al. . (2011). Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J. Exp. Bot. 62, 4467–4480. 10.1093/jxb/err137 PubMed DOI PMC

Le Gall H., Philippe F., Domon J.-M., Gillet F., Pelloux J., Rayon C. (2015). Cell wall metabolism in response to abiotic stress. Plants 4:112. 10.3390/plants4010112 PubMed DOI PMC

Lee J., Bae H., Jeong J., Lee J. Y., Yang Y. Y., Hwang I., et al. (2003). Functional expression of a bacteral heavy metal transporter in arabidopsis enhances resistance to and decrease uptake of heavy metals. Plant Physiol. 133, 589–596. 10.1104/pp.103.021972 PubMed DOI PMC

Leitenmaier B., Küpper H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 4:374. 10.3389/fpls.2013.00374 PubMed DOI PMC

Leszczyszyn O. I., Imam H. T., Blindauer C. A. (2013). Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5, 1146–1169. 10.1039/c3mt00072a PubMed DOI

Li J. C., Guo J. B., Xu W. Z., Ma M. (2006a). Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. J. Integr. Plant Biol. 48, 928–937. 10.1111/j.1744-7909.2006.00314.x DOI

Li Y. J., Heaton A. C. P., Carreira L., Meagher R. B. (2006b). Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol. Plant. 128, 48–57. 10.1111/j.1399-3054.2006.00732.x DOI

Li Z. S., Szczypka M., Lu Y. P., Thiele D. J., Rea P. A. (1996). The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 271, 6509–6517. 10.1074/jbc.271.11.6509 PubMed DOI

Liang Zhu Y. Pilon-Smits, E. A. H., Jouanin L., Terry N. (1999). Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119, 73–79. PubMed PMC

Liu D., An Z., Mao Z., Ma L., Lu Z. (2015). Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10:e0128824 10.1371/journal.pone.0128824 PubMed DOI PMC

Liu X., Wu S., Xu J., Sui C., Wei J. (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B 7, 292–302. 10.1016/j.apsb.2017.01.002 PubMed DOI PMC

Liu Z., Gu C., Chen F., Yang D., Wu K., Chen S., et al. . (2012). Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl. Biochem. Biotechnol. 166, 722–734. 10.1007/s12010-011-9461-2 PubMed DOI

Macci C., Doni S., Peruzzi E., Bardella S., Filippis G., Ceccanti B., et al. . (2013). A real-scale soil phytoremediation. Biodegradation 24, 521–538. 10.1007/s10532-012-9608-z PubMed DOI

Macci C., Peruzzi E., Doni S., Poggio G., Masciandaro G. (2016). The phytoremediation of an organic and inorganic polluted soil: a real scale experience. Int. J. Phytoremediation 18, 378–386. 10.1080/15226514.2015.1109595 PubMed DOI

Macek T., Kotrba P., Svatos A., Novakova M., Demnerova K., Mackova M. (2008). Novel roles for genetically modified plants in environmental protection. Trends Biotechnol. 26, 146–152. 10.1016/j.tibtech.2007.11.009 PubMed DOI

Macek T., Macková M., Kás J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18, 23–34. 10.1016/S0734-9750(99)00034-8 PubMed DOI

Macek T., Novakova M., Kotrba P., Viktorova J., Lovecka P., Fiser J., et al. (2013). Genetically Modified Plants Designed for Phytoremediation of Toxic Organic And Inorganic Contaminants. Boca Raton, FL: Crc Press-Taylor & Francis Group.

Macek T., Uhlik O., Jecna K., Novakova M., Lovecka P., Rezek J., et al. (2009). Advances in phytoremediation and rhizoremediation, in Soil Biology, 17 Edn, ed Varma A. (Berlin: Springer; ), 257–277.

Mackova M., Barriault D., Francova K., Sylvestre M., Moder M., Vrchotova B., et al. (2006a). Phytoremediation of polychlorinated biphenyls, in Focus on Biotechnology, 9A Edn., eds Mackova M., Dowling D., Macek T. (Dordrecht: Springer; ), 143–167.

Mackova M., Dowling D., Macek T. (2006b). Phytoremediation and Rhizoremediation. Theoretical Background. Dordrecht: Springer.

Marmiroli N., Marmiroli M., Maestri E. (2006). Phytoremediation and phytotechnologies: a review for the present and the future Soil Water Pollmoniter. Protec. Remed. 69, 403–416. 10.1007/978-1-4020-4728-2_26 DOI

Martínez M., Bernal P., Almela C., Vélez D., García-Agustín P., Serrano R., et al. . (2006). An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64, 478–485. 10.1016/j.chemosphere.2005.10.044 PubMed DOI

McGrath S. P., Zhao F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14, 277–282. 10.1016/S0958-1669(03)00060-0 PubMed DOI

McGrath S. P., Zhao F. J., Lombi E. (2002). Phytoremediation of metals, metalloids, and radionuclides, in Advances in Agronomy, ed Sparks D. L. (San Diego, CA; London: Academic Press Inc.,; Academic Press Ltd.), 92101–4495.

Meister A. (1988). Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205–17208. PubMed

Mench M., Schwitzguébel J. P., Schroeder P., Bert V., Gawronski S., Gupta S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ. Sci. Pollut. Res. 16, 876–900. 10.1007/s11356-009-0252-z PubMed DOI

Milner M. J., Kochian L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 102, 3–13. 10.1093/aob/mcn063 PubMed DOI PMC

Mosa K. A., Saadoun I., Kumar K., Helmy M., Dhankher O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7:303. 10.3389/fpls.2016.00303 PubMed DOI PMC

Nishiyama Y., Yanai J., Kosaki T. (2005). Potential of Thlaspi caerulescens for cadmium phytoremediation: comparison of two representative soil types in Japan under different planting frequencies. Soil Sci. Plant Nutr. 51, 827–834. 10.1111/j.1747-0765.2005.tb00117.x DOI

Nixon D. J., Stephens W., Tyrrel S. F., Brierley E. D. R. (2001). The potential for short rotation energy forestry on restored landfill caps. Bioresour. Technol. 77, 237–245. 10.1016/S0960-8524(00)00081-X PubMed DOI

Noctor G., Strohm M., Jouanin L., Kunert K. J., Foyer C. H., Rennenberg H. (1996). Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 112, 1071–1078. 10.1104/pp.112.3.1071 PubMed DOI PMC

Palmgren M. G., Clemens S., Williams L. E., Kraemer U., Borg S., Schjorring J. K., et al. . (2008). Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 13, 464–473. 10.1016/j.tplants.2008.06.005 PubMed DOI

Pavlikova D., Macek T., Mackova M., Sura M., Szakova J., Tlustos P. (2004). The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 50, 513–517. 10.17221/4067-PSE DOI

Peuke A. D., Rennenberg H. (2005). Phytoremediation-Molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep. 6, 497–501. 10.1038/sj.embor.7400445 PubMed DOI PMC

Pianelli K., Mari S., Marques L., Lebrun M., Czernic P. (2005). Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transg. Res. 14, 739–748. 10.1007/s11248-005-7159-3 PubMed DOI

Pilon-Smits E. A. H., Hwang S. B., Lytle C. M., Zhu Y. L., Tai J. C., Bravo R. C., et al. . (1999). Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123–132. 10.1104/pp.119.1.123 PubMed DOI PMC

Pilon-Smits E. A. H., Leduc D. L. (2009). Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 20, 207–212. 10.1016/j.copbio.2009.02.001 PubMed DOI

Postrigan B. N., Knyazev A. B., Kuluev B. R., Yakhin O. I., Chemeris A. V. (2012). Expression of the synthetic phytochelatin gene in tobacco. Russ. J. Plant Physiol. 59, 275–280. 10.1134/S1021443712020136 DOI

Prasad M. N. V., Freitas H. M. D. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 6, 285–321. 10.2225/vol6-issue3-fulltext-6 DOI

Rascio N., Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci. 180, 169–181. 10.1016/j.plantsci.2010.08.016 PubMed DOI

Raskin I., Smith R. D., Salt D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8, 221–226. 10.1016/S0958-1669(97)80106-1 PubMed DOI

Reeves R. (2006). Hyperaccumulation of trace elements by plants, in Phytoremediation of Metal-Contaminated Soils, eds Morel J. L., Echevarria G., Goncharova N. (Dordrecht: Springer; ), 25–52.

Reeves R. D., Schwartz C., Morel J. L., Edmondson J. (2001). Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation 3, 145–172. 10.1080/15226510108500054 DOI

Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Zia-ur-Rehman M., Abbas Z., et al. . (2017). Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ. Geochem. Health 39, 259–277. 10.1007/s10653-016-9826-0 PubMed DOI

Robinson B. H., Chiarucci A., Brooks R. R., Petit D., Kirkman J. H., Gregg P. E. H., et al. (1997). The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geochem. Explor. 59, 75–86. 10.1016/S0375-6742(97)00010-1 DOI

Robinson B. H., Leblanc M., Petit D., Brooks R. R., Kirkman J. H., Gregg P. E. H. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203, 47–56. 10.1023/A:1004328816645 DOI

Rodriguez H., Vessely S., Shah S., Glick B. R. (2008). Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr. Microbiol. 57, 170–174. 10.1007/s00284-008-9181-1 PubMed DOI

Rudolph A., Becker R., Scholz G., Procházka Ž., Toman J., Macek T., et al. (1985). The occurrence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochemie Physiologie der Pflanzen 180, 557–563. 10.1016/S0015-3796(85)80036-6 DOI

Rugh C. L., Wilde H. D., Stack N. M., Thompson D. M., Summers A. O., Meagher R. B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. U.S.A. 93, 3182–3187. 10.1073/pnas.93.8.3182 PubMed DOI PMC

Sahi S. V., Bryant N. L., Sharma N. C., Singh S. R. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 36, 4676–4680. 10.1021/es020675x PubMed DOI

Salt D. E., Blaylock M., Kumar N., Dushenkov V., Ensley B. D., Chet I., et al. . (1995). Phytoremediation-a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13, 468–474. PubMed

Salt D. E., Smith R. D., Raskin I. (1998). Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643–668. 10.1146/annurev.arplant.49.1.643 PubMed DOI

Sandermann H. (1994). Higher-plant metabolism of xenobiotics-the green liver concept. Pharmacogenetics 4, 225–241. 10.1097/00008571-199410000-00001 PubMed DOI

Sanvido O., Romeis J., Gathmann A., Gielkens M., Raybould A., Bigler F. (2012). Evaluating environmental risks of genetically modified crops: ecological harm criteria for regulatory decision-making. Environ. Sci. Policy 15, 82–91. 10.1016/j.envsci.2011.08.006 DOI

Sarma H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118–138. 10.3923/jest.2011.118.138 DOI

Sasaki Y., Hayakawa T., Inoue C., Miyazaki A., Silver S., Kusano T. (2006). Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res. 15, 615–625. 10.1007/s11248-006-9008-4 PubMed DOI

Schnoor J. L., Light L. A., McCutcheon S. C., Wolfe N. L., Carreia L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29, 318A−323A. 10.1021/es00007a747 PubMed DOI

Sheoran V., Sheoran A. S., Poonia P. (2009). Phytomining: a review. Miner. Eng. 22, 1007–1019. 10.1016/j.mineng.2009.04.001 DOI

Shim D., Kim S., Choi Y.-I., Song W.-Y., Park J., Youk E. S., et al. . (2013). Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90, 1478–1486. 10.1016/j.chemosphere.2012.09.044 PubMed DOI

Shukla D., Kesari R., Mishra S., Dwivedi S., Tripathi R. D., Nath P., et al. (2012). Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep. 31, 1687–1699. 10.1007/s00299-012-1283-3 PubMed DOI

Silver S., Phung le T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Indust. Microbiol. Biotechnol. 32, 587–605. 10.1007/s10295-005-0019-6 PubMed DOI

Silver S., Phung L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608. 10.1128/AEM.71.2.599-608.2005 PubMed DOI PMC

Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6:1143. 10.3389/fpls.2015.01143 PubMed DOI PMC

Singh S. P., Keller B., Gruissem W., Bhullar N. K. (2017). Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor. Appl. Genet. 130, 283–292. 10.1007/s00122-016-2808-x PubMed DOI PMC

Sorrentino M. C., Capozzi F., Amitrano C., Giordano S., Arena C., Spagnuolo V. (2018). Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: effects on morphology, cytology and photosynthesis. J. Hazard. Mater. 351, 131–137. 10.1016/j.jhazmat.2018.02.044 PubMed DOI

Suman J., Kotrba P., Macek T. (2014). Putative P-1B-type ATPase from the bacterium Achromobacter xylosoxidans A8 alters Pb2+/Zn2+/Cd2+-resistance and accumulation in Saccharomyces cerevisiae. Biochim. Biophys. Acta-Biomemb. 1838, 1338–1343. 10.1016/j.bbamem.2014.01.023 PubMed DOI

Suryawanshi V., Talke I. N., Weber M., Eils R., Brors B., Clemens S., et al. . (2016). Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics 17:1034. 10.1186/s12864-016-3319-5 PubMed DOI PMC

Tangahu B. V., Sheikh Abdullah S. R., Basri H., Idris M., Anuar N., Mukhlisin M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011:939161 10.1155/2011/939161 DOI

Thomas J. C., Davies E. C., Malick F. K., Endreszl C., Williams C. R., Abbas M., et al. . (2003). Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19, 273–280. 10.1021/bp025623q PubMed DOI

Tommey A. M., Shi J., Lindsay W. P., Urwin P. E., Robinson N. J. (1991). Expression of the pea gene PSMTA in E. coli. Metal-binding properties of the expressed protein. FEBS Lett. 292, 48–52. PubMed

Trijatmiko K. R., Dueñas C., Tsakirpaloglou N., Torrizo L., Arines F. M., Adeva C., et al. . (2016). Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 6:19792. 10.1038/srep19792 PubMed DOI PMC

Tsatsakis A. M., Nawaz M. A., Kouretas D., Balias G., Savolainen K., Tutelyan V. A., et al. . (2017). Environmental impacts of genetically modified plants: a review. Environ. Res. 156, 818–833. 10.1016/j.envres.2017.03.011 PubMed DOI

Unterbrunner R., Puschenreiter M., Sommer P., Wieshammer G., Tlustoš P., Zupan M., et al. . (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 148, 107–114. 10.1016/j.envpol.2006.10.035 PubMed DOI

van der Ent A., Baker A. J. M., Reeves R. D., Pollard A. J., Schat H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362, 319–334. 10.1007/s11104-012-1287-3 DOI

Van Slycken S., Witters N., Meers E., Peene A., Michels E., Adriaensen K., et al. . (2013a). Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ. Pollut. 178, 375–380. 10.1016/j.envpol.2013.03.032 PubMed DOI

Van Slycken S., Witters N., Meiresonne L., Meers E., Ruttens A., Van Peteghem P., et al. . (2013b). Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int. J. Phytoremediation 15, 677–689. 10.1080/15226514.2012.723070 PubMed DOI

Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., et al. . (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794. 10.1007/s11356-009-0213-6 PubMed DOI

Verbruggen N., Hermans C., Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. N. Phytol. 181, 759–776. 10.1111/j.1469-8137.2008.02748.x PubMed DOI

Volk T. A., Verwijst T., Tharakan P. J., Abrahamson L. P., White E. H. (2004). Growing fuel: a sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2, 411–418. 10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2 DOI

Vyslouzilova M., Puschenreiter M., Wieshammer G., Wenzel W. W. (2006). Rhizosphere characteristics, heavy metal accumulation and growth performance of two willow (Salix x rubens) clones. Plant Soil Environ. 52, 353–361. 10.17221/3452-PSE DOI

Wang L., Ji B., Hu Y., Liu R., Sun W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere 184, 594–600. 10.1016/j.chemosphere.2017.06.025 PubMed DOI

Wojas S., Hennig J., Plaza S., Geisler M., Siemianowski O., Sklodowska A., et al. . (2009). Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ. Pollut. 157, 2781–2789. 10.1016/j.envpol.2009.04.024 PubMed DOI

Wu Q., Shigaki T., Williams K. A., Han J. S., Kim C. K., Hirschi K. D., et al. . (2011). Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J. Plant Physiol. 168, 167–173. 10.1016/j.jplph.2010.06.005 PubMed DOI

Wu T.-Y., Gruissem W., Bhullar N. K. (2018). Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Sci. 270, 13–22. 10.1016/j.plantsci.2018.02.002 PubMed DOI

Xiao S., Gao W., Chen Q. F., Ramalingam S., Chye M. L. (2008). Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J. 54, 141–151. 10.1111/j.1365-313X.2008.03402.x PubMed DOI

Xu W., Lu G., Dang Z., Liao C., Chen Q., Yi X. (2013). Uptake and distribution of Cd in sweet maize grown on contaminated soils: a field-scale study. Bioinorgan. Chem. Appl. 2013:959764 10.1155/2013/959764 PubMed DOI PMC

Yankov B., Delibaltova V., Bojinov M. (2000). Contents of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars from industrially polluted region. Rasteniev"dni Nauki 37, 525–531.

Zhang H. Y., Xu W. Z., Dai W. T., He Z. Y., Ma M. (2006). Functional characterization of cadmium-responsive garlic gene AsMT2b: a new member of metallothionein family. Chinese Sci. Bull. 51, 409–416. 10.1007/s11434-006-0409-9 DOI

Zhang Y., Zhao L. H., Wang Y., Yang B. Y., Chen S. Y. (2008). Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. Chemosphere 72, 564–571. 10.1016/j.chemosphere.2008.03.043 PubMed DOI

Zhao C., Qiao M., Yu Y., Xia G., Xiang F. (2010). The effect of the heterologous expression of Phragmites australis gamma-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant Cell Environ. 33, 877–887. 10.1111/j.1365-3040.2009.02113.x PubMed DOI

Zheljazkov V. D., Nielsen N. E. (1996a). Effect of heavy metals on peppermint and cornmint. Plant Soil 178, 59–66. 10.1007/BF00011163 DOI

Zheljazkov V. D., Nielsen N. E. (1996b). Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 8, 259–274.

Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N. (1999). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121, 1169–1177. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...