Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment?
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
30459775
PubMed Central
PMC6232834
DOI
10.3389/fpls.2018.01476
Knihovny.cz E-zdroje
- Klíčová slova
- genetically modified plants, green biotechnology, heavy metal binding proteins, heavy metal protein transporters, heavy metals, hyperaccumulators, phytoextraction, phytoremediation,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Pollution by heavy metals (HM) represents a serious threat for both the environment and human health. Due to their elemental character, HM cannot be chemically degraded, and their detoxification in the environment mostly resides either in stabilization in situ or in their removal from the matrix, e.g., soil. For this purpose, phytoremediation, i.e., the application of plants for the restoration of a polluted environment, has been proposed as a promising green alternative to traditional physical and chemical methods. Among the phytoremediation techniques, phytoextraction refers to the removal of HM from the matrix through their uptake by a plant. It possesses considerable advantages over traditional techniques, especially due to its cost effectiveness, potential treatment of multiple HM simultaneously, no need for the excavation of contaminated soil, good acceptance by the public, the possibility of follow-up processing of the biomass produced, etc. In this review, we focused on three basic HM phytoextraction strategies that differ in the type of plant species being employed: natural hyperaccumulators, fast-growing plant species with high-biomass production and, potentially, plants genetically engineered toward a phenotype that favors efficient HM uptake and boosted HM tolerance. Considerable knowledge on the applicability of plants for HM phytoextraction has been gathered to date from both lab-scale studies performed under controlled model conditions and field trials using real environmental conditions. Based on this knowledge, many specific applications of plants for the remediation of HM-polluted soils have been proposed. Such studies often also include suggestions for the further processing of HM-contaminated biomass, therefore providing an added economical value. Based on the examples presented here, we recommend that intensive research be performed on the selection of appropriate plant taxa for various sets of conditions, environmental risk assessment, the fate of HM-enriched biomass, economical aspects of the process, etc.
Zobrazit více v PubMed
Abdullah S. N. A., Cheah S. C., Murphy D. J. (2002). Isolation and characterisation of two divergent type 3 metallothioneins from oil palm, Elaeis guineensis. Plant Physiol. Biochem. 40, 255–263. 10.1016/S0981-9428(02)01366-9 DOI
Ali H., Khan E. (2018). What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals' – proposal of a comprehensive definition. Toxicol. Environ. Chem. 100, 6–19. 10.1080/02772248.2017.1413652 DOI
Arazi T., Sunkar R., Kaplan B., Fromm H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20, 171–182. 10.1046/j.1365-313x.1999.00588.x PubMed DOI
Arena C., Figlioli F., Sorrentino M. C., Izzo L. G., Capozzi F., Giordano S., et al. . (2017). Ultrastructural, protein and photosynthetic alterations induced by Pb and Cd in Cynara cardunculus L., and its potential for phytoremediation. Ecotoxicol. Environ. Saf. 145, 83–89. 10.1016/j.ecoenv.2017.07.015 PubMed DOI
Assuncao A. G. L., Bleeker P., ten Bookum W. M., Vooijs R., Schat H. (2008). Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures. Plant Soil 303, 289–299. 10.1007/s11104-007-9508-x DOI
Baker A. J. M. (1981). Accumulators and excluders-strategies in the response of plants to heavy-metals. J. Plant Nutr. 3, 643–654. 10.1080/01904168109362867 DOI
Baker A. J. M., Brooks R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery 1, 81–126.
Baker A. J. M., McGrath S. P., Sidoli C. M. D., Reeves R. D. (1994). The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conserv. Recycl. 11, 41–49. 10.1016/0921-3449(94)90077-9 DOI
Banerjee K., Helwick R. P., Gupta S. (1999). A treatment process for removal of mixed inorganic and organic arsenic species from groundwater. Environ. Progr. 18, 280–284. 10.1002/ep.670180415 DOI
Bani A., Echevarria G., Sulce S., Morel J. L. (2015a). Improving the agronomy of alyssum murale for extensive phytomining: a five-year field study. Int. J. Phytoremed. 17 (1-6), 117–127. 10.1080/15226514.2013.862204 PubMed DOI
Bani A., Echevarria G., Zhang X., Benizri E., Laubie B., Morel J. L., et al. (2015b). The effect of plant density in nickel-phytomining field experiments with Alyssum murale in Albania. Austral. J. Botany 63, 72–77. 10.1071/BT14285 DOI
Bañuelos G., Terry N., Leduc D. L., Pilon-Smits E. A. H., Mackey B. (2005). Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium-contaminated sediment. Environ. Sci. Technol. 39, 1771–1777. 10.1021/es049035f PubMed DOI
Benáková M., Ahmadi H., Ducaiova Z., Tylova E., Clemens S., Tuma J. (2017). Effects of Cd and Zn on physiological and anatomical properties of hydroponically grown Brassica napus plants. Environ. Sci. Pollution Res. 24, 20705–20716. 10.1007/s11356-017-9697-7 PubMed DOI
Bennett L. E., Burkhead J. L., Hale K. L., Terry N., Pilon M., Pilon-Smits E. A. H. (2003). Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32, 432–440. 10.2134/jeq2003.4320 PubMed DOI
Bhargava A., Carmona F. F., Bhargava M., Srivastava S. (2012). Approaches for enhanced phytoextraction of heavy metals. J. Environ. Manage. 105, 103–120. 10.1016/j.jenvman.2012.04.002 PubMed DOI
Bhuiyan M. S. U., Min S. R., Jeong W. J., Sultana S., Choi K. S., Lee Y., et al. (2011a). Overexpression of AtATM3 in Brassica juncea confers enhanced heavy metal tolerance and accumulation. Plant Cell Tissue Organ Culture 107, 69–77. 10.1007/s11240-011-9958-y DOI
Bhuiyan M. S. U., Min S. R., Jeong W. J., Sultana S., Choi K. S., Song W. Y., et al. (2011b). Overexpression of a yeast cadmium factor 1 (YCF1) enhances heavy metal tolerance and accumulation in Brassica juncea. Plant Cell Tissue Organ Culture 105, 85–91. 10.1007/s11240-010-9845-y DOI
Bittsánszky A., Kömives T., Gullner G., Gyulai G., Kiss J., Heszky L., et al. . (2005). Ability of transgenic poplars with elevated glutathione content to tolerate zinc(2+) stress. Environ. Int. 31, 251–254. 10.1016/j.envint.2004.10.001 PubMed DOI
Bizily S. P., Rugh C. L., Summers A. O., Meagher R. B. (1999). Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc. Natl. Acad. Sci. U.S.A. 96, 6808–6813. 10.1073/pnas.96.12.6808 PubMed DOI PMC
Borrill P., Connorton J. M., Balk J., Miller A. J., Sanders D., Uauy C. (2014). Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front. Plant Sci. 5:53. 10.3389/fpls.2014.00053 PubMed DOI PMC
Bortesi L., Fischer R. (2015). The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 33, 41–52. 10.1016/j.biotechadv.2014.12.006 PubMed DOI
Brooks R. R., Chambers M. F., Nicks L. J., Robinson B. H. (1998). Phytomining. Trends Plant Sci. 3, 359–362. 10.1016/S1360-1385(98)01283-7 DOI
Brooks R. R., Morrison R. S., Reeves R. D., Dudley T. R., Akman Y. (1979). Hyper-accumulation of nickel by Alyssum linnaeus (Cruciferae). Proc. R. Soc. B Biol. Sci. 203, 387–403. 10.1098/rspb.1979.0005 PubMed DOI
Brooks R. R., Radford C. C. (1978). Nickel accumulation by European species of genus Alyssum. Proc. R. Soc. B Biol. Sci. 200, 217–224. 10.1098/rspb.1978.0016 DOI
Chandra R., Kang H. (2016). Mixed heavy metal stress on photosynthesis, transpiration rate, and chlorophyll content in poplar hybrids. Forest Sci. Technol. 12, 55–61. 10.1080/21580103.2015.1044024 DOI
Chaney R. L., Malik M., Li Y. M., Brown S. L., Brewer E. P., Angle J. S., et al. . (1997). Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8, 279–284. 10.1016/S0958-1669(97)80004-3 PubMed DOI
Chapman P. M., Thornton I., Persoone G., Janssen C., Godtfredsen K., Z'Graggen M. N. (1996). International harmonization related to persistence and bioavailability. Human Ecol. Risk Assess. An Int. J. 2, 393–404. 10.1080/10807039609383618 DOI
Che D., Meagher R. B., Heaton A. C. P., Lima A., Rugh C. L., Merkle S. A. (2003). Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol. J. 1, 311–319. 10.1046/j.1467-7652.2003.00031.x PubMed DOI
Cherian S., Oliveira M. M. (2005). Transgenic plants in phytoremediation: recent advances and new possibilities. Environ. Sci. Technol. 39, 9377–9390. 10.1021/es051134l PubMed DOI
Clemens S., Persoh D. (2009). Multi-tasking phytochelatin synthases. Plant Sci. 177, 266–271. 10.1016/j.plantsci.2009.06.008 DOI
Cristaldi A., Conti G. O., Jho E. H., Zuccarello P., Grasso A., Copat C., et al. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 8, 309–326. 10.1016/j.eti.2017.08.002 DOI
Cunningham S. D., Berti W. R., Huang J. W. W. (1995). Phytoremediation of contaminated soils. Trends Biotechnol. 13, 393–397. 10.1016/S0167-7799(00)88987-8 DOI
Cunningham S. D., Ow D. W. (1996). Promises and prospects of phytoremediation. Plant Physiol. 110, 715–719. 10.1104/pp.110.3.715 PubMed DOI PMC
Curie C., Panaviene Z., Loulergue C., Dellaporta S. L., Briat J.-F., Walker E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409, 346–349. 10.1038/35053080 PubMed DOI
de Borne F. D., Elmayan T., de Roton C., de Hys L., Tepfer M. (1998). Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Molecul. Breed. 4, 83–90. 10.1023/A:1009669412489 DOI
Deblaere R., Bytebier B., De Greve H., Deboeck F., Schell J., Van Montagu M., et al. . (1985). Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788. 10.1093/nar/13.13.4777 PubMed DOI PMC
Dhankher O. P., Shasti N. A., Rosen B. P., Fuhrmann M., Meagher R. B. (2003). Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. N. Phytol. 159, 431–441. 10.1046/j.1469-8137.2003.00827.x PubMed DOI
Dixit P., Singh S., Vancheeswaran R., Patnala K., Eapen S. (2010). Expression of a Neurospora crassa zinc transporter gene in transgenic Nicotiana tabacum enhances plant zinc accumulation without co-transport of cadmium. Plant Cell Environ. 33, 1697–1707. 10.1111/j.1365-3040.2010.02174.x PubMed DOI
Dushenkov V., Kumar P., Motto H., Raskin I. (1995). Rhizofiltration-the use of plants to remove heavy-metals from aqueous streams. Environ. Sci. Technol. 29, 1239–1245. 10.1021/es00005a015 PubMed DOI
EFSA Panel On Geneticlay Modified Organisms (GMO) (2010). Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 8:1879 10.2903/j.efsa.2010.1879 DOI
Einspahr D. W. (1976a). Influence of short-rotation forestry and paper quality. I, Short-rotation conifers. Tappi 59, 53–56.
Einspahr D. W. (1976b). Influence of short-rotation forestry on pulp and paper quality. II, Short-rotation hardwood. Tappi 59, 63–66.
Evans K. M., Gatehouse J. A., Lindsay W. P., Shi J., Tommey A. M., Robinson N. J. (1992). Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTA function. Plant Mol. Biol. 20, 1019–1028. 10.1007/BF00028889 PubMed DOI
Gomes M. P., Marques T. C. L. L. S. M., Carneiro M. M. L. C., Soares Â. M. (2012). Anatomical characteristics and nutrient uptake and distribution associated with the Cd-phytoremediation capacity of Eucalyptus camaldulenses Dehnh. J. Soil Sci. Plant Nutr. 12, 481–496. 10.4067/S0718-95162012005000010 DOI
Greger M., Landberg T. (1999). Use of willow in phytoextraction. Int. J. Phytoremediation 1, 115–123. 10.1080/15226519908500010 PubMed DOI
Grichko V. P., Filby B., Glick B. R. (2000). Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81, 45–53. 10.1016/S0168-1656(00)00270-4 PubMed DOI
Grispen V. M. J., Hakvoort H. W. J., Bliek T., Verkleij J. A. C., Schat H. (2011). Combined expression of the Arabidopsis metallothionein MT2b and the heavy metal transporting ATPase HMA4 enhances cadmium tolerance and the root to shoot translocation of cadmium and zinc in tobacco. Environ. Exp. Bot. 72, 71–76. 10.1016/j.envexpbot.2010.01.005 DOI
Guo J., Dai X., Xu W., Ma M. (2008). Overexpressing GSH1 and AsPCS1 simultaneously increases the tolerance and accumulation of cadmium and arsenic in Arabidopsis thaliana. Chemosphere 72, 1020–1026. 10.1016/j.chemosphere.2008.04.018 PubMed DOI
Ha S. B., Smith A. P., Howden R., Dietrich W. M., Bugg S., O'Connell M. J., et al. (1999). Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell 11, 1153–1164. 10.1105/tpc.11.6.1153 PubMed DOI PMC
Halpin C. (2005). Gene stacking in transgenic plants–the challenge for 21st century plant biotechnology. Plant Biotechnol. J. 3, 141–155. 10.1111/j.1467-7652.2004.00113.x PubMed DOI
Hanikenne M., Talke I. N., Haydon M. J., Lanz C., Nolte A., Motte P., et al. . (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453, 391–395. 10.1038/nature06877 PubMed DOI
He Y. K., Sun J. G., Feng X. Z., Czako M., Marton L. (2001). Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res. 11, 231–236. 10.1038/sj.cr.7290091 PubMed DOI
Heaton A. C. P., Rugh C. L., Kim T., Wang N. J., Meagher R. B. (2003). Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ. Toxicol. Chem. 22, 2940–2947. 10.1897/02-442 PubMed DOI
Hilbeck A., Meier M., Römbke J., Jänsch S., Teichmann H., Tappeser B. (2011). Environmental risk assessment of genetically modified plants-concepts and controversies. Environ. Sci. Eur. 23:13 10.1186/2190-4715-23-13 PubMed DOI
Hinchee M., Rottmann W., Mullinax L., Zhang C. S., Chang S. J., Cunningham M., et al. . (2009). Short-rotation woody crops for bioenergy and biofuels applications. In Vitro Cell. Dev. Biol. Plant 45, 619–629. 10.1007/s11627-009-9235-5 PubMed DOI PMC
Hsieh J. L., Chen C. Y., Chiu M. H., Chein M. F., Chang J. S., Endo G., et al. . (2009). Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J. Hazard. Mater. 161, 920–925. 10.1016/j.jhazmat.2008.04.079 PubMed DOI
Ibañez S., Talano M., Ontanon O., Suman J., Medina M. I., Macek T., et al. . (2016). Transgenic plants and hairy roots: exploiting the potential of plant species to remediate contaminants. N. Biotechnol. 33, 625–635. 10.1016/j.nbt.2015.11.008 PubMed DOI
Ivanova L. A., Ronzhina D. A., Ivanov L. A., Stroukova L. V., Peuke A. D., Rennenberg H. (2011). Over-expression of gsh1 in the cytosol affects the photosynthetic apparatus and improves the performance of transgenic poplars on heavy metal-contaminated soil. Plant Biol. 13, 649–659. 10.1111/j.1438-8677.2010.00422.x PubMed DOI
Jacobs A., Drouet T., Sterckeman T., Noret N. (2017). Phytoremediation of urban soils contaminated with trace metals using Noccaea caerulescens: comparing non-metallicolous populations to the metallicolous ‘Ganges' in field trials. Environ. Sci. Pollut. Res. Int. 24, 8176–8188. 10.1007/s11356-017-8504-9 PubMed DOI
Jacobsen E., Schouten H. J. (2009). Cisgenesis: an important sub-invention for traditional plant breeding companies. Euphytica 170:235 10.1007/s10681-009-0037-y DOI
Jaffré T., Brooks R. R., Lee J., Reeves R. D. (1976). Sebertia acuminata: a hyperaccumulator of nickel from New Caledonia. Science 193, 579–580. PubMed
Kamthan A., Chaudhuri A., Kamthan M., Datta A. (2016). Genetically modified (GM) crops: milestones and new advances in crop improvement. Theor. Appl. Genet. 129, 1639–1655. 10.1007/s00122-016-2747-6 PubMed DOI
Kavuličová J., Kaduková J., Ivánová D. (2012). The evaluation of heavy metal toxicity in plants using the biochemical Tests. 11, 101–110. 10.2478/v10296-012-0011-2 DOI
Kawashima C. G., Noji M., Nakamura M., Ogra Y., Suzuki K. T., Saito K. (2004). Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol. Lett. 26, 153–157. 10.1023/B:BILE.0000012895.60773.ff PubMed DOI
Khalid S., Shahid M., Niazi N. K., Murtaza B., Bibi I., Dumat C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 182, 247–268. 10.1016/j.gexplo.2016.11.021 DOI
Kidd P., Mench M., Alvarez-Lopez V., Bert V., Dimitriou I., Friesl-Hanl W., et al. . (2015). Agronomic practices for improving gentle remediation of trace element-contaminated soils. Int. J. Phytoremediation 17, 1005–1037. 10.1080/15226514.2014.1003788 PubMed DOI
Kille P., Winge D. R., Harwood J. L., Kay J. (1991). A plants metallothionein produced in Escherichia coli. FEBS Lett. 295, 171–175. 10.1016/0014-5793(91)81411-Z PubMed DOI
Kim Y. N., Kim J. S., Seo S. G., Lee Y., Baek S. W., Kim I. S., et al. . (2011). Cadmium resistance in tobacco plants expressing the MuSI gene. Plant Biotechnol. Rep. 5, 323–329. 10.1007/s11816-011-0186-z PubMed DOI PMC
Kiyono M., Oka Y., Sone Y., Tanaka M., Nakamura R., Sato M. H., et al. . (2012). Expression of the bacterial heavy metal transporter MerC fused with a plant SNARE, SYP121, in Arabidopsis thaliana increases cadmium accumulation and tolerance. Planta 235, 841–850. 10.1007/s00425-011-1543-4 PubMed DOI
Koprivova A., Kopriva S., Jager D., Will B., Jouanin L., Rennenberg H. (2002). Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol. 4, 664–670. 10.1055/s-2002-37399 DOI
Kotrba P., Najmanova J., Macek T., Ruml T., Mackova M. (2009). Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27, 799–810. 10.1016/j.biotechadv.2009.06.003 PubMed DOI
Krystofova O., Zitka O., Krizkova S., Hynek D., Shestivska V., Adam V., et al. (2012). Accumulation of cadmium by transgenic tobacco plants (Nicotiana tabacum L.) carrying yeast metallothionein gene revealed by electrochemistry. Int. J. Electrochem. Sci. 7, 886–907.
Krzciuk K., Gałuszka A. (2015). Prospecting for hyperaccumulators of trace elements: a review. Crit. Rev. Biotechnol. 35, 522–532. 10.3109/07388551.2014.922525 PubMed DOI
Krzesłowska M. (2011). The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33, 35–51. 10.1007/s11738-010-0581-z DOI
Lang M., Hao M., Fan Q., Wang W., Mo S., Zhao W. C., et al. . (2011). Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J. Exp. Bot. 62, 4467–4480. 10.1093/jxb/err137 PubMed DOI PMC
Le Gall H., Philippe F., Domon J.-M., Gillet F., Pelloux J., Rayon C. (2015). Cell wall metabolism in response to abiotic stress. Plants 4:112. 10.3390/plants4010112 PubMed DOI PMC
Lee J., Bae H., Jeong J., Lee J. Y., Yang Y. Y., Hwang I., et al. (2003). Functional expression of a bacteral heavy metal transporter in arabidopsis enhances resistance to and decrease uptake of heavy metals. Plant Physiol. 133, 589–596. 10.1104/pp.103.021972 PubMed DOI PMC
Leitenmaier B., Küpper H. (2013). Compartmentation and complexation of metals in hyperaccumulator plants. Front. Plant Sci. 4:374. 10.3389/fpls.2013.00374 PubMed DOI PMC
Leszczyszyn O. I., Imam H. T., Blindauer C. A. (2013). Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics 5, 1146–1169. 10.1039/c3mt00072a PubMed DOI
Li J. C., Guo J. B., Xu W. Z., Ma M. (2006a). Enhanced cadmium accumulation in transgenic tobacco expressing the phytochelatin synthase gene of Cynodon dactylon L. J. Integr. Plant Biol. 48, 928–937. 10.1111/j.1744-7909.2006.00314.x DOI
Li Y. J., Heaton A. C. P., Carreira L., Meagher R. B. (2006b). Enhanced tolerance to and accumulation of mercury, but not arsenic, in plants overexpressing two enzymes required for thiol peptide synthesis. Physiol. Plant. 128, 48–57. 10.1111/j.1399-3054.2006.00732.x DOI
Li Z. S., Szczypka M., Lu Y. P., Thiele D. J., Rea P. A. (1996). The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J. Biol. Chem. 271, 6509–6517. 10.1074/jbc.271.11.6509 PubMed DOI
Liang Zhu Y. Pilon-Smits, E. A. H., Jouanin L., Terry N. (1999). Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119, 73–79. PubMed PMC
Liu D., An Z., Mao Z., Ma L., Lu Z. (2015). Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus StGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10:e0128824 10.1371/journal.pone.0128824 PubMed DOI PMC
Liu X., Wu S., Xu J., Sui C., Wei J. (2017). Application of CRISPR/Cas9 in plant biology. Acta Pharm. Sin. B 7, 292–302. 10.1016/j.apsb.2017.01.002 PubMed DOI PMC
Liu Z., Gu C., Chen F., Yang D., Wu K., Chen S., et al. . (2012). Heterologous expression of a Nelumbo nucifera phytochelatin synthase gene enhances cadmium tolerance in Arabidopsis thaliana. Appl. Biochem. Biotechnol. 166, 722–734. 10.1007/s12010-011-9461-2 PubMed DOI
Macci C., Doni S., Peruzzi E., Bardella S., Filippis G., Ceccanti B., et al. . (2013). A real-scale soil phytoremediation. Biodegradation 24, 521–538. 10.1007/s10532-012-9608-z PubMed DOI
Macci C., Peruzzi E., Doni S., Poggio G., Masciandaro G. (2016). The phytoremediation of an organic and inorganic polluted soil: a real scale experience. Int. J. Phytoremediation 18, 378–386. 10.1080/15226514.2015.1109595 PubMed DOI
Macek T., Kotrba P., Svatos A., Novakova M., Demnerova K., Mackova M. (2008). Novel roles for genetically modified plants in environmental protection. Trends Biotechnol. 26, 146–152. 10.1016/j.tibtech.2007.11.009 PubMed DOI
Macek T., Macková M., Kás J. (2000). Exploitation of plants for the removal of organics in environmental remediation. Biotechnol. Adv. 18, 23–34. 10.1016/S0734-9750(99)00034-8 PubMed DOI
Macek T., Novakova M., Kotrba P., Viktorova J., Lovecka P., Fiser J., et al. (2013). Genetically Modified Plants Designed for Phytoremediation of Toxic Organic And Inorganic Contaminants. Boca Raton, FL: Crc Press-Taylor & Francis Group.
Macek T., Uhlik O., Jecna K., Novakova M., Lovecka P., Rezek J., et al. (2009). Advances in phytoremediation and rhizoremediation, in Soil Biology, 17 Edn, ed Varma A. (Berlin: Springer; ), 257–277.
Mackova M., Barriault D., Francova K., Sylvestre M., Moder M., Vrchotova B., et al. (2006a). Phytoremediation of polychlorinated biphenyls, in Focus on Biotechnology, 9A Edn., eds Mackova M., Dowling D., Macek T. (Dordrecht: Springer; ), 143–167.
Mackova M., Dowling D., Macek T. (2006b). Phytoremediation and Rhizoremediation. Theoretical Background. Dordrecht: Springer.
Marmiroli N., Marmiroli M., Maestri E. (2006). Phytoremediation and phytotechnologies: a review for the present and the future Soil Water Pollmoniter. Protec. Remed. 69, 403–416. 10.1007/978-1-4020-4728-2_26 DOI
Martínez M., Bernal P., Almela C., Vélez D., García-Agustín P., Serrano R., et al. . (2006). An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64, 478–485. 10.1016/j.chemosphere.2005.10.044 PubMed DOI
McGrath S. P., Zhao F. J. (2003). Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 14, 277–282. 10.1016/S0958-1669(03)00060-0 PubMed DOI
McGrath S. P., Zhao F. J., Lombi E. (2002). Phytoremediation of metals, metalloids, and radionuclides, in Advances in Agronomy, ed Sparks D. L. (San Diego, CA; London: Academic Press Inc.,; Academic Press Ltd.), 92101–4495.
Meister A. (1988). Glutathione metabolism and its selective modification. J. Biol. Chem. 263, 17205–17208. PubMed
Mench M., Schwitzguébel J. P., Schroeder P., Bert V., Gawronski S., Gupta S. (2009). Assessment of successful experiments and limitations of phytotechnologies: contaminant uptake, detoxification and sequestration, and consequences for food safety. Environ. Sci. Pollut. Res. 16, 876–900. 10.1007/s11356-009-0252-z PubMed DOI
Milner M. J., Kochian L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann. Bot. 102, 3–13. 10.1093/aob/mcn063 PubMed DOI PMC
Mosa K. A., Saadoun I., Kumar K., Helmy M., Dhankher O. P. (2016). Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front. Plant Sci. 7:303. 10.3389/fpls.2016.00303 PubMed DOI PMC
Nishiyama Y., Yanai J., Kosaki T. (2005). Potential of Thlaspi caerulescens for cadmium phytoremediation: comparison of two representative soil types in Japan under different planting frequencies. Soil Sci. Plant Nutr. 51, 827–834. 10.1111/j.1747-0765.2005.tb00117.x DOI
Nixon D. J., Stephens W., Tyrrel S. F., Brierley E. D. R. (2001). The potential for short rotation energy forestry on restored landfill caps. Bioresour. Technol. 77, 237–245. 10.1016/S0960-8524(00)00081-X PubMed DOI
Noctor G., Strohm M., Jouanin L., Kunert K. J., Foyer C. H., Rennenberg H. (1996). Synthesis of glutathione in leaves of transgenic poplar overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 112, 1071–1078. 10.1104/pp.112.3.1071 PubMed DOI PMC
Palmgren M. G., Clemens S., Williams L. E., Kraemer U., Borg S., Schjorring J. K., et al. . (2008). Zinc biofortification of cereals: problems and solutions. Trends Plant Sci. 13, 464–473. 10.1016/j.tplants.2008.06.005 PubMed DOI
Pavlikova D., Macek T., Mackova M., Sura M., Szakova J., Tlustos P. (2004). The evaluation of cadmium, zinc and nickel accumulation ability of transgenic tobacco bearing different transgenes. Plant Soil Environ. 50, 513–517. 10.17221/4067-PSE DOI
Peuke A. D., Rennenberg H. (2005). Phytoremediation-Molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep. 6, 497–501. 10.1038/sj.embor.7400445 PubMed DOI PMC
Pianelli K., Mari S., Marques L., Lebrun M., Czernic P. (2005). Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transg. Res. 14, 739–748. 10.1007/s11248-005-7159-3 PubMed DOI
Pilon-Smits E. A. H., Hwang S. B., Lytle C. M., Zhu Y. L., Tai J. C., Bravo R. C., et al. . (1999). Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol. 119, 123–132. 10.1104/pp.119.1.123 PubMed DOI PMC
Pilon-Smits E. A. H., Leduc D. L. (2009). Phytoremediation of selenium using transgenic plants. Curr. Opin. Biotechnol. 20, 207–212. 10.1016/j.copbio.2009.02.001 PubMed DOI
Postrigan B. N., Knyazev A. B., Kuluev B. R., Yakhin O. I., Chemeris A. V. (2012). Expression of the synthetic phytochelatin gene in tobacco. Russ. J. Plant Physiol. 59, 275–280. 10.1134/S1021443712020136 DOI
Prasad M. N. V., Freitas H. M. D. (2003). Metal hyperaccumulation in plants-biodiversity prospecting for phytoremediation technology. Electron. J. Biotechnol. 6, 285–321. 10.2225/vol6-issue3-fulltext-6 DOI
Rascio N., Navari-Izzo F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? and what makes them so interesting? Plant Sci. 180, 169–181. 10.1016/j.plantsci.2010.08.016 PubMed DOI
Raskin I., Smith R. D., Salt D. E. (1997). Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8, 221–226. 10.1016/S0958-1669(97)80106-1 PubMed DOI
Reeves R. (2006). Hyperaccumulation of trace elements by plants, in Phytoremediation of Metal-Contaminated Soils, eds Morel J. L., Echevarria G., Goncharova N. (Dordrecht: Springer; ), 25–52.
Reeves R. D., Schwartz C., Morel J. L., Edmondson J. (2001). Distribution and metal-accumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation 3, 145–172. 10.1080/15226510108500054 DOI
Rizwan M., Ali S., Qayyum M. F., Ok Y. S., Zia-ur-Rehman M., Abbas Z., et al. . (2017). Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ. Geochem. Health 39, 259–277. 10.1007/s10653-016-9826-0 PubMed DOI
Robinson B. H., Chiarucci A., Brooks R. R., Petit D., Kirkman J. H., Gregg P. E. H., et al. (1997). The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J. Geochem. Explor. 59, 75–86. 10.1016/S0375-6742(97)00010-1 DOI
Robinson B. H., Leblanc M., Petit D., Brooks R. R., Kirkman J. H., Gregg P. E. H. (1998). The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203, 47–56. 10.1023/A:1004328816645 DOI
Rodriguez H., Vessely S., Shah S., Glick B. R. (2008). Effect of a nickel-tolerant ACC deaminase-producing Pseudomonas strain on growth of nontransformed and transgenic canola plants. Curr. Microbiol. 57, 170–174. 10.1007/s00284-008-9181-1 PubMed DOI
Rudolph A., Becker R., Scholz G., Procházka Ž., Toman J., Macek T., et al. (1985). The occurrence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochemie Physiologie der Pflanzen 180, 557–563. 10.1016/S0015-3796(85)80036-6 DOI
Rugh C. L., Wilde H. D., Stack N. M., Thompson D. M., Summers A. O., Meagher R. B. (1996). Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc. Natl. Acad. Sci. U.S.A. 93, 3182–3187. 10.1073/pnas.93.8.3182 PubMed DOI PMC
Sahi S. V., Bryant N. L., Sharma N. C., Singh S. R. (2002). Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 36, 4676–4680. 10.1021/es020675x PubMed DOI
Salt D. E., Blaylock M., Kumar N., Dushenkov V., Ensley B. D., Chet I., et al. . (1995). Phytoremediation-a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13, 468–474. PubMed
Salt D. E., Smith R. D., Raskin I. (1998). Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 643–668. 10.1146/annurev.arplant.49.1.643 PubMed DOI
Sandermann H. (1994). Higher-plant metabolism of xenobiotics-the green liver concept. Pharmacogenetics 4, 225–241. 10.1097/00008571-199410000-00001 PubMed DOI
Sanvido O., Romeis J., Gathmann A., Gielkens M., Raybould A., Bigler F. (2012). Evaluating environmental risks of genetically modified crops: ecological harm criteria for regulatory decision-making. Environ. Sci. Policy 15, 82–91. 10.1016/j.envsci.2011.08.006 DOI
Sarma H. (2011). Metal hyperaccumulation in plants: a review focusing on phytoremediation technology. J. Environ. Sci. Technol. 4, 118–138. 10.3923/jest.2011.118.138 DOI
Sasaki Y., Hayakawa T., Inoue C., Miyazaki A., Silver S., Kusano T. (2006). Generation of mercury-hyperaccumulating plants through transgenic expression of the bacterial mercury membrane transport protein MerC. Transgenic Res. 15, 615–625. 10.1007/s11248-006-9008-4 PubMed DOI
Schnoor J. L., Light L. A., McCutcheon S. C., Wolfe N. L., Carreia L. H. (1995). Phytoremediation of organic and nutrient contaminants. Environ. Sci. Technol. 29, 318A−323A. 10.1021/es00007a747 PubMed DOI
Sheoran V., Sheoran A. S., Poonia P. (2009). Phytomining: a review. Miner. Eng. 22, 1007–1019. 10.1016/j.mineng.2009.04.001 DOI
Shim D., Kim S., Choi Y.-I., Song W.-Y., Park J., Youk E. S., et al. . (2013). Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90, 1478–1486. 10.1016/j.chemosphere.2012.09.044 PubMed DOI
Shukla D., Kesari R., Mishra S., Dwivedi S., Tripathi R. D., Nath P., et al. (2012). Expression of phytochelatin synthase from aquatic macrophyte Ceratophyllum demersum L. enhances cadmium and arsenic accumulation in tobacco. Plant Cell Rep. 31, 1687–1699. 10.1007/s00299-012-1283-3 PubMed DOI
Silver S., Phung le T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Indust. Microbiol. Biotechnol. 32, 587–605. 10.1007/s10295-005-0019-6 PubMed DOI
Silver S., Phung L. T. (2005). Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic. Appl. Environ. Microbiol. 71, 599–608. 10.1128/AEM.71.2.599-608.2005 PubMed DOI PMC
Singh S., Parihar P., Singh R., Singh V. P., Prasad S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front. Plant Sci. 6:1143. 10.3389/fpls.2015.01143 PubMed DOI PMC
Singh S. P., Keller B., Gruissem W., Bhullar N. K. (2017). Rice NICOTIANAMINE SYNTHASE 2 expression improves dietary iron and zinc levels in wheat. Theor. Appl. Genet. 130, 283–292. 10.1007/s00122-016-2808-x PubMed DOI PMC
Sorrentino M. C., Capozzi F., Amitrano C., Giordano S., Arena C., Spagnuolo V. (2018). Performance of three cardoon cultivars in an industrial heavy metal-contaminated soil: effects on morphology, cytology and photosynthesis. J. Hazard. Mater. 351, 131–137. 10.1016/j.jhazmat.2018.02.044 PubMed DOI
Suman J., Kotrba P., Macek T. (2014). Putative P-1B-type ATPase from the bacterium Achromobacter xylosoxidans A8 alters Pb2+/Zn2+/Cd2+-resistance and accumulation in Saccharomyces cerevisiae. Biochim. Biophys. Acta-Biomemb. 1838, 1338–1343. 10.1016/j.bbamem.2014.01.023 PubMed DOI
Suryawanshi V., Talke I. N., Weber M., Eils R., Brors B., Clemens S., et al. . (2016). Between-species differences in gene copy number are enriched among functions critical for adaptive evolution in Arabidopsis halleri. BMC Genomics 17:1034. 10.1186/s12864-016-3319-5 PubMed DOI PMC
Tangahu B. V., Sheikh Abdullah S. R., Basri H., Idris M., Anuar N., Mukhlisin M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int. J. Chem. Eng. 2011:939161 10.1155/2011/939161 DOI
Thomas J. C., Davies E. C., Malick F. K., Endreszl C., Williams C. R., Abbas M., et al. . (2003). Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19, 273–280. 10.1021/bp025623q PubMed DOI
Tommey A. M., Shi J., Lindsay W. P., Urwin P. E., Robinson N. J. (1991). Expression of the pea gene PSMTA in E. coli. Metal-binding properties of the expressed protein. FEBS Lett. 292, 48–52. PubMed
Trijatmiko K. R., Dueñas C., Tsakirpaloglou N., Torrizo L., Arines F. M., Adeva C., et al. . (2016). Biofortified indica rice attains iron and zinc nutrition dietary targets in the field. Sci. Rep. 6:19792. 10.1038/srep19792 PubMed DOI PMC
Tsatsakis A. M., Nawaz M. A., Kouretas D., Balias G., Savolainen K., Tutelyan V. A., et al. . (2017). Environmental impacts of genetically modified plants: a review. Environ. Res. 156, 818–833. 10.1016/j.envres.2017.03.011 PubMed DOI
Unterbrunner R., Puschenreiter M., Sommer P., Wieshammer G., Tlustoš P., Zupan M., et al. . (2007). Heavy metal accumulation in trees growing on contaminated sites in Central Europe. Environ. Pollut. 148, 107–114. 10.1016/j.envpol.2006.10.035 PubMed DOI
van der Ent A., Baker A. J. M., Reeves R. D., Pollard A. J., Schat H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362, 319–334. 10.1007/s11104-012-1287-3 DOI
Van Slycken S., Witters N., Meers E., Peene A., Michels E., Adriaensen K., et al. . (2013a). Safe use of metal-contaminated agricultural land by cultivation of energy maize (Zea mays). Environ. Pollut. 178, 375–380. 10.1016/j.envpol.2013.03.032 PubMed DOI
Van Slycken S., Witters N., Meiresonne L., Meers E., Ruttens A., Van Peteghem P., et al. . (2013b). Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils. Int. J. Phytoremediation 15, 677–689. 10.1080/15226514.2012.723070 PubMed DOI
Vangronsveld J., Herzig R., Weyens N., Boulet J., Adriaensen K., Ruttens A., et al. . (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ. Sci. Pollut. Res. 16, 765–794. 10.1007/s11356-009-0213-6 PubMed DOI
Verbruggen N., Hermans C., Schat H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. N. Phytol. 181, 759–776. 10.1111/j.1469-8137.2008.02748.x PubMed DOI
Volk T. A., Verwijst T., Tharakan P. J., Abrahamson L. P., White E. H. (2004). Growing fuel: a sustainability assessment of willow biomass crops. Front. Ecol. Environ. 2, 411–418. 10.1890/1540-9295(2004)002[0411:GFASAO]2.0.CO;2 DOI
Vyslouzilova M., Puschenreiter M., Wieshammer G., Wenzel W. W. (2006). Rhizosphere characteristics, heavy metal accumulation and growth performance of two willow (Salix x rubens) clones. Plant Soil Environ. 52, 353–361. 10.17221/3452-PSE DOI
Wang L., Ji B., Hu Y., Liu R., Sun W. (2017). A review on in situ phytoremediation of mine tailings. Chemosphere 184, 594–600. 10.1016/j.chemosphere.2017.06.025 PubMed DOI
Wojas S., Hennig J., Plaza S., Geisler M., Siemianowski O., Sklodowska A., et al. . (2009). Ectopic expression of Arabidopsis ABC transporter MRP7 modifies cadmium root-to-shoot transport and accumulation. Environ. Pollut. 157, 2781–2789. 10.1016/j.envpol.2009.04.024 PubMed DOI
Wu Q., Shigaki T., Williams K. A., Han J. S., Kim C. K., Hirschi K. D., et al. . (2011). Expression of an Arabidopsis Ca2+/H+ antiporter CAX1 variant in petunia enhances cadmium tolerance and accumulation. J. Plant Physiol. 168, 167–173. 10.1016/j.jplph.2010.06.005 PubMed DOI
Wu T.-Y., Gruissem W., Bhullar N. K. (2018). Facilitated citrate-dependent iron translocation increases rice endosperm iron and zinc concentrations. Plant Sci. 270, 13–22. 10.1016/j.plantsci.2018.02.002 PubMed DOI
Xiao S., Gao W., Chen Q. F., Ramalingam S., Chye M. L. (2008). Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J. 54, 141–151. 10.1111/j.1365-313X.2008.03402.x PubMed DOI
Xu W., Lu G., Dang Z., Liao C., Chen Q., Yi X. (2013). Uptake and distribution of Cd in sweet maize grown on contaminated soils: a field-scale study. Bioinorgan. Chem. Appl. 2013:959764 10.1155/2013/959764 PubMed DOI PMC
Yankov B., Delibaltova V., Bojinov M. (2000). Contents of Cu, Zn, Cd and Pb in the vegetative organs of cotton cultivars from industrially polluted region. Rasteniev"dni Nauki 37, 525–531.
Zhang H. Y., Xu W. Z., Dai W. T., He Z. Y., Ma M. (2006). Functional characterization of cadmium-responsive garlic gene AsMT2b: a new member of metallothionein family. Chinese Sci. Bull. 51, 409–416. 10.1007/s11434-006-0409-9 DOI
Zhang Y., Zhao L. H., Wang Y., Yang B. Y., Chen S. Y. (2008). Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. Chemosphere 72, 564–571. 10.1016/j.chemosphere.2008.03.043 PubMed DOI
Zhao C., Qiao M., Yu Y., Xia G., Xiang F. (2010). The effect of the heterologous expression of Phragmites australis gamma-glutamylcysteine synthetase on the Cd2+ accumulation of Agrostis palustris. Plant Cell Environ. 33, 877–887. 10.1111/j.1365-3040.2009.02113.x PubMed DOI
Zheljazkov V. D., Nielsen N. E. (1996a). Effect of heavy metals on peppermint and cornmint. Plant Soil 178, 59–66. 10.1007/BF00011163 DOI
Zheljazkov V. D., Nielsen N. E. (1996b). Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill.) production. J. Essent. Oil Res. 8, 259–274.
Zhu Y. L., Pilon-Smits E. A. H., Tarun A. S., Weber S. U., Jouanin L., Terry N. (1999). Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol. 121, 1169–1177. PubMed PMC