OCT and ERG Techniques in High-Throughput Phenotyping of Mouse Vision
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36833221
PubMed Central
PMC9956909
DOI
10.3390/genes14020294
PII: genes14020294
Knihovny.cz E-zdroje
- Klíčová slova
- ERG, IMPC, OCT, phenotyping, vision,
- MeSH
- elektroretinografie metody MeSH
- myši MeSH
- optická koherentní tomografie MeSH
- retina * patologie MeSH
- zrak * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The purpose of the study is to demonstrate coherent optical tomography and electroretinography techniques adopted from the human clinical practice to assess the morphology and function of the mouse retina in a high-throughput phenotyping environment. We present the normal range of wild-type C57Bl/6NCrl retinal parameters in six age groups between 10 and 100 weeks as well as examples of mild and severe pathologies resulting from knocking out a single protein-coding gene. We also show example data obtained by more detailed analysis or additional methods useful in eye research, for example, the angiography of a superficial and deep vascular complex. We discuss the feasibility of these techniques in conditions demanding a high-throughput approach such as the systemic phenotyping carried out by the International Mouse Phenotyping Consortium.
Zobrazit více v PubMed
Mouse Genome Sequencing C., Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson M., et al. Initial sequencing and comparative analysis of the mouse genome. Nature. 2002;420:520–562. doi: 10.1038/nature01262. PubMed DOI
Antony B.J., Kim B.J., Lang A., Carass A., Prince J.L., Zack D.J. Automated segmentation of mouse OCT volumes (ASiMOV): Validation & clinical study of a light damage model. PLoS ONE. 2017;12:e0181059. doi: 10.1371/journal.pone.0181059. PubMed DOI PMC
Fischer M.D., Huber G., Beck S.C., Tanimoto N., Muehlfriedel R., Fahl E., Grimm C., Wenzel A., Reme C.E., van de Pavert S.A., et al. Noninvasive, in vivo assessment of mouse retinal structure using optical coherence tomography. PLoS ONE. 2009;4:e7507. doi: 10.1371/journal.pone.0007507. PubMed DOI PMC
Giannakaki-Zimmermann H., Kokona D., Wolf S., Ebneter A., Zinkernagel M.S. Optical Coherence Tomography Angiography in Mice: Comparison with Confocal Scanning Laser Microscopy and Fluorescein Angiography. Transl. Vis. Sci. Technol. 2016;5:11. doi: 10.1167/tvst.5.4.11. PubMed DOI PMC
Huber G., Beck S.C., Grimm C., Sahaboglu-Tekgoz A., Paquet-Durand F., Wenzel A., Humphries P., Redmond T.M., Seeliger M.W., Fischer M.D. Spectral domain optical coherence tomography in mouse models of retinal degeneration. Investig. Ophthalmol. Vis. Sci. 2009;50:5888–5895. doi: 10.1167/iovs.09-3724. PubMed DOI PMC
Ochakovski G.A., Fischer M.D. Phenotyping of Mouse Models with OCT. Methods Mol. Biol. 2019;1834:285–291. doi: 10.1007/978-1-4939-8669-9_18. PubMed DOI
Frishman L.J., Wang M.H. Adler’s Physiology of the Eye. Elsevier; Amsterdam, The Netherlands: 2011. Electroretinogram of Human, Monkey and Mouse.
Perlman I. The Electroretinogram: ERG by Ido Perlman. [(accessed on 24 October 2022)]. Available online: https://webvision.med.utah.edu/book/electrophysiology/the-electroretinogram-erg/
Penn R.D., Hagins W.A. Signal transmission along retinal rods and the origin of the electroretinographic a-wave. Nature. 1969;223:201–204. doi: 10.1038/223201a0. PubMed DOI
Green D.G., Kapousta-Bruneau N.V. A dissection of the electroretinogram from the isolated rat retina with microelectrodes and drugs. Vis. Neurosci. 1999;16:727–741. doi: 10.1017/S0952523899164125. PubMed DOI
Moore B.A., Leonard B.C., Sebbag L., Edwards S.G., Cooper A., Imai D.M., Straiton E., Santos L., Reilly C., Griffey S.M., et al. Identification of genes required for eye development by high-throughput screening of mouse knockouts. Commun. Biol. 2018;1:236. doi: 10.1038/s42003-018-0226-0. PubMed DOI PMC
Peachey N.S., Ball S.L. Electrophysiological analysis of visual function in mutant mice. Doc. Ophthalmol. 2003;107:13–36. doi: 10.1023/A:1024448314608. PubMed DOI
Schmucker C., Schaeffel F. In vivo biometry in the mouse eye with low coherence interferometry. Vis. Res. 2004;44:2445–2456. doi: 10.1016/j.visres.2004.05.018. PubMed DOI
Schmucker C., Schaeffel F. A paraxial schematic eye model for the growing C57BL/6 mouse. Vis. Res. 2004;44:1857–1867. doi: 10.1016/j.visres.2004.03.011. PubMed DOI
Moore B.A., Roux M.J., Sebbag L., Cooper A., Edwards S.G., Leonard B.C., Imai D.M., Griffey S., Bower L., Clary D., et al. A Population Study of Common Ocular Abnormalities in C57BL/6N rd8 Mice. Investig. Ophthalmol. Vis. Sci. 2018;59:2252–2261. doi: 10.1167/iovs.17-23513. PubMed DOI PMC
Jacobs G.H., Neitz J., Deegan J.F. Retinal receptors in rodents maximally sensitive to ultraviolet light. Nature. 1991;353:655–656. doi: 10.1038/353655a0. PubMed DOI
Calderone J.B., Jacobs G.H. Regional variations in the relative sensitivity to UV light in the mouse retina. Vis. Neurosci. 1995;12:463–468. doi: 10.1017/S0952523800008361. PubMed DOI
Jeon C.J., Strettoi E., Masland R.H. The major cell populations of the mouse retina. J. Neurosci. 1998;18:8936–8946. doi: 10.1523/JNEUROSCI.18-21-08936.1998. PubMed DOI PMC
Kostic C., Arsenijevic Y. Animal modelling for inherited central vision loss. J. Pathol. 2016;238:300–310. doi: 10.1002/path.4641. PubMed DOI PMC
Frishman L., Sustar M., Kremers J., McAnany J.J., Sarossy M., Tzekov R., Viswanathan S. ISCEV extended protocol for the photopic negative response (PhNR) of the full-field electroretinogram. Doc. Ophthalmol. 2018;136:207–211. doi: 10.1007/s10633-018-9638-x. PubMed DOI PMC
Johnson M.A., Jeffrey B.G., Messias A.M.V., Robson A.G. ISCEV extended protocol for the stimulus-response series for the dark-adapted full-field ERG b-wave. Doc. Ophthalmol. 2019;138:217–227. doi: 10.1007/s10633-019-09687-6. PubMed DOI PMC
McCulloch D.L., Kondo M., Hamilton R., Lachapelle P., Messias A.M.V., Robson A.G., Ueno S. ISCEV extended protocol for the stimulus-response series for light-adapted full-field ERG. Doc. Ophthalmol. 2019;138:205–215. doi: 10.1007/s10633-019-09685-8. PubMed DOI
McCulloch D.L., Marmor M.F., Brigell M.G., Hamilton R., Holder G.E., Tzekov R., Bach M. ISCEV Standard for full-field clinical electroretinography (2015 update) Doc. Ophthalmol. 2015;130:1–12. doi: 10.1007/s10633-014-9473-7. PubMed DOI
Sustar M., Holder G.E., Kremers J., Barnes C.S., Lei B., Khan N.W., Robson A.G. ISCEV extended protocol for the photopic On-Off ERG. Doc. Ophthalmol. 2018;136:199–206. doi: 10.1007/s10633-018-9645-y. PubMed DOI PMC
Lee I.N., Yang J.T., Huang C., Huang H.C., Wu Y.P., Chen J.C. Elevated XRCC5 expression level can promote temozolomide resistance and predict poor prognosis in glioblastoma. Oncol. Lett. 2021;21:443. doi: 10.3892/ol.2021.12704. PubMed DOI PMC
Savva C., Sadiq M., Sheikh O., Karim S., Trivedi S., Green A.R., Rakha E.A., Madhusudan S., Arora A. Werner Syndrome Protein Expression in Breast Cancer. Clin. Breast Cancer. 2021;21:57–73.e57. doi: 10.1016/j.clbc.2020.07.013. PubMed DOI
Shang B., Jia Y., Chen G., Wang Z. Ku80 correlates with neoadjuvant chemotherapy resistance in human lung adenocarcinoma, but reduces cisplatin/pemetrexed-induced apoptosis in A549 cells. Respir. Res. 2017;18:56. doi: 10.1186/s12931-017-0545-6. PubMed DOI PMC
Oshitari T., Kitahashi M., Mizuno S., Baba T., Kubota-Taniai M., Takemoto M., Yokote K., Yamamoto S., Roy S. Werner syndrome with refractory cystoid macular edema and immunohistochemical analysis of WRN proteins in human retinas. BMC Ophthalmol. 2014;14:31. doi: 10.1186/1471-2415-14-31. PubMed DOI PMC
Muller B., Serafin F., Laucke L.L., Rheinhard W., Wimmer T., Stieger K. Characterization of Double-Strand Break Repair Protein Ku80 Location Within the Murine Retina. Investig. Ophthalmol. Vis. Sci. 2022;63:22. doi: 10.1167/iovs.63.6.22. PubMed DOI PMC
Furukawa T., Morrow E.M., Li T., Davis F.C., Cepko C.L. Retinopathy and attenuated circadian entrainment in Crx-deficient mice. Nat. Genet. 1999;23:466–470. doi: 10.1038/70591. PubMed DOI
Berger W., Kloeckener-Gruissem B., Neidhardt J. The molecular basis of human retinal and vitreoretinal diseases. Prog. Retin. Eye Res. 2010;29:335–375. doi: 10.1016/j.preteyeres.2010.03.004. PubMed DOI
Tran N.M., Chen S. Mechanisms of blindness: Animal models provide insight into distinct CRX-associated retinopathies. Dev. Dyn. 2014;243:1153–1166. doi: 10.1002/dvdy.24151. PubMed DOI PMC
Gresh J., Goletz P.W., Crouch R.K., Rohrer B. Structure-function analysis of rods and cones in juvenile, adult, and aged C57bl/6 and Balb/c mice. Vis. Neurosci. 2003;20:211–220. doi: 10.1017/S0952523803202108. PubMed DOI
Wang Y., Grenell A., Zhong F., Yam M., Hauer A., Gregor E., Zhu S., Lohner D., Zhu J., Du J. Metabolic signature of the aging eye in mice. Neurobiol. Aging. 2018;71:223–233. doi: 10.1016/j.neurobiolaging.2018.07.024. PubMed DOI PMC
Tsantilas K.A., Cleghorn W.M., Bisbach C.M., Whitson J.A., Hass D.T., Robbings B.M., Sadilek M., Linton J.D., Rountree A.M., Valencia A.P., et al. An Analysis of Metabolic Changes in the Retina and Retinal Pigment Epithelium of Aging Mice. Investig. Ophthalmol. Vis. Sci. 2021;62:20. doi: 10.1167/iovs.62.14.20. PubMed DOI PMC
Kolesnikov A.V., Fan J., Crouch R.K., Kefalov V.J. Age-related deterioration of rod vision in mice. J. Neurosci. 2010;30:11222–11231. doi: 10.1523/JNEUROSCI.4239-09.2010. PubMed DOI PMC
Salobrar-Garcia E., Lopez-Cuenca I., Sanchez-Puebla L., de Hoz R., Fernandez-Albarral J.A., Ramirez A.I., Bravo-Ferrer I., Medina V., Moro M.A., Saido T.C., et al. Retinal Thickness Changes Over Time in a Murine AD Model APP (NL-F/NL-F) Front. Aging Neurosci. 2020;12:625642. doi: 10.3389/fnagi.2020.625642. PubMed DOI PMC
Ferdous S., Liao K.L., Gefke I.D., Summers V.R., Wu W., Donaldson K.J., Kim Y.K., Sellers J.T., Dixon J.A., Shelton D.A., et al. Age-Related Retinal Changes in Wild-Type C57BL/6J Mice Between 2 and 32 Months. Investig. Ophthalmol. Vis. Sci. 2021;62:9. doi: 10.1167/iovs.62.7.9. PubMed DOI PMC
Dysli C., Enzmann V., Sznitman R., Zinkernagel M.S. Quantitative Analysis of Mouse Retinal Layers Using Automated Segmentation of Spectral Domain Optical Coherence Tomography Images. Transl. Vis. Sci. Technol. 2015;4:9. doi: 10.1167/tvst.4.4.9. PubMed DOI PMC
Mattapallil M.J., Wawrousek E.F., Chan C.C., Zhao H., Roychoudhury J., Ferguson T.A., Caspi R.R. The Rd8 mutation of the Crb1 gene is present in vendor lines of C57BL/6N mice and embryonic stem cells, and confounds ocular induced mutant phenotypes. Investig. Ophthalmol. Vis. Sci. 2012;53:2921–2927. doi: 10.1167/iovs.12-9662. PubMed DOI PMC
Moshiri A. Animals Models of Inherited Retinal Disease. Int. Ophthalmol. Clin. 2021;61:113–130. doi: 10.1097/IIO.0000000000000368. PubMed DOI PMC
Aleman T.S., Cideciyan A.V., Aguirre G.K., Huang W.C., Mullins C.L., Roman A.J., Sumaroka A., Olivares M.B., Tsai F.F., Schwartz S.B., et al. Human CRB1-associated retinal degeneration: Comparison with the rd8 Crb1-mutant mouse model. Investig. Ophthalmol. Vis. Sci. 2011;52:6898–6910. doi: 10.1167/iovs.11-7701. PubMed DOI PMC
Saul A.B., Cui X., Markand S., Smith S.B. Detailed electroretinographic findings in rd8 mice. Doc. Ophthalmol. 2017;134:195–203. doi: 10.1007/s10633-017-9585-y. PubMed DOI
Rosch S., Johnen S., Muller F., Pfarrer C., Walter P. Correlations between ERG, OCT, and Anatomical Findings in the rd10 Mouse. J. Ophthalmol. 2014;2014:874751. doi: 10.1155/2014/874751. PubMed DOI PMC