Global maps of soil temperature
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34967074
PubMed Central
PMC9303923
DOI
10.1111/gcb.16060
Knihovny.cz E-zdroje
- Klíčová slova
- bioclimatic variables, global maps, microclimate, near-surface temperatures, soil temperature, soil-dwelling organisms, temperature offset, weather stations,
- MeSH
- ekosystém * MeSH
- klimatické změny MeSH
- mikroklima MeSH
- půda * MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda * MeSH
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
5 N Sukachev Institute of Forest SB RAS Krasnoyarsk Russia
A Borza Botanic Garden Babeș Bolyai University Cluj Napoca Romania
A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Aarhus Institute of Advanced Studies AIAS Høegh Guldbergs Gade 6B Aarhus Denmark
Alpine Ecosystems Research Program Institute of Ecology Ilia State University Tbilisi Georgia
ARAID IPE CSIC Pyrenean Institute of Ecology Avda Llano de la Victoria Spain
Australian Museum Sydney Australia
Bayreuth Center of Ecology and Environmental Research Bayreuth Germany
Bioclimatology University of Göttingen Göttingen Germany
Biodiversity Wildlife and Ecosystem Health Biomedical Sciences University of Edinburgh Edinburgh UK
Biological and Environmental Sciences Faculty of Natural Sciences University of Stirling Scotland
British Antarctic Survey NERC High Cross Cambridge UK
Cape Horn International Center Puerto Williams Chile
Cátedra de Climatología Agrícola Entre Ríos Argentina
Centre for Agrometeorological Research Braunschweig Germany
Centre for Biodiversity and Taxonomy Department of Botany University of Kashmir Srinagar India
Centre for Climate Change Research Nicolaus Copernicus University Toruń Poland
Centre for Ecological Research Institute of Ecology and Botany Vácrátót Hungary
Centre for Environmental and Climate Science Lund University Lund Sweden
Centro de Investigación de la Biodiversidad Wilhelm L Johannsen Cusco Perú
CESAM and Department of Environment University of Aveiro Aveiro Portugal
Chair of Geobotany University of Freiburg Freiburg Germany
Chair of Geoinformatics Technische Universität Dresden Dresden Germany
CIRAD UMR Eco and Sols Dakar Senegal
CIRAD UMR Eco and Sols Montpellier France
Climate Change Unit Environmental Protection Agency of Aosta Valley Italy
Climate Change Unit Environmental Protection Agency of Aosta Valley Saint Christophe Italy
CNR Institute for Agricultural and Forestry Systems in the Mediterranean Portici Italy
CNR Institute for BioEconomy Firenze Italy
CNR Institute of BioEconomy Bologna Italy
CSIC Global Ecology Unit CREAF CSIC UAB Bellaterra Spain
Dartmouth College Hanover New Hampshire USA
Département de Botanique et Biologie végétale Université de Genève Chambésy Switzerland
Department of Agroecology Aarhus University Tjele Denmark
Department of Agroecology and Environment Agroscope Research Institute Zürich Switzerland
Department of Animal Biology Institute of Biology University of Campinas Campinas Brazil
Department of Arctic Biology The University Centre in Svalbard Longyearbyen Svalbard Norway
Department of Biogeochemical Signals Max Planck Institute for Biogeochemistry Jena Germany
Department of Biological and Environmental Sciences University of Gothenburg Gothenburg Sweden
Department of Biological Sciences Simon Fraser University Burnaby British Columbia Canada
Department of Biological Sciences University of Notre Dame Notre Dame Indiana USA
Department of Biology Aarhus University Aarhus C Denmark
Department of Biology and Biochemistry University of Houston Houston Texas USA
Department of Biology and Ecology Center Utah State University Logan Utah USA
Department of Biology Lund University Lund Sweden
Department of Biology Norwegian University of Science and Technology Trondheim Norway
Department of Biology University of Antwerp Wilrijk Belgium
Department of Biology Washington University in St Louis St Louis Missouri USA
Department of Botany and Biodiversity Research Vienna Austria
Department of Botany Faculty of Biology University of Innsbruck Innsbruck Austria
Department of Botany University of Granada Granada Spain
Department of Earth and Environmental Science Faculty of BioScience Engineering KULeuven Belgium
Department of Earth and Environmental Sciences KU Leuven Leuven Belgium
Department of Earth and Environmental Sciences Lehigh University Bethlehem Pennsylvania USA
Department of Earth and Environmental Sciences Leuven Belgium
Department of Earth and Environmental Sciences University of Pavia Pavia Italy
Department of Earth Sciences University of Gothenburg Gothenburg Sweden
Department of Ecological Science Vrije Universiteit Amsterdam The Netherlands
Department of Ecology and Environmental Science Umeå University Umeå Sweden
Department of Ecology Pontificia Universidad Javeriana Bogota Colombia
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Ecoscience and Arctic Research Centre Aarhus University Rønde Denmark
Department of Ecoscience and Arctic Research Centre Aarhus University Roskilde Denmark
Department of Environment Province of Antwerp Antwerpen Belgium
Department of Environmental Science Shinshu University Matsumoto Japan
Department of Environmental Systems Science ETH Zurich Zurich Switzerland
Department of Forest Ecology and Management Swedish University of Agricultural Sciences Umeå Sweden
Department of Forest Sciences Federal University of Lavras Lavras Brazil
Department of Geography and Earth Sciences Aberystwyth University Wales UK
Department of Geography Faculty of Science Masaryk University Brno Czech Republic
Department of Geography The University of British Columbia Vancouver British Columbia Canada
Department of Geography University of British Columbia Vancouver British Columbia Canada
Department of Geography University of Zaragoza Zaragoza Spain
Department of Geography York St John University York UK
Department of Geology Geography and Environment University of Alcalá Madrid Spain
Department of Geosciences and Geography University of Helsinki Finland
Department of Land Resources and Environmental Sciences Montana State University Bozeman Montana USA
Department of Life and Environmental Sciences University of Cagliari Cagliari Italy
Department of Life Health and Environmental Sciences University of L'Aquila L'Aquila Italy
Department of Life Sciences Imperial College Ascot Berkshire UK
Department of Natural Sciences and Environmental Health University of South Eastern Norway Bø Norway
Department of Physical Geography and Ecosystem Science Lund University Lund Sweden
Department of Physical Geography Goethe Universität Frankfurt Frankfurt am Main Germany
Department of Physical Geography Stockholm University Stockholm Sweden
Department of Plant Biology and Ecology University of Seville Seville Spain
Department of Science and High Technology Insubria University Como Italy
Department of Science University of Roma Tre Rome Italy
Department of Silviculture and Forest Tree Genetics Forest Research Institute Raszyn Poland
Department of Theoretical and Applied Sciences Insubria University Varese Italy
Department of Wildlife Ecology and Conservation University of Florida Gainesville Florida USA
Dept of Biology Memorial University St John's Newfoundland Canada
Disturbance Ecology BayCEER University of Bayreuth Bayreuth Germany
E G Racoviță Institute Babeș Bolyai University Cluj Napoca Romania
Eco and Sols Univ Montpellier CIRAD INRAE IRD Institut Agro Montpellier France
Eco and Sols Univ Montpellier CIRAD INRAE IRD Montpellier SupAgro Montpellier France
Ecological Botanical Gardens University of Bayreuth Bayreuth Germany
Ecological Plant Geography Faculty of Geography University of Marburg Marburg Germany
Ecosystems and Global Change Group Department of Plant Sciences University of Cambridge Cambridge UK
Environment Agency Austria Vienna Austria
Environment and Sustainability Institute University of Exeter Penryn Campus Cornwall UK
Environment and Sustainability Institute University of Exeter Penryn Campus Penryn UK
Environmental Science Center Qatar University Doha Qatar
EnvixLab Dipartimento di Bioscienze e Territorio Università degli Studi del Molise Termoli Italy
European Commission Joint Research Centre Ispra Italy
Facultad de Ciencias Exactas y Naturales Universidad Nacional de Cuyo Mendoza Argentina
Faculty for Biology University Duisburg Essen Essen Germany
Faculty of Biology University of Duisburg Essen Essen Germany
Faculty of Ecology and Environmental Sciences Technical University in Zvolen Zvolen Slovakia
Faculty of Environmental and Forest Sciences Agricultural University of Iceland Reykjavík Iceland
Faculty of Forestry Technical University in Zvolen Zvolen Slovakia
Faculty of Resource Management HAWK University of Applied Sciences and Arts Göttingen Germany
Faculty of Science and Technology Free University of Bolzano Bolzano Italy
Faculty of Science Department of Botany University of South Bohemia České Budějovice Czech Republic
Finnish Meteorological Inst Helsinki Finland
Finnish Meteorological Institute Climate System Research Helsinki Finland
Finnish Meteorological Institute Helsinki Finland
Flemish Institute for Technological Research Mol Belgium
Forest and Nature Lab Department of Environment Ghent University Melle Gontrode Belgium
Forest Research Alice Holt Lodge Wrecclesham Farnham UK
Forest Research Northern Research Station Roslin UK
Foundation J M Aubert Champex Lac Switzerland
Geography Department Humboldt Universität zu Berlin Germany
Geography Research Unit University of Oulu Oulu Finland
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Global Change Research Institute Academy of Sciences of the Czech Republic Czech Republic
Gothenburg Global Biodiversity Centre Gothenburg Sweden
Graduate School of Life and Environmental Sciences Osaka Prefecture University Japan
Grupo de Ecología de Poblaciones de Insectos IFAB Bariloche Argentina
High Meadows Environmental Institute Princeton University New Jersey USA
IMIB Biodiversity Research Institute University of Oviedo Mieres Spain
Imperial College London Ascot UK
INRAE Bordeaux Sciences Agro UMR 1391 ISPA Villenave d'Ornon France
INRAE Univ Bordeaux BIOGECO Cestas France
INRAE University of Bordeaux BIOGECO Cestas France
Institut Universitaire de France Paris France
Institute for Alpine Environment Eurac Research Bozen Bolzano Italy
Institute for Botany University of Natural Resources and Life Sciences Vienna Vienna Austria
Institute for Plant Science and Microbiology University of Hamburg Hamburg Germany
Institute of Bio and Geosciences Agrosphere Forschungszentrum Jülich GmbH Jülich Germany
Institute of Biology Department of Molecular Botany University of Hohenheim Stuttgart Germany
Institute of Biology Leipzig University Leipzig Germany
Institute of Botany and Landscape Ecology University Greifswald Greifswald Germany
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Institute of Ecology and Earth Sciences University of Tartu Tartu Estonia
Institute of Landscape Ecology Slovak Academy of Sciences Bratislava Slovakia
Institute of Meteorology and Climate Research Garmisch Partenkirchen Germany
Institute of Mountain Hazards and Environment Chinese Academy of Sciences Chengdu P R China
Instituto de Ecología y Biodiversidad Santiago Chile
Instituto Pirenaico de Ecología IPE CSIC Av Llano de la Victoria Jaca Spain
Interuniversity Institute for Earth System Research University of Granada Granada Spain
Isotope Bioscience Laboratory ISOFYS Ghent University Gent Belgium
Jolube Consultor Botánico C Mariano R de Ledesma Jaca Huesca Spain
Kings Park Science Department of Biodiversity Conservation and Attractions Kings Park Australia
Life and Environmental Sciences University of Iceland Reykjavík Iceland
LMI IESOL Centre IRD ISRA de Bel Air Dakar Senegal
Majella Seed Bank Majella National Park Colle Madonna Lama dei Peligni Italy
Mountains of the Moon University Fort Portal Uganda
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
Natural History Museum University of Oslo Oslo Norway
Nature Research Centre Vilnius Lithuania
Netherlands Institute of Ecology Wageningen the Netherlands
NGO New Energy Kharkiv Ukraine
Operation Wallacea Lincolnshire UK
Parc national des Ecrins Domaine de Charance France
Plant Conservation and Population Biology Department of Biology KU Leuven Heverlee Belgium
Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
Plant Ecology Group Department of Evolution and Ecology University of Tübingen Tübingen Germany
Princeton School of Public and International Affairs Princeton University Princeton New Jersey USA
Pyrenean Institute of Ecology Zaragoza Spain
Remote Sensing Laboratories Department of Geography University of Zurich Zurich Switzerland
Research group ECOBE University of Antwerp Wilrijk Belgium
Research Group PLECO University of Antwerp Wilrijk Belgium
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological Sciences Monash University Melbourne Victoria Australia
School of Biological Sciences The University of Hong Kong Hong Kong SAR China
School of Biological Sciences University of Bristol Bristol UK
School of Biosciences University of Sheffield Sheffield UK
School of Ecology and Environment Studies Nalanda University Rajgir India
School of Education and Social Sciences Adventist University of Chile Chile
School of GeoSciences University of Edinburgh Edinburgh UK
School of Life and Environmental Sciences Deakin University Burwood Victoria Australia
School of Natural Resources and Environment University of Florida Gainesville Florida USA
Senckenberg Research Institute and Natural History Museum Frankfurt Gelnhausen Germany
Siberian Federal University Krasnoyarsk Russia
Smithsonian Environmental Research Center Edgewater Maryland USA
Soil Science Department Federal University of Viçosa Viçosa MG Brazil
Sustainable Agricultural Sciences Department Rothamsted Research Harpenden UK
Swedish University of Agricultural Sciences SLU Swedish Species Information Centre Uppsala Sweden
Swiss Federal Institute for Forest Snow and Landscape Research Birmensdorf Switzerland
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
Swiss Federal Research Institute WSL Birmensdorf Switzerland
Swiss National Park Chastè Planta Wildenberg Zernez Switzerland
Terra Nova National Park Parks Canada Agency Glovertown Newfoundland Canada
Terrestrial Ecology Unit Department of Biology Ghent University Gent Belgium
The County Administrative Board of Västra Götaland Gothenburg Sweden
The Ecosystem Management Research Group Belgium
The Heathland Centre Alver Norway
UK Centre for Ecology and Hydrology Penicuik UK
UMR ECOSYS INRAE Uinversité Paris Saclay AgroParisTech France
Unit of Land Change Science Swiss Federal Research Institute WSL Birmensdorf Switzerland
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LECA Grenoble France
Univ Grenoble Alpes Univ Savoie Mont Blanc CNRS LTSER Zone Atelier Alpes Grenoble France
Univ Savoie Mont Blanc CNRS Univ Grenoble Alpes EDYTEM Chambéry France
Universidad Nacional de San Antonio Abad del Cusco Cusco Perú
Universidade Estadual do Norte Fluminense Darcy Ribeiro Rio de Janeiro Brazil
Universitat Autònoma de Barcelona Spain
Université de Lorraine AgroParisTech INRAE Nancy France
Université de Rennes CNRS EcoBio UMR 6553 Rennes France
University of Applied Sciences Trier Environmental Campus Birkenfeld Birkenfeld Germany
WSL Institute for Snow and Avalanche Research SLF Davos Dorf Switzerland
Zobrazit více v PubMed
Abatzoglou, J. T. , Dobrowski, S. Z. , Parks, S. A. , & Hegewisch, K. C. (2018). TerraClimate, a high‐resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific Data, 5, 170191. 10.1038/sdata.2017.191 PubMed DOI PMC
Amatulli, G. , Domisch, S. , Tuanmu, M.‐N. , Parmentier, B. , Ranipeta, A. , Malczyk, J. , & Jetz, W. (2018). A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. 10.1038/sdata.2018.40 PubMed DOI PMC
Antão, L. H. , Bates, A. E. , Blowes, S. A. , Waldock, C. , Supp, S. R. , Magurran, A. E. , Dornelas, M. , & Schipper, A. M. (2020). Temperature‐related biodiversity change across temperate marine and terrestrial systems. Nature Ecology and Evolution, 4, 927–933. 10.1038/s41559-020-1185-7 PubMed DOI
Ashcroft, M. B. , Cavanagh, M. , Eldridge, M. D. B. , & Gollan, J. R. (2014). Testing the ability of topoclimatic grids of extreme temperatures to explain the distribution of the endangered brush‐tailed rock‐wallaby (Petrogale penicillata). Journal of Biogeography, 41, 1402–1413.
Ashcroft, M. B. , Chisholm, L. A. , & French, K. O. (2008). The effect of exposure on landscape scale soil surface temperatures and species distribution models. Landscape Ecology, 23, 211–225. 10.1007/s10980-007-9181-8 DOI
Ashcroft, M. B. , & Gollan, J. R. (2012). Fine‐resolution (25 m) topoclimatic grids of near‐surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 x 300 km) and diverse region. International Journal of Climatology, 32, 2134–2148.
Barnes, R. , Sahr, K. , Evenden, G. , Johnson, A. & Warmerdam, F. (2017). dggridR: discrete global grids for R. R package version 0.1.12.
Bergstrom, D. M. , Wienecke, B. C. , Hoff, J. , Hughes, L. , Lindenmayer, D. B. , Ainsworth, T. D. , Baker, C. M. , Bland, L. , Bowman, D. M. J. S. , Brooks, S. T. , Canadell, J. G. , Constable, A. J. , Dafforn, K. A. , Depledge, M. H. , Dickson, C. R. , Duke, N. C. , Helmstedt, K. J. , Holz, A. , Johnson, C. R. , … Shaw, J. D. (2021). Combating ecosystem collapse from the tropics to the Antarctic. Global Change Biology, 27, 1692–1703. 10.1111/gcb.15539 PubMed DOI
Berner, L. T. , Massey, R. , Jantz, P. , Forbes, B. C. , Macias‐Fauria, M. , Myers‐Smith, I. , Kumpula, T. , Gauthier, G. , Andreu‐Hayles, L. , Gaglioti, B. V. , Burns, P. , Zetterberg, P. , D’Arrigo, R. , & Goetz, S. J. (2020). Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nature Communications, 11, 1–12. 10.1038/s41467-020-18479-5 PubMed DOI PMC
Bond‐Lamberty, B. , & Thomson, A. (2018). A Global Database of Soil Respiration Data, Version 4.0. ORNL DAAC.
Booth, T. H. , Nix, H. A. , Busby, J. R. , & Hutchinson, M. F. (2014). BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MAXENT studies. Diversity and Distributions, 20, 1–9.
Bramer, I. , Anderson, B. , Bennie, J. , Bladon, A. , De Frenne, P. , Hemming, D. , Hill, R. A. , Kearney, M. R. , Körner, C. , Korstjens, A. H. , Lenoir, J. , Maclean, I. M. D. , Marsh, C. D. , Morecroft, M. D. , Ohlemüller, R. , Slater, H. D. , Suggitt, A. J. , Zellweger, F. , & Gillingham, P. K. (2018). Advances in monitoring and modelling climate at ecologically relevant scales. Advances in Ecological Research, 58, 101–161.
Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.
Bruelheide, H. , Dengler, J. , Purschke, O. , Lenoir, J. , Jiménez‐Alfaro, B. , Hennekens, S. M. , Botta‐Dukát, Z. , Chytrý, M. , Field, R. , Jansen, F. , Kattge, J. , Pillar, V. D. , Schrodt, F. , Mahecha, M. D. , Peet, R. K. , Sandel, B. , van Bodegom, P. , Altman, J. , Alvarez‐Dávila, E. , … Jandt, U. (2018). Global trait–environment relationships of plant communities. Nature Ecology and Evolution, 2, 1906. 10.1038/s41559-018-0699-8 PubMed DOI
Bütikofer, L. , Anderson, K. , Bebber, D. P. , Bennie, J. J. , Early, R. I. , & Maclean, I. M. (2020). The problem of scale in predicting biological responses to climate. Global Change Biology, 26, 6657–6666. 10.1111/gcb.15358 PubMed DOI
Chen, L. , Aalto, J. , & Luoto, M. (2021). Significant shallow–depth soil warming over Russia during the past 40 years. Global and Planetary Change, 197, 103394.
Cooper, E. J. (2014). Warmer shorter winters disrupt Arctic terrestrial ecosystems. Annual Review of Ecology, Evolution, and Systematics, 45, 271–295. 10.1146/annurev-ecolsys-120213-091620 DOI
Copernicus Climate Change Service (C3s). (2019. ). C3S ERA5‐Land reanalysis. (ed Copernicus Climate Change Service).
Coûteaux, M.‐M. , Bottner, P. , & Berg, B. (1995). Litter decomposition, climate and litter quality. Trends in Ecology and Evolution, 10, 63–66. PubMed
Crowther, T. W. , Todd‐Brown, K. E. O. , Rowe, C. W. , Wieder, W. R. , Carey, J. C. , Machmuller, M. B. , Snoek, B. L. , Fang, S. , Zhou, G. , Allison, S. D. , Blair, J. M. , Bridgham, S. D. , Burton, A. J. , Carrillo, Y. , Reich, P. B. , Clark, J. S. , Classen, A. T. , Dijkstra, F. A. , Elberling, B. , … Bradford, M. A. (2016). Quantifying global soil carbon losses in response to warming. Nature, 540, 104–108. 10.1038/nature20150 PubMed DOI
Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721. 10.1002/joc.1322 DOI
Davis, E. , Trant, A. , Hermanutz, L. , Way, R. G. , Lewkowicz, A. G. , Collier, L. S. , Cuerrier, A. , & Whitaker, D. (2020). Plant‐environment interactions in the low arctic torngat mountains of labrador. Ecosystems, 1–21. PubMed
De Frenne, P. , Lenoir, J. , Luoto, M. , Scheffers, B. R. , Zellweger, F. , Aalto, J. , Ashcroft, M. , Christiansen, D. , Decocq, G. , De Pauw, K. , Govaert, S. , Greiser, C. , Gril, E. , Hampe, A. , Jucker, T. , Klinges, D. , Koelemeijer, I. , Lembrechts, J. , Marrec, R. , … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297. 10.1111/gcb.15569 PubMed DOI
De Frenne, P. , Rodriguez‐Sanchez, F. , Coomes, D. A. , Baeten, L. , Verstraeten, G. , Vellend, M. , Bernhardt‐Romermann, M. , Brown, C. D. , Brunet, J. , Cornelis, J. , Decocq, G. M. , Dierschke, H. , Eriksson, O. , Gilliam, F. S. , Hedl, R. , Heinken, T. , Hermy, M. , Hommel, P. , Jenkins, M. A. , … Verheyen, K. (2013). Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences of the United States of America, 110, 18561–18565. 10.1073/pnas.1311190110 PubMed DOI PMC
De Frenne, P. , Zellweger, F. , Rodríguez‐Sánchez, F. , Scheffers, B. R. , Hylander, K. , Luoto, M. , Vellend, M. , Verheyen, K. , & Lenoir, J. (2019). Global buffering of temperatures under forest canopies. Nature Ecology and Evolution, 3, 744–749. 10.1038/s41559-019-0842-1 PubMed DOI
Dinerstein, E. , Olson, D. , Joshi, A. , Vynne, C. , Burgess, N. D. , Wikramanayake, E. , Hahn, N. , Palminteri, S. , Hedao, P. , Noss, R. , Hansen, M. , Locke, H. , Ellis, E. C. , Jones, B. , Barber, C. V. , Hayes, R. , Kormos, C. , Martin, V. , Crist, E. , … Saleem, M. (2017). An ecoregion‐based approach to protecting half the terrestrial realm. BioScience, 67, 534–545. 10.1093/biosci/bix014 PubMed DOI PMC
Du, E. , Terrer, C. , Pellegrini, A. F. , Ahlström, A. , Van Lissa, C. J. , Zhao, X. , Xia, N. , Wu, X. , & Jackson, R. B. (2020). Global patterns of terrestrial nitrogen and phosphorus limitation. Nature Geoscience, 13, 221–226. 10.1038/s41561-019-0530-4 DOI
Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. 10.1002/joc.5086 DOI
Geiger, R. (1950). The climate near the ground. Harvard University Press.
Gistemp Team . (2021). GISS surface temperature analysis (GISTEMP), version 4. NASA Goddard Institute for Space Studies.
Gorelick, N. , Hancher, M. , Dixon, M. , Ilyushchenko, S. , Thau, D. , & Moore, R. (2017). Google earth engine: Planetary‐scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. 10.1016/j.rse.2017.06.031 DOI
Gottschall, F. , Davids, S. , Newiger‐Dous, T. E. , Auge, H. , Cesarz, S. , & Eisenhauer, N. (2019). Tree species identity determines wood decomposition via microclimatic effects. Ecology and Evolution, 9, 12113–12127. 10.1002/ece3.5665 PubMed DOI PMC
Graae, B. J. , Vandvik, V. , Armbruster, W. S. , Eiserhardt, W. L. , Svenning, J.‐C. , Hylander, K. , Ehrlén, J. , Speed, J. D. , Klanderud, K. , Bråthen, K. A. , Milbau, A. , Opedal, O. H. , Alsos, I. G. , Ejrnaes, R. , Bruun, H. H. , Birks, H. J. B. , Westergaard, K. B. , Birks, H. H. , & Lenoir, J. (2018). Stay or go–how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 30, 41–50. 10.1016/j.ppees.2017.09.008 DOI
Greiser, C. , Meineri, E. , Luoto, M. , Ehrlén, J. , & Hylander, K. (2018). Monthly microclimate models in a managed boreal forest landscape. Agricultural and Forest Meteorology, 250, 147–158. 10.1016/j.agrformet.2017.12.252 DOI
Grünberg, I. , Wilcox, E. J. , Zwieback, S. , Marsh, P. , & Boike, J. (2020). Linking tundra vegetation, snow, soil temperature, and permafrost. Biogeosciences, 17, 4261–4279. 10.5194/bg-17-4261-2020 DOI
Grundstein, A. , Todhunter, P. , & Mote, T. (2005). Snowpack control over the thermal offset of air and soil temperatures in eastern North Dakota. Geophysical Research Letters, 32. 10.1029/2005GL022532 DOI
Hall, D. K. , Riggs, G. A. , Salomonson, V. V. , Digirolamo, N. E. , & Bayr, K. J. (2002). MODIS snow‐cover products. Remote Sensing of Environment, 83, 181–194. 10.1016/S0034-4257(02)00095-0 DOI
Hengl, T. , Mendes de Jesus, J. , Heuvelink, G. B. M. , Ruiperez Gonzalez, M. , Kilibarda, M. , Blagotić, A. , Shangguan, W. , Wright, M. N. , Geng, X. , Bauer‐Marschallinger, B. , Guevara, M. A. , Vargas, R. , MacMillan, R. A. , Batjes, N. H. , Leenaars, J. G. B. , Ribeiro, E. , Wheeler, I. , Mantel, S. , & Kempen, B. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS One, 12, e0169748. 10.1371/journal.pone.0169748 PubMed DOI PMC
Hengl, T. , Nussbaum, M. , Wright, M. N. , Heuvelink, G. B. , & Gräler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio‐temporal variables. PeerJ, 6, e5518. 10.7717/peerj.5518 PubMed DOI PMC
Hennon, P. E. , D'amore, D. V. , Witter, D. T. , & Lamb, M. B. (2010). Influence of forest canopy and snow on microclimate in a declining yellow‐cedar forest of Southeast Alaska. Northwest Science, 84, 73–87. 10.3955/046.084.0108 DOI
Holden, Z. A. , Klene, A. E. , Keefe, R. F. , & Moisen, G. G. (2013). Design and evaluation of an inexpensive radiation shield for monitoring surface air temperatures. Agricultural and Forest Meteorology, 180, 281–286. 10.1016/j.agrformet.2013.06.011 DOI
Hursh, A. , Ballantyne, A. , Cooper, L. , Maneta, M. , Kimball, J. , & Watts, J. (2017). The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Global Change Biology, 23, 2090–2103. 10.1111/gcb.13489 PubMed DOI
Jian, J. , Steele, M. K. , Zhang, L. , Bailey, V. L. , Zheng, J. , Patel, K. F. , & Bond‐Lamberty, B. P. (2021). On the use of air temperature and precipitation as surrogate predictors in soil respiration modelling. European Journal of Soil Science. 10.1111/ejss.13149 DOI
Johnston, A. S. A. , Meade, A. , Ardö, J. , Arriga, N. , Black, A. , Blanken, P. D. , Bonal, D. , Brümmer, C. , Cescatti, A. , Dušek, J. , Graf, A. , Gioli, B. , Goded, I. , Gough, C. M. , Ikawa, H. , Jassal, R. , Kobayashi, H. , Magliulo, V. , Manca, G. , … Venditti, C. (2021). Temperature thresholds of ecosystem respiration at a global scale. Nature Ecology and Evolution, 5, 487–494. 10.1038/s41559-021-01398-z PubMed DOI
Karger, D. N. , Conrad, O. , Böhner, J. , Kawohl, T. , Kreft, H. , Soria‐Auza, R. W. , Zimmermann, N. E. , Linder, H. P. , & Kessler, M. (2017a). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 170122. 10.1038/sdata.2017.122 PubMed DOI PMC
Karger, D. N. , Conrad, O. , Böhner, J. , Kawohl, T. , Kreft, H. , Soria‐Auza, R. W. , Zimmermann, N. E. , Linder, H. P. & Kessler, M. (2017b). Data from: Climatologies at high resolution for the earth’s land surface areas. 10.5061/dryad.kd1d4 PubMed DOI PMC
Kattge, J. , Bönisch, G. , Díaz, S. , Lavorel, S. , Prentice, I. C. , Leadley, P. , Tautenhahn, S. , Werner, G. D. A. , Aakala, T. , Abedi, M. , Acosta, A. T. R. , Adamidis, G. C. , Adamson, K. , Aiba, M. , Albert, C. H. , Alcántara, J. M. , Alcázar C, C. , Aleixo, I. , Ali, H. , … Wirth, C. (2019). TRY plant trait database‐enhanced coverage and open access. Global Change Biology, 26, 119–188. 10.1111/gcb.14904 PubMed DOI
Kearney, M. R. , Gillingham, P. K. , Bramer, I. , Duffy, J. P. , & Maclean, I. M. (2019). A method for computing hourly, historical, terrain‐corrected microclimate anywhere on Earth. Methods in Ecology and Evolution, 11, 38–43. 10.1111/2041-210X.13330 DOI
Kearney, M. , & Porter, W. (2009). Mechanistic niche modelling: Combining physiological and spatial data to predict species’ ranges. Ecology Letters, 12, 334–350. 10.1111/j.1461-0248.2008.01277.x PubMed DOI
Kearney, M. , Shine, R. , & Porter, W. P. (2009). The potential for behavioral thermoregulation to buffer “cold‐blooded” animals against climate warming. Proceedings of the National Academy of Sciences of the United States of America, 106, 3835–3840. 10.1073/pnas.0808913106 PubMed DOI PMC
Kissling, W. D. , Walls, R. , Bowser, A. , Jones, M. O. , Kattge, J. , Agosti, D. , Amengual, J. , Basset, A. , van Bodegom, P. M. , Cornelissen, J. H. C. , Denny, E. G. , Deudero, S. , Egloff, W. , Elmendorf, S. C. , Alonso García, E. , Jones, K. D. , Jones, O. R. , Lavorel, S. , Lear, D. , … Guralnick, R. P. (2018). Towards global data products of essential biodiversity variables on species traits. Nature Ecology and Evolution, 2, 1531–1540. 10.1038/s41559-018-0667-3 PubMed DOI
Körner, C. , & Hiltbrunner, E. (2018). The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 30, 16–21. 10.1016/j.ppees.2017.04.004 DOI
Körner, C. , & Paulsen, J. (2004). A world‐wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713–732. 10.1111/j.1365-2699.2003.01043.x DOI
Lembrechts, J. , Aalto, J. , Ashcroft, M. , De Frenne, P. , Kopecký, M. , Lenoir, J. , Luoto, M. , Maclean, I. M. , … Nijs, I. (2020). SoilTemp: Call for data for a global database of near‐surface temperature. Global Change Biology, 26, 6616–6629. PubMed
Lembrechts, J. J. , & Lenoir, J. (2020). Microclimatic conditions anywhere at any time! Global Change Biology, 26(2), 337–339. 10.1111/gcb.14942 PubMed DOI
Lembrechts, J. J. , Lenoir, J. , Roth, N. , Hattab, T. , Milbau, A. , Haider, S. , Pellissier, L. , Pauchard, A. , Ratier Backes, A. , Dimarco, R. D. , Nuñez, M. A. , Aalto, J. , & Nijs, I. (2019). Comparing temperature data sources for use in species distribution models: From in‐situ logging to remote sensing. Global Ecology and Biogeography, 28, 1578–1596. 10.1111/geb.12974 DOI
Lembrechts, J. , Lenoir, J. , Scheffers, B. R. , & De Frenne, P. (2021). Designing countrywide and regional microclimate networks. Global Ecology and Biogeography, 30(6), 1168–1174.
Lembrechts, J. J. , & Nijs, I. (2020). Microclimate shifts in a dynamic world. Science, 368, 711–712. 10.1126/science.abc1245 PubMed DOI
Lenoir, J. , Bertrand, R. , Comte, L. , Bourgeaud, L. , Hattab, T. , Murienne, J. , & Grenouillet, G. (2020). Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 4, 1044–1059. 10.1038/s41559-020-1198-2 PubMed DOI
Luojus, K. , Pulliainen, J. , Takala, M. , Derksen, C. , Rott, H. , Nagler, T. , Solberg, R. , Wiesmann, A. , Metsamaki, S. , & Malnes, E. (2010). Investigating the feasibility of the GlobSnow snow water equivalent data for climate research purposes. In: 2010 IEEE international geoscience and remote sensing symposium. IEEE.
Maclean, I. M. , Duffy, J. P. , Haesen, S. , Govaert, S. , De Frenne, P. , Vanneste, T. , Lenoir, J. , Lembrechts, J. J. , Rhodes, M. W. , & Van Meerbeek, K. (2021). On the measurement of microclimate. Methods in Ecology and Evolution, 12(8), 1397–1410. 10.1111/2041-210X.13627 DOI
Maclean, I. M. , & Klinges, D. H. (2021). Microclimc: A mechanistic model of above, below and within‐canopy microclimate. Ecological Modelling, 451, 109567. 10.1016/j.ecolmodel.2021.109567 DOI
Maclean, I. M. , Mosedale, J. R. , & Bennie, J. J. (2019). Microclima: An r package for modelling meso‐and microclimate. Methods in Ecology and Evolution, 10, 280–290.
Myers‐Smith, I. H. , Kerby, J. T. , Phoenix, G. K. , Bjerke, J. W. , Epstein, H. E. , Assmann, J. J. , John, C. , Andreu‐Hayles, L. , Angers‐Blondin, S. , Beck, P. S. A. , Berner, L. T. , Bhatt, U. S. , Bjorkman, A. D. , Blok, D. , Bryn, A. , Christiansen, C. T. , Cornelissen, J. H. C. , Cunliffe, A. M. , Elmendorf, S. C. , … Wipf, S. (2020). Complexity revealed in the greening of the Arctic. Nature Climate Change, 10, 106–117. 10.1038/s41558-019-0688-1 DOI
Niittynen, P. , Heikkinen, R. K. , Aalto, J. , Guisan, A. , Kemppinen, J. , & Luoto, M. (2020). Fine‐scale tundra vegetation patterns are strongly related to winter thermal conditions. Nature Climate Change, 10, 1143–1148. 10.1038/s41558-020-00916-4 DOI
Niittynen, P. , & Luoto, M. (2018). The importance of snow in species distribution models of arctic vegetation. Ecography, 41, 1024–1037. 10.1111/ecog.03348 DOI
Obu, J. , Westermann, S. , Bartsch, A. , Berdnikov, N. , Christiansen, H. H. , Dashtseren, A. , Delaloye, R. , Elberling, B. , Etzelmüller, B. , & Kholodov, A. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth‐Science Reviews, 193, 299–316.
O'donnell, M. S. , & Ignizio, D. A. (2012). Bioclimatic predictors for supporting ecological applications in the conterminous United States. US Geological Survey Data Series, 691, 4–9.
Olden, J. D. , Lawler, J. J. , & Poff, N. L. (2008). Machine learning methods without tears: A primer for ecologists. The Quarterly Review of Biology, 83, 171–193. 10.1086/587826 PubMed DOI
Opedal, O. H. , Armbruster, W. S. , & Graae, B. J. (2015). Linking small‐scale topography with microclimate, plant species diversity and intra‐specific trait variation in an alpine landscape. Plant Ecology and Diversity, 8, 305–315. 10.1080/17550874.2014.987330 DOI
Overland, J. E. , Wang, M. , Walsh, J. E. , & Stroeve, J. C. (2014). Future Arctic climate changes: Adaptation and mitigation time scales. Earth's Future, 2, 68–74. 10.1002/2013EF000162 DOI
Pastorello, G. , Papale, D. , Chu, H. , Trotta, C. , Agarwal, D. , Canfora, E. , Baldocchi, D. , & Torn, M. (2017). A new data set to keep a sharper eye on land‐air exchanges. Eos, Transactions American Geophysical Union (Online), 98.
Perera‐Castro, A. V. , Waterman, M. J. , Turnbull, J. D. , Ashcroft, M. B. , McKinley, E. , Watling, J. R. , Bramley‐Alves, J. , Casanova‐Katny, A. , Zuniga, G. , Flexas, J. , & Robinson, S. A. (2020). It is hot in the sun: Antarctic mosses have high temperature optima for photosynthesis despite cold climate. Frontiers in Plant Science, 11, 1178. 10.3389/fpls.2020.01178 PubMed DOI PMC
Pincebourde, S. , Murdock, C. C. , Vickers, M. , & Sears, M. W. (2016). Fine‐scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integrative and Comparative Biology, 56, 45–61. 10.1093/icb/icw016 PubMed DOI
Pleim, J. E. , & Gilliam, R. (2009). An indirect data assimilation scheme for deep soil temperature in the Pleim‐Xiu land surface model. Journal of Applied Meteorology and Climatology, 48, 1362–1376. 10.1175/2009JAMC2053.1 DOI
Portillo‐Estrada, M. , Pihlatie, M. , Korhonen, J. F. J. , Levula, J. , Frumau, A. K. F. , Ibrom, A. , Lembrechts, J. J. , Morillas, L. , Horvath, L. , Jones, S. K. , & Niinemets, U. (2016). Climatic controls on leaf litter decomposition across European forests and grasslands revealed by reciprocal litter transplantation experiments. Biogeosciences, 13, 1621–1633. 10.5194/bg-13-1621-2016 DOI
Potter, K. A. , Woods, H. A. , & Pincebourde, S. (2013). Microclimatic challenges in global change biology. Global Change Biology, 19, 2932–2939. 10.1111/gcb.12257 PubMed DOI
R Core Team . (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
Richardson, L. F. (1922). Weather prediction by numerical process. Cambridge University Press.
Rosenberg, N. J. , Kimball, B. , Martin, P. , & Cooper, C. (1990). From climate and CO2 enrichment to evapotranspiration. Climate change and US water resources (pp. 151–175). CABI.
Santoro, M. (2018). GlobBiomass—Global datasets of forest biomass. PANGAEA10, 1594.
Scherrer, D. , Schmid, S. , & Körner, C. (2011). Elevational species shifts in a warmer climate are overestimated when based on weather station data. International Journal of Biometeorology, 55, 645–654. 10.1007/s00484-010-0364-7 PubMed DOI
Schimel, D. S. , Braswell, B. , Mckeown, R. , Ojima, D. S. , Parton, W. , & Pulliam, W. (1996). Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling. Global Biogeochemical Cycles, 10, 677–692. 10.1029/96GB01524 DOI
Schimel, J. P. , Bilbrough, C. , & Welker, J. M. (2004). Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities. Soil Biology and Biochemistry, 36, 217–227. 10.1016/j.soilbio.2003.09.008 DOI
Senior, R. A. , Hill, J. K. , & Edwards, D. P. (2019). Global loss of climate connectivity in tropical forests. Nature Climate Change, 9, 623–626. 10.1038/s41558-019-0529-2 DOI
Smith, M. , & Riseborough, D. (1996). Permafrost monitoring and detection of climate change. Permafrost and Periglacial Processes, 7, 301–309. 10.1002/(SICI)1099-1530(199610)7:4<301:AID-PPP231>3.0.CO;2-R DOI
Smith, M. , & Riseborough, D. (2002). Climate and the limits of permafrost: a zonal analysis. Permafrost and Periglacial Processes, 13, 1–15. 10.1002/ppp.410 DOI
Soudzilovskaia, N. A. , Douma, J. C. , Akhmetzhanova, A. A. , Van Bodegom, P. M. , Cornwell, W. K. , Moens, E. J. , Treseder, K. K. , Tibbett, M. , Wang, Y. P. , & Cornelissen, J. H. (2015). Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry. Global Ecology and Biogeography, 24, 371–382. 10.1111/geb.12272 DOI
Speak, A. , Montagnani, L. , Wellstein, C. , & Zerbe, S. (2020). The influence of tree traits on urban ground surface shade cooling. Landscape and Urban Planning, 197, 103748.
Stefan, V. & Levin, S. (2018). Plotbiomes: Plot Whittaker biomes with ggplot2. R package version 0.0. 0.9001.
Steidinger, B. S. , Crowther, T. W. , Liang, J. , Van Nuland, M. E. , Werner, G. D. A. , Reich, P. B. , Nabuurs, G. J. , de‐Miguel, S. , Zhou, M. , Picard, N. , Herault, B. , Zhao, X. , Zhang, C. , Routh, D. , & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest‐tree symbioses. Nature, 569, 404–408. 10.1038/s41586-019-1128-0 PubMed DOI
Terando, A. J. , Youngsteadt, E. , Meineke, E. K. , & Prado, S. G. (2017). Ad hoc instrumentation methods in ecological studies produce highly biased temperature measurements. Ecology and Evolution, 7, 9890–9904. 10.1002/ece3.3499 PubMed DOI PMC
van den Hoogen, J. , Geisen, S. , Routh, D. , Ferris, H. , Traunspurger, W. , Wardle, D. A. , de Goede, R. G. M. , Adams, B. J. , Ahmad, W. , Andriuzzi, W. S. , Bardgett, R. D. , Bonkowski, M. , Campos‐Herrera, R. , Cares, J. E. , Caruso, T. , de Brito Caixeta, L. , Chen, X. , Costa, S. R. , Creamer, R. , … Crowther, T. W. (2019). Soil nematode abundance and functional group composition at a global scale. Nature, 572, 194–198. 10.1038/s41586-019-1418-6 PubMed DOI
van den Hoogen, J. , Robmann, N. , Routh, D. , Lauber, T. , Van Tiel, N. , Danylo, O. , & Crowther, T. W. (2021). A geospatial mapping pipeline for ecologists. bioRxiv. 10.1101/2021.07.07.451145 DOI
Wang, K. , & Dickinson, R. E. (2012). A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Reviews of Geophysics, 50. 10.1029/2011RG000373 DOI
Way, R. G. , & Lewkowicz, A. G. (2018). Environmental controls on ground temperature and permafrost in Labrador, northeast Canada. Permafrost and Periglacial Processes, 29, 73–85. 10.1002/ppp.1972 DOI
White, H. J. , León‐Sánchez, L. , Burton, V. J. , Cameron, E. K. , Caruso, T. , Cunha, L. , Dirilgen, T. , Jurburg, S. D. , Kelly, R. , Kumaresan, D. , Ochoa‐Hueso, R. , Ordonez, A. , Phillips, H. R. P. , Prieto, I. , Schmidt, O. , & Caplat, P. (2020). Methods and approaches to advance soil macroecology. Global Ecology and Biogeography, 29, 1674–1690. 10.1111/geb.13156 DOI
Whiteman, C. D. (1982). Breakup of temperature inversions in deep mountain valleys: Part I. Observations. Journal of Applied Meteorology, 21, 270–289. 10.1175/1520-0450(1982)021<0270:BOTIID>2.0.CO;2 DOI
Wild, J. , Kopecký, M. , Macek, M. , Šanda, M. , Jankovec, J. , & Haase, T. (2019). Climate at ecologically relevant scales: A new temperature and soil moisture logger for long‐term microclimate measurement. Agricultural and Forest Meteorology, 268, 40–47. 10.1016/j.agrformet.2018.12.018 DOI
Wood, S. (2012). mgcv: Mixed GAM Computation Vehicle with GCV/AIC/REML smoothness estimation. http://cran.r‐project.org/web/packages/mgcv/index.html
World Meteorological Organization . (2008). Guide to meteorological instruments and methods of observation, Geneva, WMO‐No. 8.
Xu, T. , & Hutchinson, M. (2011). ANUCLIM version 6.1 user guide. The Australian National University, Fenner School of Environment and Society.
Xu, Y. , Ramanathan, V. , & Victor, D. G. (2018). Global warming will happen faster than we think. Nature. 10.1038/d41586-018-07586-5 PubMed DOI
Zellweger, F. , De Frenne, P. , Lenoir, J. , Vangansbeke, P. , Verheyen, K. , Bernhardt‐Römermann, M. , Baeten, L. , Hédl, R. , Berki, I. , Brunet, J. , Van Calster, H. , Chudomelová, M. , Decocq, G. , Dirnböck, T. , Durak, T. , Heinken, T. , Jaroszewicz, B. , Kopecký, M. , Malis, F. , … Coomes, D. (2020). Forest microclimate dynamics drive plant responses to warming. Science, 368, 772–775. 10.1126/science.aba6880 PubMed DOI
Zhang, Y. , Sherstiukov, A. B. , Qian, B. , Kokelj, S. V. , & Lantz, T. C. (2018). Impacts of snow on soil temperature observed across the circumpolar north. Environmental Research Letters, 13, 044012. 10.1088/1748-9326/aab1e7 DOI
Zhang, Y. , Wang, S. , Barr, A. G. , & Black, T. (2008). Impact of snow cover on soil temperature and its simulation in a boreal aspen forest. Cold Regions Science and Technology, 52, 355–370. 10.1016/j.coldregions.2007.07.001 DOI
Zhou, S. , Williams, A. P. , Lintner, B. R. , Berg, A. M. , Zhang, Y. , Keenan, T. F. , Cook, B. I. , Hagemann, S. , Seneviratne, S. I. , & Gentine, P. (2021). Soil moisture–atmosphere feedbacks mitigate declining water availability in drylands. Nature Climate Change, 11(1), 38–44. 10.1038/s41558-020-00945-z DOI
Zomer, R. J. , Trabucco, A. , Bossio, D. A. , & Verchot, L. V. (2008). Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agriculture, Ecosystems and Environment, 126, 67–80. 10.1016/j.agee.2008.01.014 DOI
Globally invariant metabolism but density-diversity mismatch in springtails