Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
- MeSH
- biodiverzita MeSH
- ekologie MeSH
- ekosystém * MeSH
- přístup k informacím * MeSH
- rostliny MeSH
- Publikační typ
- časopisecké články MeSH
High-throughput DNA sequencing techniques enable time- and cost-effective sequencing of large portions of the genome. Instead of sequencing and annotating whole genomes, many phylogenetic studies focus sequencing effort on large sets of pre-selected loci, which further reduces costs and bioinformatic challenges while increasing coverage. One common approach that enriches loci before sequencing is often referred to as target sequence capture. This technique has been shown to be applicable to phylogenetic studies of greatly varying evolutionary depth. Moreover, it has proven to produce powerful, large multi-locus DNA sequence datasets suitable for phylogenetic analyses. However, target capture requires careful considerations, which may greatly affect the success of experiments. Here we provide a simple flowchart for designing phylogenomic target capture experiments. We discuss necessary decisions from the identification of target loci to the final bioinformatic processing of sequence data. We outline challenges and solutions related to the taxonomic scope, sample quality, and available genomic resources of target capture projects. We hope this review will serve as a useful roadmap for designing and carrying out successful phylogenetic target capture studies.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Food packaging is of high societal value because it conserves and protects food, makes food transportable and conveys information to consumers. It is also relevant for marketing, which is of economic significance. Other types of food contact articles, such as storage containers, processing equipment and filling lines, are also important for food production and food supply. Food contact articles are made up of one or multiple different food contact materials and consist of food contact chemicals. However, food contact chemicals transfer from all types of food contact materials and articles into food and, consequently, are taken up by humans. Here we highlight topics of concern based on scientific findings showing that food contact materials and articles are a relevant exposure pathway for known hazardous substances as well as for a plethora of toxicologically uncharacterized chemicals, both intentionally and non-intentionally added. We describe areas of certainty, like the fact that chemicals migrate from food contact articles into food, and uncertainty, for example unidentified chemicals migrating into food. Current safety assessment of food contact chemicals is ineffective at protecting human health. In addition, society is striving for waste reduction with a focus on food packaging. As a result, solutions are being developed toward reuse, recycling or alternative (non-plastic) materials. However, the critical aspect of chemical safety is often ignored. Developing solutions for improving the safety of food contact chemicals and for tackling the circular economy must include current scientific knowledge. This cannot be done in isolation but must include all relevant experts and stakeholders. Therefore, we provide an overview of areas of concern and related activities that will improve the safety of food contact articles and support a circular economy. Our aim is to initiate a broader discussion involving scientists with relevant expertise but not currently working on food contact materials, and decision makers and influencers addressing single-use food packaging due to environmental concerns. Ultimately, we aim to support science-based decision making in the interest of improving public health. Notably, reducing exposure to hazardous food contact chemicals contributes to the prevention of associated chronic diseases in the human population.
- MeSH
- kontaminace potravin analýza MeSH
- lidé MeSH
- nebezpečné látky škodlivé účinky MeSH
- obaly potravin metody MeSH
- plastické hmoty škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Movement activity levels of wild animals often differ consistently among individuals, reflecting different behavioral types. Previous studies have shown that laboratory-scored activity can predict several ecologically relevant characteristics. In an experiment on wild brown trout Salmo trutta, spanning from June to October, we investigated how spring swimming activity, measured in a standardized laboratory test, related to relative recapture probability in autumn. Based on laboratory activity scores, individuals clustered into 2 groups, which showed contrasting patterns in the size-dependency of their recapture probability. Size had a slightly positive effect on recapture probability for passive fish but a clear negative effect on active fish. Our results show that the population structure in a cohort, in terms of relative proportions of behavioral types in different size classes, can vary over time. The results of this study could depend on either selective mortality or migration. However, selective disappearance of individuals with specific phenotypes, regardless of the mechanism, will have implications for trout population management, such as stocking efficiency of hatchery fish with high growth rates or maintenance of fishways past migration barriers.
- MeSH
- chování zvířat MeSH
- pstruh růst a vývoj MeSH
- řeky MeSH
- velikost těla * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Substantial increases in cardiac output (CO), stroke volume (SV), and gastrointestinal blood flow are essential for euryhaline rainbow trout (Oncorhyncus mykiss) osmoregulation in seawater. However, the underlying hemodynamic mechanisms responsible for these changes are unknown. By examining a range of circulatory and cardiac morphological variables of seawater- and freshwater-acclimated rainbow trout, the present study revealed a significantly higher central venous pressure (CVP) in seawater-acclimated trout (~0.09 vs. -0.02 kPa). This serves to increase cardiac end-diastolic volume in seawater and explains the elevations in SV (~0.41 vs. 0.27 ml/kg) and CO (~21.5 vs. 14.2 ml·min(-1)·kg(-1)) when compared with trout in freshwater. Furthermore, these hemodynamic modifications coincided with a significant increase in the proportion of compact myocardium, which may be necessary to compensate for the increased wall tension associated with a larger stroke volume. Following a temperature increase from 10 to 16.5°C, both acclimation groups exhibited similar increases in heart rate (Q10 of ~2), but SV tended to decrease in seawater-acclimated trout despite the fact that CVP was maintained in both groups. This resulted in CO of seawater- and freshwater-acclimated trout stabilizing at a similar level after warming (~26 ml·min(-1)·kg(-1)). The consistently higher CVP of seawater-acclimated trout suggests that factors other than compromised cardiac filling constrained the SV and CO of these individuals at high temperatures. The present study highlights, for the first time, the complex interacting effects of temperature and water salinity on cardiovascular responses in a euryhaline fish species.
- MeSH
- centrální žilní tlak fyziologie MeSH
- minutový srdeční výdej fyziologie MeSH
- mořská voda * MeSH
- Oncorhynchus mykiss fyziologie MeSH
- osmoregulace fyziologie MeSH
- remodelace komor fyziologie MeSH
- tepový objem fyziologie MeSH
- tolerance k soli fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH