Temperature thresholds of ecosystem respiration at a global scale
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
BB/S019952/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33619357
DOI
10.1038/s41559-021-01398-z
PII: 10.1038/s41559-021-01398-z
Knihovny.cz E-zdroje
- MeSH
- dýchání MeSH
- ekosystém * MeSH
- koloběh uhlíku * MeSH
- půda MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- půda MeSH
Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.
A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Autonomous Province of Bolzano Forest Services Bolzano Italy
Bioclimatology University of Goettingen Göttingen Germany
Department of Agroecology Aarhus University Tjele Denmark
Department of Biology Virginia Commonwealth University Richmond VA USA
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Environmental Systems Science ETH Zurich Zurich Switzerland
Department of Geography University of Colorado Boulder CO USA
Department of Geosciences and Natural Resources University of Copenhagen Copenhagen Denmark
Faculty of Land and Food Systems University of British Columbia Vancouver British Columbia Canada
Faculty of Science and Technology Free University of Bolzano Bolzano Italy
GFZ German Research Centre for Geoscience Potsdam Germany
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Institute for Bio and Geosciences Agrosphere Forschungszentrum Jülich Jülich Germany
Institute for Mediterranean Agriculture and Forest Systems CNR Ercolano Italy
Institute of Bioeconomy CNR Firenze Italy
Joint Research Centre European Commission Ispra Italy
Physical Geography and Ecosystem Science Lund University Lund Sweden
School of Biological Sciences University of Reading Reading UK
School of Water Energy and Environment Cranfield University Bedford UK
Thünen Institute of Climate Smart Agriculture Braunschweig Germany
Université de Lorraine AgroParisTech INRAE UMR Silva Nancy France
Zobrazit více v PubMed
Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998). DOI
Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008). DOI
Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005). DOI
Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003). DOI
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001). DOI
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004). DOI
Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014). DOI
Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006). DOI
Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352 (2003). DOI
Song, B. et al. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. J. Plant Ecol. 7, 419–428 (2014). DOI
Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).
Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010). DOI
Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012). DOI
Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018). DOI
Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011). DOI
Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016). DOI
Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016). DOI
Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). DOI
Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010). DOI
Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014). DOI
Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020). DOI
Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006). DOI
Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Meteorol. 169, 122–135 (2013). DOI
Kim, D.-G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012). DOI
Du, E. et al. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J. Plant Ecol. 6, 349–357 (2013). DOI
Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015). DOI
Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). DOI
Bond-Lamberty, B. P. & Thomson, A. M. A Global Database of Soil Respiration Data Version 4.0 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1578
Zhang, Z. et al. A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. Eur. J. Soil Biol. 89, 1–8 (2018). DOI
Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO DOI
Fleischer, K. et al. Amazon forest response to CO DOI
Padfield, D. et al. Metabolic compensation constrains the temperature dependence of gross primary production. Ecol. Lett. 20, 1250–1260 (2017). DOI
Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003). DOI
Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017). DOI
Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012). DOI
Rind, D. The consequences of not knowing low- and high-latitude climate sensitivity. Bull. Am. Meteorol. Soc. 89, 855–864 (2008). DOI
Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Change Biol. 26, 682–696 (2020). DOI
Haverd, V. et al. Higher than expected CO DOI
Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020). DOI
Climate Research Unit, University of East Anglia Average Annual Temperature. Atlas Biosphere (Center for Sustainability and the Global Environment, accessed 6 February 2020); https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php
Global maps of soil temperature