Temperature thresholds of ecosystem respiration at a global scale

. 2021 Apr ; 5 (4) : 487-494. [epub] 20210222

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33619357

Grantová podpora
BB/S019952/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Odkazy

PubMed 33619357
DOI 10.1038/s41559-021-01398-z
PII: 10.1038/s41559-021-01398-z
Knihovny.cz E-zdroje

Ecosystem respiration is a major component of the global terrestrial carbon cycle and is strongly influenced by temperature. The global extent of the temperature-ecosystem respiration relationship, however, has not been fully explored. Here, we test linear and threshold models of ecosystem respiration across 210 globally distributed eddy covariance sites over an extensive temperature range. We find thresholds to the global temperature-ecosystem respiration relationship at high and low air temperatures and mid soil temperatures, which represent transitions in the temperature dependence and sensitivity of ecosystem respiration. Annual ecosystem respiration rates show a markedly reduced temperature dependence and sensitivity compared to half-hourly rates, and a single mid-temperature threshold for both air and soil temperature. Our study indicates a distinction in the influence of environmental factors, including temperature, on ecosystem respiration between latitudinal and climate gradients at short (half-hourly) and long (annual) timescales. Such climatological differences in the temperature sensitivity of ecosystem respiration have important consequences for the terrestrial net carbon sink under ongoing climate change.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Autonomous Province of Bolzano Forest Services Bolzano Italy

Bioclimatology University of Goettingen Göttingen Germany

Department of Agroecology Aarhus University Tjele Denmark

Department of Biology Virginia Commonwealth University Richmond VA USA

Department of Ecology University of Innsbruck Innsbruck Austria

Department of Environmental Systems Science ETH Zurich Zurich Switzerland

Department of Geography University of Colorado Boulder CO USA

Department of Geosciences and Natural Resources University of Copenhagen Copenhagen Denmark

Faculty of Land and Food Systems University of British Columbia Vancouver British Columbia Canada

Faculty of Science and Technology Free University of Bolzano Bolzano Italy

GFZ German Research Centre for Geoscience Potsdam Germany

Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic

Institute for Agro Environmental Sciences National Agriculture and Food Research Organization Tsukuba Japan

Institute for Bio and Geosciences Agrosphere Forschungszentrum Jülich Jülich Germany

Institute for Mediterranean Agriculture and Forest Systems CNR Ercolano Italy

Institute of Agricultural Resources and Regional Planning Chinese Academy of Agricultural Sciences Beijing China

Institute of Bioeconomy CNR Firenze Italy

Joint Research Centre European Commission Ispra Italy

Land and Water Commonwealth Scientific and Industrial Research Organisation Canberra Australian Capital Territory Australia

Physical Geography and Ecosystem Science Lund University Lund Sweden

Research Institute for Global Change Institute of Arctic Climate and Environment Research Japan Agency for Marine Earth Science and Technology Tsukuba Japan

School of Biological Sciences University of Reading Reading UK

School of Earth and Environmental Sciences The University of Queensland Brisbane Queensland Australia

School of Water Energy and Environment Cranfield University Bedford UK

Thünen Institute of Climate Smart Agriculture Braunschweig Germany

Université de Lorraine AgroParisTech INRAE UMR Silva Nancy France

Zobrazit více v PubMed

Cao, M. & Woodward, F. I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature 393, 249–252 (1998). DOI

Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008). DOI

Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005). DOI

Enquist, B. J. et al. Scaling metabolism from organisms to ecosystems. Nature 423, 639–642 (2003). DOI

Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001). DOI

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004). DOI

Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014). DOI

Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006). DOI

Lenton, T. M. & Huntingford, C. Global terrestrial carbon storage and uncertainties in its temperature sensitivity examined with a simple model. Glob. Change Biol. 9, 1333–1352 (2003). DOI

Song, B. et al. Divergent apparent temperature sensitivity of terrestrial ecosystem respiration. J. Plant Ecol. 7, 419–428 (2014). DOI

Lloyd, J. & Taylor, J. A. On the temperature dependence of soil respiration. Funct. Ecol. 8, 315–323 (1994).

Mahecha, M. D. et al. Global convergence in the temperature sensitivity of respiration at ecosystem level. Science 329, 838–840 (2010). DOI

Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012). DOI

Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018). DOI

Dell, A. I., Pawar, S. & Savage, V. M. Systematic variation in the temperature dependence of physiological and ecological traits. Proc. Natl Acad. Sci. USA 108, 10591–10596 (2011). DOI

Buckley, L. B. & Huey, R. B. Temperature extremes: geographic patterns, recent changes, and implications for organismal vulnerabilities. Glob. Change Biol. 22, 3829–3842 (2016). DOI

Gill, A. L. & Finzi, A. C. Belowground carbon flux links biogeochemical cycles and resource-use efficiency at the global scale. Ecol. Lett. 19, 1419–1428 (2016). DOI

Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019). DOI

Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010). DOI

Michaletz, S. T., Cheng, D., Kerkhoff, A. J. & Enquist, B. J. Convergence of terrestrial plant production across global climate gradients. Nature 512, 39–43 (2014). DOI

Pastorello, G. et al. The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data. Sci. Data 7, 225 (2020). DOI

Monson, R. K. et al. Winter forest soil respiration controlled by climate and microbial community composition. Nature 439, 711–714 (2006). DOI

Mauder, M. et al. A strategy for quality and uncertainty assessment of long-term eddy-covariance measurements. Agric. Meteorol. 169, 122–135 (2013). DOI

Kim, D.-G., Vargas, R., Bond-Lamberty, B. & Turetsky, M. R. Effects of soil rewetting and thawing on soil gas fluxes: a review of current literature and suggestions for future research. Biogeosciences 9, 2459–2483 (2012). DOI

Du, E. et al. Winter soil respiration during soil-freezing process in a boreal forest in Northeast China. J. Plant Ecol. 6, 349–357 (2013). DOI

Schuur, E. A. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015). DOI

Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017). DOI

Bond-Lamberty, B. P. & Thomson, A. M. A Global Database of Soil Respiration Data Version 4.0 (ORNL DAAC, 2018); https://doi.org/10.3334/ORNLDAAC/1578

Zhang, Z. et al. A temperature threshold to identify the driving climate forces of the respiratory process in terrestrial ecosystems. Eur. J. Soil Biol. 89, 1–8 (2018). DOI

Yang, Y., Donohue, R. J., McVicar, T. R., Roderick, M. L. & Beck, H. E. Long-term CO DOI

Fleischer, K. et al. Amazon forest response to CO DOI

Padfield, D. et al. Metabolic compensation constrains the temperature dependence of gross primary production. Ecol. Lett. 20, 1250–1260 (2017). DOI

Atkin, O. K. & Tjoelker, M. G. Thermal acclimation and the dynamic response of plant respiration to temperature. Trends Plant Sci. 8, 343–351 (2003). DOI

Huntingford, C. et al. Implications of improved representations of plant respiration in a changing climate. Nat. Commun. 8, 1602 (2017). DOI

Niu, S. et al. Thermal optimality of net ecosystem exchange of carbon dioxide and underlying mechanisms. New Phytol. 194, 775–783 (2012). DOI

Rind, D. The consequences of not knowing low- and high-latitude climate sensitivity. Bull. Am. Meteorol. Soc. 89, 855–864 (2008). DOI

Liu, Z. et al. Increased high-latitude photosynthetic carbon gain offset by respiration carbon loss during an anomalous warm winter to spring transition. Glob. Change Biol. 26, 682–696 (2020). DOI

Haverd, V. et al. Higher than expected CO DOI

Tagesson, T. et al. Recent divergence in the contributions of tropical and boreal forests to the terrestrial carbon sink. Nat. Ecol. Evol. 4, 202–209 (2020). DOI

Climate Research Unit, University of East Anglia Average Annual Temperature. Atlas Biosphere (Center for Sustainability and the Global Environment, accessed 6 February 2020); https://nelson.wisc.edu/sage/data-and-models/atlas/maps.php

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global maps of soil temperature

. 2022 May ; 28 (9) : 3110-3144. [epub] 20220211

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...