Globally invariant metabolism but density-diversity mismatch in springtails
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36750574
PubMed Central
PMC9905565
DOI
10.1038/s41467-023-36216-6
PII: 10.1038/s41467-023-36216-6
Knihovny.cz E-zdroje
- MeSH
- biodiverzita MeSH
- členovci * MeSH
- ekosystém * MeSH
- lidé MeSH
- půda MeSH
- tundra MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- půda MeSH
Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.
A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Administración de Parques Nacionales San Antonio Argentina
Canadian Forest Service Natural Resources Canada Sault Ste Marie Canada
Center of Excellence in Environmental Studies King Abdulaziz University Jeddah Saudi Arabia
Centre d'Ecologie Fonctionnelle et Evolutive Université Paul Valéry Montpellier 3 Montpellier France
Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany
Community Department Helmholtz Center for Environmental Research Halle Germany
Département Adaptations du Vivant Muséum National d'Histoire Naturelle Brunoy France
Département des Sciences Biologiques Université du Québec à Montréal Québec Canada
Département des Sciences Naturelles Université du Québec en Outaouais Québec Canada
Department of Animal Science Santa Catarina State University Chapecó SC Brazil
Department of Biological Sciences University of Cape Town Rondebosch South Africa
Department of Biology IVAGRO University of Cádiz Puerto Real Spain
Department of Biology Paraiba State University Campina Grande Brazil
Department of Biology University of Western Ontario London Ontario N6A 5B7 Canada
Department of BioSciences Rice University Houston USA
Department of Botany and Zoology Federal University of Rio Grande do Norte Natal RN Brazil
Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam the Netherlands
Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI 48109 USA
Department of Ecology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
Department of Ecology University of Innsbruck Innsbruck Austria
Department of Entomology Iziko Museums of South Africa Cape Town South Africa
Department of Forest Entomology Forestry and Forest Products Research Institute Tsukuba Japan
Department of Geography and Spatial Information Techniques Ningbo University Ningbo China
Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa
Department of Sciences CEPA Camargo Astillero Spain
Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden
Department of Soil Zoology Senckenberg Museum of Natural History Görlitz Görlitz Germany
Department of Soil Zoology Senckenberg Society for Nature Research Görlitz Germany
Department of Sustainable Crop Production Università Cattolica del Sacro Cuore Piacenza Italy
Departmento de Biología Zoología Universidad Autónoma de Madrid Madrid Spain
Earth Institute University College Dublin Dublin Ireland
Environmental Science Center Qatar University Doha Qatar
FB 02 UFT General and Theoretical Ecology University of Bremen Bremen Germany
FiBL France Research Institute of Organic Agriculture Eurre France
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Graduate School of Environment and Information Sciences Yokohama National University Yokohama Japan
HES SO University of Applied Sciences and Arts Western Switzerland Geneva Switzerland
Institute for Alpine Environment Eurac Research Bozen Italy
Institute of Biology and Chemistry Moscow Pedagogical State University Moscow Russia
Institute of Biology Bucharest Romanian Academy Bucharest Romania
Institute of Biology Komi Science Centre Ural Branch of Russian Academy of Sciences Syktyvkar Russia
Institute of Biology Leipzig University Leipzig Germany
Institute of Biology University of Latvia Riga Latvia
Institute of Ecology and Evolution University of Bern Bern Switzerland
Institute of Wildlife Management and Wildlife Biology University of Sopron Sopron Hungary
Institute of Zoology Johannes Gutenberg University Mainz Mainz Germany
Instituto de Recursos Naturales y Agrobiología de Sevilla Sevilla Spain
ISYEB Muséum National d'Histoire Naturelle Paris France
Lancaster Environment Centre Lancaster University Lancaster UK
Natural History Museum Vienna 1 Zoology Vienna Austria
Normandie University UNIROUEN INRAE ECODIV Rouen France
School of Biology and Environmental Science University College Dublin Dublin Ireland
Section of Terrestrial Ecology Department of Ecoscience Aarhus University Aarhus Denmark
Smithsonian Tropical Research Institute Balboa Ancon Panama Republic of Panama
State Nature Reserve Privolzhskaya Lesostep Penza Russia
Tartu College Tallinn University of Technology Tartu Estonia
UMR 7179 MECADEV AVIV department Muséum National d'Histoire Naturelle Brunoy France
Université Paris Saclay INRAE AgroParisTech UMR EcoSys Thiverval Grignon France
Zobrazit více v PubMed
FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity Status, Challenges and Potentialities, Report 2020. 10.4060/cb1928en (FAO, 2020).
Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI
Handa IT, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature. 2014;509:218–221. doi: 10.1038/nature13247. PubMed DOI
Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC
Delgado-Baquerizo M, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020;4:210–220. doi: 10.1038/s41559-019-1084-y. PubMed DOI
Geisen S, Wall DH, van der Putten WH. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 2019;29:R1036–R1044. doi: 10.1016/j.cub.2019.08.007. PubMed DOI
Guerra CA, et al. Tracking, targeting, and conserving soil biodiversity. Science. 2021;371:239–241. doi: 10.1126/science.abd7926. PubMed DOI
Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI
Bahram M, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–237. doi: 10.1038/s41586-018-0386-6. PubMed DOI
van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. doi: 10.1038/s41586-019-1418-6. PubMed DOI
Phillips HRP, et al. Global distribution of earthworm diversity. Science. 2019;366:480–485. doi: 10.1126/science.aax4851. PubMed DOI PMC
Hopkin, S. P. Biology of Springtails: (Insecta: Collembola) (Oxford Science Publications, 1997).
Potapov A, et al. Towards a global synthesis of Collembola knowledge—challenges and potential solutions. Soil Org. 2020;92:161–188.
Rusek J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998;7:1207–1219. doi: 10.1023/A:1008887817883. DOI
Fujii S, Saitoh S, Takeda H. Effects of rhizospheres on the community composition of Collembola in a temperate forest. Appl. Soil Ecol. 2014;83:109–115. doi: 10.1016/j.apsoil.2014.03.018. DOI
Filser J, et al. Soil fauna: key to new carbon models. Soil. 2016;2:565–582. doi: 10.5194/soil-2-565-2016. DOI
Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–1789. doi: 10.1890/03-9000. DOI
Hooper DU, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 2005;75:3–35. doi: 10.1890/04-0922. DOI
Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 1982;39:288–388. doi: 10.2307/3544689. DOI
Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI
Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA. 2007;104:5925–5930. doi: 10.1073/pnas.0608361104. PubMed DOI PMC
Enquist BJ, Kerkhoff AJ, Huxman TE, Economo EP. Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Glob. Change Biol. 2007;13:591–609. doi: 10.1111/j.1365-2486.2006.01222.x. DOI
Huang N, et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020;6:eabb8508. doi: 10.1126/sciadv.abb8508. PubMed DOI PMC
Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol. Lett. 2009;12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x. PubMed DOI
Kærsgaard CW, Holmstrup M, Malte H, Bayley M. The importance of cuticular permeability, osmolyte production and body size for the desiccation resistance of nine species of Collembola. J. Insect Physiol. 2004;50:5–15. doi: 10.1016/j.jinsphys.2003.09.003. PubMed DOI
Janion-Scheepers C, et al. Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proc. Natl Acad. Sci. USA. 2018;115:145–150. doi: 10.1073/pnas.1715598115. PubMed DOI PMC
Peguero G, et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 2019;25:2727–2738. doi: 10.1111/gcb.14685. PubMed DOI
Joimel S, et al. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Sci. Total Environ. 2017;584–585:614–621. doi: 10.1016/j.scitotenv.2017.01.086. PubMed DOI
Filser J, Mebes K-H, Winter K, Lang A, Kampichler C. Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. Geoderma. 2002;105:201–221. doi: 10.1016/S0016-7061(01)00104-5. DOI
Phillips HR, et al. Response to Comment on “Global distribution of earthworm diversity”. Science. 2021;371:eabe4744. doi: 10.1126/science.abe4744. PubMed DOI
Babenko AB. The structure of springtail fauna (Collembola) of the Arctic. Entomol Rev. 2005;85:878–890.
Rall BC, et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B: Biol. Sci. 2012;367:2923–2934. doi: 10.1098/rstb.2012.0242. PubMed DOI PMC
Wall DH, et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 2008;14:2661–2677. doi: 10.1111/j.1365-2486.2008.01672.x. DOI
Roslin T, et al. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–744. doi: 10.1126/science.aaj1631. PubMed DOI
Cameron EK, et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 2019;33:1187–1192. doi: 10.1111/cobi.13311. PubMed DOI
Baird HP, Janion-Scheepers C, Stevens MI, Leihy RI, Chown SL. The ecological biogeography of indigenous and introduced Antarctic springtails. J. Biogeogr. 2019;46:1959–1973. doi: 10.1111/jbi.13639. DOI
Sørensen JG, Holmstrup M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 2011;57:1147–1153. doi: 10.1016/j.jinsphys.2011.03.001. PubMed DOI
Box JE, et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019;14:045010. doi: 10.1088/1748-9326/aafc1b. DOI
Sørensen LI, Holmstrup M, Maraldo K, Christensen S, Christensen B. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland. Polar Biol. 2006;29:189–195. doi: 10.1007/s00300-005-0038-9. DOI
Johnston ASA, Sibly RM. Multiple environmental controls explain global patterns in soil animal communities. Oecologia. 2020;192:1047–1056. doi: 10.1007/s00442-020-04640-w. PubMed DOI PMC
Goncharov AA, et al. Detrital subsidy alters the soil invertebrate community and reduces infection of winter wheat seedlings by Fusarium wilt. Appl. Soil Ecol. 2021;163:103914. doi: 10.1016/j.apsoil.2021.103914. DOI
von Berg K, Thies C, Tscharntke T, Scheu S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia. 2010;163:1033–1042. doi: 10.1007/s00442-010-1604-6. PubMed DOI PMC
Tsiafouli MA, et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 2015;21:973–985. doi: 10.1111/gcb.12752. PubMed DOI
Shveenkova, Y. in Structure and Functions of Soil Communities of a Monsoon Tropical Forest (Cat Tien National Park, southern Vietnam) (ed. Tiunov, A. V.) 131–147 (KMK Scientific Press, 2011).
Deharveng, L. & Bedos, A. in Soil Biota, Nutrient Cycling and Farming Systems (eds. Paoletti, M. G., Foissner, W. & Coleman, D. C.) (Lewis Publishers, 1993).
Burkhardt U, et al. The Edaphobase project of GBIF-Germany—a new online soil-zoological data warehouse. Appl. Soil Ecol. 2014;83:3–12. doi: 10.1016/j.apsoil.2014.03.021. DOI
Sømme L. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. Part A: Physiol. 1982;73:519–543. doi: 10.1016/0300-9629(82)90260-2. DOI
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).
Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93:2533–2547. doi: 10.1890/11-1952.1. PubMed DOI
Wickham H, et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI
Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-6 (2011).
Becker, R. A. et al. maps: Draw Geographical Maps. R package version 3.4.0 (2021)..
Bellinger, P. F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World. http://www.collembola.org/ (2020).
Robinson, D. fuzzyjoin: Join Tables Together on Inexact Matching. R package version 0.1.6 (2020).
Pey B, et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE. 2014;9:e108985. doi: 10.1371/journal.pone.0108985. PubMed DOI PMC
Petersen H. Estimation of dry weight, fresh weight, and calorific content of various Collembolan species. Pedobiologia. 1975;15:222–243.
Tanaka M. Ecological studies on communities of soil Collembola in Mt. Sobo, southwest Japan. Jpn. J. Ecol. 1970;20:102–110.
Ehnes RB, Rall BC, Brose U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates: Invertebrate metabolism. Ecol. Lett. 2011;14:993–1000. doi: 10.1111/j.1461-0248.2011.01660.x. PubMed DOI
Lembrechts J, et al. Global maps of soil temperature. Glob. Change Biol. 2022;28:3110–3144. doi: 10.1111/gcb.16060. PubMed DOI PMC
Bonfanti J, et al. Intraspecific body size variability in soil organisms at a European scale: implications for functional biogeography. Funct. Ecol. 2018;32:2562–2570. doi: 10.1111/1365-2435.13194. DOI
Potapov AM, et al. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur. J. Soil Biol. 2017;82:88–97. doi: 10.1016/j.ejsobi.2017.09.001. DOI
Potapov, A. M. et al. #GlobalCollembola: site-level database and analyses. figshare10.6084/m9.figshare.16850419.v3 (2022).
Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).
Mendiburu, F. de. agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5 (2020).
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC
Zomer RJ, Trabucco A, Bossio DA, Verchot LV. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008;126:67–80. doi: 10.1016/j.agee.2008.01.014. DOI
Amatulli G, et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data. 2018;5:180040. doi: 10.1038/sdata.2018.40. PubMed DOI PMC
Santoro, M. GlobBiomass—Global Datasets of Forest Biomass. 10.1594/PANGAEA.894711 (2018).
Hansen MC, et al. High-resolution global maps of 21st-Century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI
Tuanmu M-N, Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI
Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC
Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals (2016).
van den Hoogen, J. et al. A Geospatial Mapping Pipeline for Ecologists. 10.1101/2021.07.07.451145 (2021).
Wright MN, Ziegler A. ranger: a fast implementation of Random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017;77:1–17. doi: 10.18637/jss.v077.i01. DOI
Roberts DR, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–929. doi: 10.1111/ecog.02881. DOI
Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC
IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-policy Platform on Biodiversity and Ecosystem Services (2019).
Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, 1983).
Potapov AM, Tiunov AV, Scheu S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 2019;94:37–59. doi: 10.1111/brv.12434. PubMed DOI
Millard, S. P. EnvStats: An R Package for Environmental Statistics (Springer, 2013).
Rosseel Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 2012;48:1–36. doi: 10.18637/jss.v048.i02. DOI
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI
Potapov, A. M., Guerra, C. A. & van den Hoogen, J. #GlobalCollembola—maps. figshare10.6084/m9.figshare.16850446.v1 (2021).
Conceptualizing soil fauna effects on labile and stabilized soil organic matter
Global fine-resolution data on springtail abundance and community structure
figshare
10.6084/m9.figshare.16850419, 10.6084/m9.figshare.16850446