Globally invariant metabolism but density-diversity mismatch in springtails

. 2023 Feb 07 ; 14 (1) : 674. [epub] 20230207

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36750574
Odkazy

PubMed 36750574
PubMed Central PMC9905565
DOI 10.1038/s41467-023-36216-6
PII: 10.1038/s41467-023-36216-6
Knihovny.cz E-zdroje

Soil life supports the functioning and biodiversity of terrestrial ecosystems. Springtails (Collembola) are among the most abundant soil arthropods regulating soil fertility and flow of energy through above- and belowground food webs. However, the global distribution of springtail diversity and density, and how these relate to energy fluxes remains unknown. Here, using a global dataset representing 2470 sites, we estimate the total soil springtail biomass at 27.5 megatons carbon, which is threefold higher than wild terrestrial vertebrates, and record peak densities up to 2 million individuals per square meter in the tundra. Despite a 20-fold biomass difference between the tundra and the tropics, springtail energy use (community metabolism) remains similar across the latitudinal gradient, owing to the changes in temperature with latitude. Neither springtail density nor community metabolism is predicted by local species richness, which is high in the tropics, but comparably high in some temperate forests and even tundra. Changes in springtail activity may emerge from latitudinal gradients in temperature, predation and resource limitation in soil communities. Contrasting relationships of biomass, diversity and activity of springtail communities with temperature suggest that climate warming will alter fundamental soil biodiversity metrics in different directions, potentially restructuring terrestrial food webs and affecting soil functioning.

A N Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia

Administración de Parques Nacionales San Antonio Argentina

Biology Centre of the Czech Academy of Sciences Institute of Soil Biology České Budějovice Czech Republic

Canadian Forest Service Natural Resources Canada Sault Ste Marie Canada

Center of Excellence in Environmental Studies King Abdulaziz University Jeddah Saudi Arabia

Centre d'Ecologie Fonctionnelle et Evolutive Université Paul Valéry Montpellier 3 Montpellier France

Centre of Biodiversity and Sustainable Land Use University of Göttingen Göttingen Germany

Climate Impacts Research Centre Department of Ecology and Environmental Science Umeå University Abisko Sweden

Community and Conservation Ecology Group Groningen Institute of Evolutionary Life Science University of Groningen Amsterdam the Netherlands

Community Department Helmholtz Center for Environmental Research Halle Germany

Departamento de Entomologia Museu Nacional Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil

Département Adaptations du Vivant Muséum National d'Histoire Naturelle Brunoy France

Département des Sciences Biologiques Université du Québec à Montréal Québec Canada

Département des Sciences Naturelles Université du Québec en Outaouais Québec Canada

Department of Animal Science Santa Catarina State University Chapecó SC Brazil

Department of Biological Sciences University of Cape Town Rondebosch South Africa

Department of Biology IVAGRO University of Cádiz Puerto Real Spain

Department of Biology Paraiba State University Campina Grande Brazil

Department of Biology University of Western Ontario London Ontario N6A 5B7 Canada

Department of BioSciences Rice University Houston USA

Department of Botany and Zoology Federal University of Rio Grande do Norte Natal RN Brazil

Department of Coastal Systems Royal Netherlands Institute for Sea Research 't Horntje the Netherlands

Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam the Netherlands

Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI 48109 USA

Department of Ecology School of Biology Aristotle University of Thessaloniki Thessaloniki Greece

Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Ecology University of Innsbruck Innsbruck Austria

Department of Entomology Iziko Museums of South Africa Cape Town South Africa

Department of Environmental Systems Science Institute of Integrative Biology ETH Zürich Zürich Switzerland

Department of Forest Entomology Forestry and Forest Products Research Institute Tsukuba Japan

Department of Geography and Spatial Information Techniques Ningbo University Ningbo China

Department of Integrated Biology and Biodiversity Research University of Natural Resources and Life Sciences Vienna Austria

Department of Plant and Soil Sciences University of Pretoria Pretoria South Africa

Department of Sciences CEPA Camargo Astillero Spain

Department of Soil and Environment Swedish University of Agricultural Sciences Uppsala Sweden

Department of Soil Science Centre for Agriculture and Veterinary Science Santa Catarina State University Lages SC Brazil

Department of Soil Science Centre for Agriculture and Veterinary Science Santa Catarina State University University Lages SC Brazil

Department of Soil Zoology Senckenberg Museum of Natural History Görlitz Görlitz Germany

Department of Soil Zoology Senckenberg Society for Nature Research Görlitz Germany

Department of Sustainable Crop Production Università Cattolica del Sacro Cuore Piacenza Italy

Department of Systematics Zoogeography and Ecology of Invertebrates Museum and Institute of Zoology Polish Academy of Science Warsaw Poland

Department of Terrestrial Ecology Netherlands Institute of Ecology Wageningen NL 6700 AB the Netherlands

Department of Zoology Institute of Biology and Ecology Faculty of Science Pavol Jozef Šafárik University in Košice Košice Slovakia

Departmento de Biología Zoología Universidad Autónoma de Madrid Madrid Spain

Earth Institute University College Dublin Dublin Ireland

Environmental Science Center Qatar University Doha Qatar

FB 02 UFT General and Theoretical Ecology University of Bremen Bremen Germany

FiBL France Research Institute of Organic Agriculture Eurre France

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Graduate School of Environment and Information Sciences Yokohama National University Yokohama Japan

Greensway AB Uppsala Sweden

HES SO University of Applied Sciences and Arts Western Switzerland Geneva Switzerland

Institute for Alpine Environment Eurac Research Bozen Italy

Institute of Agricultural and Environmental Sciences Chair of Soil Science Estonian University of Life Sciences Tartu Estonia

Institute of Biology and Chemistry Moscow Pedagogical State University Moscow Russia

Institute of Biology Bucharest Romanian Academy Bucharest Romania

Institute of Biology Komi Science Centre Ural Branch of Russian Academy of Sciences Syktyvkar Russia

Institute of Biology Leipzig University Leipzig Germany

Institute of Biology University of Latvia Riga Latvia

Institute of Ecology and Evolution University of Bern Bern Switzerland

Institute of Wildlife Management and Wildlife Biology University of Sopron Sopron Hungary

Institute of Zoology Johannes Gutenberg University Mainz Mainz Germany

Instituto de Biología Subtropical Consejo Nacional de Investigaciones Científicas y Técnicas Universidad Nacional de Misiones Puerto Iguazú Argentina

Instituto de Recursos Naturales y Agrobiología de Sevilla Sevilla Spain

ISYEB Muséum National d'Histoire Naturelle Paris France

Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization Northeast Normal University Changchun 130117 China

Johann Friedrich Blumenbach Institute of Zoology and Anthropology University of Göttingen Göttingen Germany

Key Laboratory of the Three Gorges Reservoir Region's Eco Environment Ministry of Education Chongqing University Chongqing China

Key Laboratory of Urban Environment and Health Institute of Urban Environment Chinese Academy of Sciences Xiamen China

Key Laboratory of Vegetation Ecology Ministry of Education Northeast Normal University Changchun 130024 China

Key laboratory of Wetland Ecology and Environment Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Changchun 130102 China

Lab Ecología y Sistemática de Microartrópodos Depto Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México México México

Lancaster Environment Centre Lancaster University Lancaster UK

Natural History Museum Vienna 1 Zoology Vienna Austria

Normandie University UNIROUEN INRAE ECODIV Rouen France

Quantitative Ecology Lab Department of Ecology Universidade Federal do Rio Grande do Sul Porto Alegre Brazil

School of Biology and Environmental Science University College Dublin Dublin Ireland

Section of Terrestrial Ecology Department of Ecoscience Aarhus University Aarhus Denmark

Securing Antarctica's Environmental Future School of Biological Sciences Monash University Melbourne Australia

Smithsonian Tropical Research Institute Balboa Ancon Panama Republic of Panama

State Nature Reserve Privolzhskaya Lesostep Penza Russia

Tartu College Tallinn University of Technology Tartu Estonia

UMR 7179 MECADEV AVIV department Muséum National d'Histoire Naturelle Brunoy France

Unaffiliated Edmonton Canada

Unidad Multidisciplinaria de Docencia e Investigación Facultad de Ciencias Campus Juriquilla Universidad Nacional Autónoma de México Querétaro México

Université Paris Saclay INRAE AgroParisTech UMR EcoSys Thiverval Grignon France

Visva Bharati University Bengal India

Wildlife and Ecology Group School of Agriculture and Environment Massey University Palmerston North New Zealand

Zobrazit více v PubMed

FAO, ITPS, GSBI, SCBD & EC. State of Knowledge of Soil Biodiversity Status, Challenges and Potentialities, Report 2020. 10.4060/cb1928en (FAO, 2020).

Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem functioning. Nature. 2014;515:505–511. doi: 10.1038/nature13855. PubMed DOI

Handa IT, et al. Consequences of biodiversity loss for litter decomposition across biomes. Nature. 2014;509:218–221. doi: 10.1038/nature13247. PubMed DOI

Wagg C, Bender SF, Widmer F, van der Heijden MGA. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA. 2014;111:5266–5270. doi: 10.1073/pnas.1320054111. PubMed DOI PMC

Delgado-Baquerizo M, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 2020;4:210–220. doi: 10.1038/s41559-019-1084-y. PubMed DOI

Geisen S, Wall DH, van der Putten WH. Challenges and opportunities for soil biodiversity in the Anthropocene. Curr. Biol. 2019;29:R1036–R1044. doi: 10.1016/j.cub.2019.08.007. PubMed DOI

Guerra CA, et al. Tracking, targeting, and conserving soil biodiversity. Science. 2021;371:239–241. doi: 10.1126/science.abd7926. PubMed DOI

Crowther TW, et al. The global soil community and its influence on biogeochemistry. Science. 2019;365:eaav0550. doi: 10.1126/science.aav0550. PubMed DOI

Bahram M, et al. Structure and function of the global topsoil microbiome. Nature. 2018;560:233–237. doi: 10.1038/s41586-018-0386-6. PubMed DOI

van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. doi: 10.1038/s41586-019-1418-6. PubMed DOI

Phillips HRP, et al. Global distribution of earthworm diversity. Science. 2019;366:480–485. doi: 10.1126/science.aax4851. PubMed DOI PMC

Hopkin, S. P. Biology of Springtails: (Insecta: Collembola) (Oxford Science Publications, 1997).

Potapov A, et al. Towards a global synthesis of Collembola knowledge—challenges and potential solutions. Soil Org. 2020;92:161–188.

Rusek J. Biodiversity of Collembola and their functional role in the ecosystem. Biodivers. Conserv. 1998;7:1207–1219. doi: 10.1023/A:1008887817883. DOI

Fujii S, Saitoh S, Takeda H. Effects of rhizospheres on the community composition of Collembola in a temperate forest. Appl. Soil Ecol. 2014;83:109–115. doi: 10.1016/j.apsoil.2014.03.018. DOI

Filser J, et al. Soil fauna: key to new carbon models. Soil. 2016;2:565–582. doi: 10.5194/soil-2-565-2016. DOI

Bar-On YM, Phillips R, Milo R. The biomass distribution on Earth. Proc. Natl Acad. Sci. USA. 2018;115:6506–6511. doi: 10.1073/pnas.1711842115. PubMed DOI PMC

Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85:1771–1789. doi: 10.1890/03-9000. DOI

Hooper DU, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 2005;75:3–35. doi: 10.1890/04-0922. DOI

Petersen H, Luxton M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos. 1982;39:288–388. doi: 10.2307/3544689. DOI

Hillebrand H. On the generality of the latitudinal diversity gradient. Am. Nat. 2004;163:192–211. doi: 10.1086/381004. PubMed DOI

Kreft H, Jetz W. Global patterns and determinants of vascular plant diversity. Proc. Natl Acad. Sci. USA. 2007;104:5925–5930. doi: 10.1073/pnas.0608361104. PubMed DOI PMC

Enquist BJ, Kerkhoff AJ, Huxman TE, Economo EP. Adaptive differences in plant physiology and ecosystem paradoxes: insights from metabolic scaling theory. Glob. Change Biol. 2007;13:591–609. doi: 10.1111/j.1365-2486.2006.01222.x. DOI

Huang N, et al. Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Sci. Adv. 2020;6:eabb8508. doi: 10.1126/sciadv.abb8508. PubMed DOI PMC

Fierer N, Strickland MS, Liptzin D, Bradford MA, Cleveland CC. Global patterns in belowground communities. Ecol. Lett. 2009;12:1238–1249. doi: 10.1111/j.1461-0248.2009.01360.x. PubMed DOI

Kærsgaard CW, Holmstrup M, Malte H, Bayley M. The importance of cuticular permeability, osmolyte production and body size for the desiccation resistance of nine species of Collembola. J. Insect Physiol. 2004;50:5–15. doi: 10.1016/j.jinsphys.2003.09.003. PubMed DOI

Janion-Scheepers C, et al. Basal resistance enhances warming tolerance of alien over indigenous species across latitude. Proc. Natl Acad. Sci. USA. 2018;115:145–150. doi: 10.1073/pnas.1715598115. PubMed DOI PMC

Peguero G, et al. Fast attrition of springtail communities by experimental drought and richness–decomposition relationships across Europe. Glob. Change Biol. 2019;25:2727–2738. doi: 10.1111/gcb.14685. PubMed DOI

Joimel S, et al. Urban and industrial land uses have a higher soil biological quality than expected from physicochemical quality. Sci. Total Environ. 2017;584–585:614–621. doi: 10.1016/j.scitotenv.2017.01.086. PubMed DOI

Filser J, Mebes K-H, Winter K, Lang A, Kampichler C. Long-term dynamics and interrelationships of soil Collembola and microorganisms in an arable landscape following land use change. Geoderma. 2002;105:201–221. doi: 10.1016/S0016-7061(01)00104-5. DOI

Phillips HR, et al. Response to Comment on “Global distribution of earthworm diversity”. Science. 2021;371:eabe4744. doi: 10.1126/science.abe4744. PubMed DOI

Babenko AB. The structure of springtail fauna (Collembola) of the Arctic. Entomol Rev. 2005;85:878–890.

Rall BC, et al. Universal temperature and body-mass scaling of feeding rates. Philos. Trans. R. Soc. B: Biol. Sci. 2012;367:2923–2934. doi: 10.1098/rstb.2012.0242. PubMed DOI PMC

Wall DH, et al. Global decomposition experiment shows soil animal impacts on decomposition are climate-dependent. Glob. Change Biol. 2008;14:2661–2677. doi: 10.1111/j.1365-2486.2008.01672.x. DOI

Roslin T, et al. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–744. doi: 10.1126/science.aaj1631. PubMed DOI

Cameron EK, et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 2019;33:1187–1192. doi: 10.1111/cobi.13311. PubMed DOI

Baird HP, Janion-Scheepers C, Stevens MI, Leihy RI, Chown SL. The ecological biogeography of indigenous and introduced Antarctic springtails. J. Biogeogr. 2019;46:1959–1973. doi: 10.1111/jbi.13639. DOI

Sørensen JG, Holmstrup M. Cryoprotective dehydration is widespread in Arctic springtails. J. Insect Physiol. 2011;57:1147–1153. doi: 10.1016/j.jinsphys.2011.03.001. PubMed DOI

Box JE, et al. Key indicators of Arctic climate change: 1971–2017. Environ. Res. Lett. 2019;14:045010. doi: 10.1088/1748-9326/aafc1b. DOI

Sørensen LI, Holmstrup M, Maraldo K, Christensen S, Christensen B. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland. Polar Biol. 2006;29:189–195. doi: 10.1007/s00300-005-0038-9. DOI

Johnston ASA, Sibly RM. Multiple environmental controls explain global patterns in soil animal communities. Oecologia. 2020;192:1047–1056. doi: 10.1007/s00442-020-04640-w. PubMed DOI PMC

Goncharov AA, et al. Detrital subsidy alters the soil invertebrate community and reduces infection of winter wheat seedlings by Fusarium wilt. Appl. Soil Ecol. 2021;163:103914. doi: 10.1016/j.apsoil.2021.103914. DOI

von Berg K, Thies C, Tscharntke T, Scheu S. Changes in herbivore control in arable fields by detrital subsidies depend on predator species and vary in space. Oecologia. 2010;163:1033–1042. doi: 10.1007/s00442-010-1604-6. PubMed DOI PMC

Tsiafouli MA, et al. Intensive agriculture reduces soil biodiversity across Europe. Glob. Change Biol. 2015;21:973–985. doi: 10.1111/gcb.12752. PubMed DOI

Shveenkova, Y. in Structure and Functions of Soil Communities of a Monsoon Tropical Forest (Cat Tien National Park, southern Vietnam) (ed. Tiunov, A. V.) 131–147 (KMK Scientific Press, 2011).

Deharveng, L. & Bedos, A. in Soil Biota, Nutrient Cycling and Farming Systems (eds. Paoletti, M. G., Foissner, W. & Coleman, D. C.) (Lewis Publishers, 1993).

Burkhardt U, et al. The Edaphobase project of GBIF-Germany—a new online soil-zoological data warehouse. Appl. Soil Ecol. 2014;83:3–12. doi: 10.1016/j.apsoil.2014.03.021. DOI

Sømme L. Supercooling and winter survival in terrestrial arthropods. Comp. Biochem. Physiol. Part A: Physiol. 1982;73:519–543. doi: 10.1016/0300-9629(82)90260-2. DOI

Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315. doi: 10.1002/joc.5086. DOI

R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).

Chao A, Jost L. Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology. 2012;93:2533–2547. doi: 10.1890/11-1952.1. PubMed DOI

Wickham H, et al. Welcome to the tidyverse. J. Open Source Softw. 2019;4:1686. doi: 10.21105/joss.01686. DOI

Oksanen, J. et al. Vegan: community ecology package. R package version 1.17-6 (2011).

Becker, R. A. et al. maps: Draw Geographical Maps. R package version 3.4.0 (2021)..

Bellinger, P. F., Christiansen, K. A. & Janssens, F. Checklist of the Collembola of the World. http://www.collembola.org/ (2020).

Robinson, D. fuzzyjoin: Join Tables Together on Inexact Matching. R package version 0.1.6 (2020).

Pey B, et al. A thesaurus for soil invertebrate trait-based approaches. PLoS ONE. 2014;9:e108985. doi: 10.1371/journal.pone.0108985. PubMed DOI PMC

Petersen H. Estimation of dry weight, fresh weight, and calorific content of various Collembolan species. Pedobiologia. 1975;15:222–243.

Tanaka M. Ecological studies on communities of soil Collembola in Mt. Sobo, southwest Japan. Jpn. J. Ecol. 1970;20:102–110.

Ehnes RB, Rall BC, Brose U. Phylogenetic grouping, curvature and metabolic scaling in terrestrial invertebrates: Invertebrate metabolism. Ecol. Lett. 2011;14:993–1000. doi: 10.1111/j.1461-0248.2011.01660.x. PubMed DOI

Lembrechts J, et al. Global maps of soil temperature. Glob. Change Biol. 2022;28:3110–3144. doi: 10.1111/gcb.16060. PubMed DOI PMC

Bonfanti J, et al. Intraspecific body size variability in soil organisms at a European scale: implications for functional biogeography. Funct. Ecol. 2018;32:2562–2570. doi: 10.1111/1365-2435.13194. DOI

Potapov AM, et al. Arthropods in the subsoil: Abundance and vertical distribution as related to soil organic matter, microbial biomass and plant roots. Eur. J. Soil Biol. 2017;82:88–97. doi: 10.1016/j.ejsobi.2017.09.001. DOI

Potapov, A. M. et al. #GlobalCollembola: site-level database and analyses. figshare10.6084/m9.figshare.16850419.v3 (2022).

Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2009).

Mendiburu, F. de. agricolae: Statistical Procedures for Agricultural Research. R package version 1.3-5 (2020).

Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. doi: 10.1038/sdata.2017.122. PubMed DOI PMC

Zomer RJ, Trabucco A, Bossio DA, Verchot LV. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008;126:67–80. doi: 10.1016/j.agee.2008.01.014. DOI

Amatulli G, et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data. 2018;5:180040. doi: 10.1038/sdata.2018.40. PubMed DOI PMC

Santoro, M. GlobBiomass—Global Datasets of Forest Biomass. 10.1594/PANGAEA.894711 (2018).

Hansen MC, et al. High-resolution global maps of 21st-Century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI

Tuanmu M-N, Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014;23:1031–1045. doi: 10.1111/geb.12182. DOI

Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. doi: 10.1371/journal.pone.0169748. PubMed DOI PMC

Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density Adjusted to Match 2015 Revision UN WPP Country Totals (2016).

van den Hoogen, J. et al. A Geospatial Mapping Pipeline for Ecologists. 10.1101/2021.07.07.451145 (2021).

Wright MN, Ziegler A. ranger: a fast implementation of Random forests for high dimensional data in C++ and R. J. Stat. Softw. 2017;77:1–17. doi: 10.18637/jss.v077.i01. DOI

Roberts DR, et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–929. doi: 10.1111/ecog.02881. DOI

Ploton P, et al. Spatial validation reveals poor predictive performance of large-scale ecological mapping models. Nat. Commun. 2020;11:4540. doi: 10.1038/s41467-020-18321-y. PubMed DOI PMC

IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-policy Platform on Biodiversity and Ecosystem Services (2019).

Peters, R. H. The Ecological Implications of Body Size (Cambridge University Press, 1983).

Potapov AM, Tiunov AV, Scheu S. Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition. Biol. Rev. 2019;94:37–59. doi: 10.1111/brv.12434. PubMed DOI

Millard, S. P. EnvStats: An R Package for Environmental Statistics (Springer, 2013).

Rosseel Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 2012;48:1–36. doi: 10.18637/jss.v048.i02. DOI

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48. doi: 10.18637/jss.v067.i01. DOI

Potapov, A. M., Guerra, C. A. & van den Hoogen, J. #GlobalCollembola—maps. figshare10.6084/m9.figshare.16850446.v1 (2021).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Conceptualizing soil fauna effects on labile and stabilized soil organic matter

. 2024 Jun 17 ; 15 (1) : 5005. [epub] 20240617

Global fine-resolution data on springtail abundance and community structure

. 2024 Jan 03 ; 11 (1) : 22. [epub] 20240103

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.16850419, 10.6084/m9.figshare.16850446

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace