Global fine-resolution data on springtail abundance and community structure
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu dataset, časopisecké články
Grantová podpora
SCHE 376/22-3
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
38172139
PubMed Central
PMC10764875
DOI
10.1038/s41597-023-02784-x
PII: 10.1038/s41597-023-02784-x
Knihovny.cz E-zdroje
- MeSH
- členovci * MeSH
- ekosystém MeSH
- lesy MeSH
- půda MeSH
- roční období MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
- Názvy látek
- půda MeSH
Springtails (Collembola) inhabit soils from the Arctic to the Antarctic and comprise an estimated ~32% of all terrestrial arthropods on Earth. Here, we present a global, spatially-explicit database on springtail communities that includes 249,912 occurrences from 44,999 samples and 2,990 sites. These data are mainly raw sample-level records at the species level collected predominantly from private archives of the authors that were quality-controlled and taxonomically-standardised. Despite covering all continents, most of the sample-level data come from the European continent (82.5% of all samples) and represent four habitats: woodlands (57.4%), grasslands (14.0%), agrosystems (13.7%) and scrublands (9.0%). We included sampling by soil layers, and across seasons and years, representing temporal and spatial within-site variation in springtail communities. We also provided data use and sharing guidelines and R code to facilitate the use of the database by other researchers. This data paper describes a static version of the database at the publication date, but the database will be further expanded to include underrepresented regions and linked with trait data.
Agricultural University of Iceland Hvanneyri 311 Borgarbyggð Iceland
Aix Marseille Univ Avignon Univ CNRS IRD IMBE Marseille France
Basque Centre for Climate Change BC3 B Sarriena s n 48940 Leioa Spain
Centre d'étude de la forêt 141 Avenue du Président Kennedy Montréal Québec H2X 1Y4 Canada
CEPA Camargo c Ria de Solia 3 ch 39 39610 Astillero Spain
Community Department Helmholtz Center for Environmental Research Halle Germany
CREAF E08193 Bellaterra Catalonia Spain
Department Animal Science University of Santa Catarina Chapeco SC 89815 000 Brazil
Department of BioSciences Rice University Houston TX 77005 USA
Department of Botany and Zoology Federal University of Rio Grande do Norte Natal 59078 970 Brazil
Department of Ecological Science Vrije Universiteit Amsterdam Amsterdam the Netherlands
Department of Ecoscience Aarhus University C F Møllers Allé 4 8000 Aarhus C Denmark
Department of Geography and Spatial Information Techniques Ningbo University 315211 Ningbo China
Department of Landscape Architecture Gund Hall 48 Quincy Street Suite 312 Cambridge MA 02138 USA
Department of Soil and Environment Swedish University or Agricultural Sciences 750 07 Uppsala Sweden
Department of Soil Science IPB University Jln Meranti Kampus IPB Darmaga Bogor 16680 Indonesia
Department of Soil Zoology Senckenberg Society for Nature Research Görlitz Germany
Department of wood and forest sciences Université Laval Québec Qc G1V 0A6 Canada
Earth Institute University College Dublin Belfield Dublin 4 Ireland
Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA
Environmental Science Center Qatar University Doha Qatar
Forest Research Northern Research Station Roslin Midlothian Scotland EH25 9SY United Kingdom
Greensway AB SE75651 Uppsala Sweden
Institute for Alpine Environment Eurac Research Drususallee 1 39100 Bozen Italy
Institute of Biology Bucharest Romanian Academy Bucharest Romania
Institute of Biology Leipzig University Puschstrasse 4 04103 Leipzig Germany
Institute of Biology University of Latvia O Vācieša Street 4 Riga LV 1004 Latvia
Institute of Ecology and Evolution University of Bern Baltzerstrasse 6 3012 Bern Switzerland
Institute of Soil Biology and Biogeochemistry Biology Centre CAS České Budějovice Czech Republic
Institute of Zoology Johannes Gutenberg University Mainz 55128 Mainz Germany
Kyushu University Forest Kyushu University 394 Tsubakuro Sasaguri Fukuoka 811 2415 Japan
Laboratoire écologie fonctionnelle et environnement Université de Toulouse CNRS Toulouse 6 France
Lancaster Environment Centre Lancaster University Lancaster LA1 4YQ UK
Museum and Institute of Zoology Polish Academy of Science 00 679 Warsaw Wilcza 64 Poland
Natural History Museum Vienna 1 Zoology Burgring 7 1010 Vienna Austria
Ocean Program World Resources Institute London UK
Patha Bhavan Visva Bharati Santiniketan Birbhum West Bengal India
School of Life and Health Sciences Whitelands College Holybourne Avenue London SW15 4JD UK
Smithsonian Tropical Research Institute Balboa Ancón Panama Panama
Systems Ecology A LIFE Faculty of Science Vrije Universiteit 1081 HV Amsterdam The Netherlands
Tartu College Tallinn University of Technology Puiestee 78 51008 Tartu Estonia
Te Aka Mātuatua School of Science University of Waikato Private Bag 3105 Hamilton 3204 New Zealand
UMR7205 Museum national d'Histoire naturelle 45 rue Buffon 75005 Paris France
Univ Rouen Normandie INRAE ECODIV USC 1499 F 76000 Rouen France
Universitat Autònoma de Barcelona E08193 Bellaterra Catalonia Spain
Universität Innsbruck Department of Ecology Technikerstrasse 25 6020 Innsbruck Austria
Université Clermont Auvergne INRAE VetAgro Sup UMR Ecosystème Prairial 63000 Clermont Ferrand France
Université du Québec en Outaouais 58 rue Principale Ripon Qc J0V 1V0 Canada
Université Paris Saclay INRAE AgroParisTech UMR EcoSys 91120 Palaiseau France
University of Bremen FB 02 UFT General and Theoretical Ecology Leobener Str 6 D 28359 Bremen Germany
University of Michigan Biological Station Pellston Michigan USA
Zoology University of Autónoma de Madrid C Darwin 2 28049 Madrid Spain
Zobrazit více v PubMed
Decaëns T, Jiménez JJ, Gioia C, Measey GJ, Lavelle P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006;42:S23–S38. doi: 10.1016/j.ejsobi.2006.07.001. DOI
Food and Agriculture Organization of the United Nations, Global Soil Biodiversity Initiative, Secretariat of the Convention of Biological, European Commission & Intergovernmental Technical Panel on Soils. State of knowledge of soil biodiversity - Status, challenges and potentialities: Report 2020. (Food & Agriculture Org., 2020).
Phillips HRP, et al. Global distribution of earthworm diversity. Science. 2019;366:480–485. doi: 10.1126/science.aax4851. PubMed DOI PMC
van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. doi: 10.1038/s41586-019-1418-6. PubMed DOI
Potapov AM, et al. Globally invariant metabolism but density-diversity mismatch in springtails. Nat. Commun. 2023;14:674. doi: 10.1038/s41467-023-36216-6. PubMed DOI PMC
Schultheiss P, et al. The abundance, biomass, and distribution of ants on Earth. Proc. Natl. Acad. Sci. USA. 2022;119:e2201550119. doi: 10.1073/pnas.2201550119. PubMed DOI PMC
Lavelle P, et al. Soil macroinvertebrate communities: A world‐wide assessment. Glob. Ecol. Biogeogr. 2022;31:1261–1276. doi: 10.1111/geb.13492. DOI
Cameron EK, et al. Global mismatches in aboveground and belowground biodiversity. Conserv. Biol. 2019;33:1187–1192. doi: 10.1111/cobi.13311. PubMed DOI
Guerra CA, et al. Tracking, targeting, and conserving soil biodiversity. Science. 2021;371:239–241. doi: 10.1126/science.abd7926. PubMed DOI
Rosenberg Y, et al. The global biomass and number of terrestrial arthropods. Sci Adv. 2023;9:eabq4049. doi: 10.1126/sciadv.abq4049. PubMed DOI PMC
Mawan A, et al. Response of arboreal Collembola communities to the conversion of lowland rainforest into rubber and oil palm plantations. BMC Ecol Evol. 2022;22:144. doi: 10.1186/s12862-022-02095-6. PubMed DOI PMC
Potapov A, 2020. Towards a global synthesis of Collembola knowledge – challenges and potential solutions. DOI
Bellinger PF, Christiansen KA, Janssens F. Checklist of the Collembola of the World. In O. Bánki, et al., Catalogue of Life Checklist (Apr 2023). 2023 doi: 10.48580/dfs6-4kh. DOI
van den Hoogen J, et al. A global database of soil nematode abundance and functional group composition. Sci Data. 2020;7:103. doi: 10.1038/s41597-020-0437-3. PubMed DOI PMC
Phillips HRP, et al. Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Sci Data. 2021;8:136. doi: 10.1038/s41597-021-00912-z. PubMed DOI PMC
Susanti WI, et al. Conversion of rainforest into oil palm and rubber plantations affects the functional composition of litter and soil Collembola. Ecol Evol. 2021;11:10686–10708. doi: 10.1002/ece3.7881. PubMed DOI PMC
Alatalo JM, Jägerbrand AK, Čuchta P. Collembola at three alpine subarctic sites resistant to twenty years of experimental warming. Scientific Reports. 2015;5:18161. doi: 10.1038/srep18161. PubMed DOI PMC
Arbea JI, Blasco-Zumeta J. Ecología de los Colémbolos (Hexapoda, Collembola) en los Monegros (Zaragoza, España) Boletín de la Soc Entom Arag (S.E.A.) 2001;28:35–48.
Arbea JI, Martínez-Monteagudo A. Los colémbolos (Hexapoda, Collembola) asociados a plantas aromáticas (Labiatae) silvestres y cultivadas de la comarca valenciana de la Serranía. Boletín de la Asoc esp de Entom. 2006;30:59–71.
Arbea JI, Ariza E. Dinámica estacional y características de las comunidades de Collembola en playas de la Costa Brava (Girona, España) Boletín de la Soc Entom Arag (S.E.A.) 2012;51:203–210.
Ashwood, F. et al. Earthworms and soil mesofauna as early bioindicators for landfill restoration. Soil Research Online Early (2022).
Bendjaballah M, et al. Annotated checklist of the springtails (Hexapoda: Collembola) of the Collo massif, northeastern Algeria. Zoosystema. 2018;40:389–414. doi: 10.5252/zoosystema2018v40a16. PubMed DOI
Bokhorst S, Berg MP, Wardle DA. Micro-arthropod community responses to ecosystem retrogression in boreal forest. Soil Biol Biochem. 2017;110:79–86. doi: 10.1016/j.soilbio.2017.03.009. DOI
Bokhorst S, et al. Dwarf shrub and grass vegetation resistant to long-term experimental warming while microarthropod abundance declines on the Falkland Islands. Austral Ecology. 2017;42:984–994. doi: 10.1111/aec.12527. DOI
Bokhorst S, et al. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol Biochem. 2008;40:1547–1556. doi: 10.1016/j.soilbio.2008.01.017. DOI
Bokhorst S, et al. Responses of communities of soil organisms and plants to soil aging at two contrasting long-term chronosequences. Soil Biol Biochem. 2017;106:69–79. doi: 10.1016/j.soilbio.2016.12.014. DOI
Bokhorst S, Metcalfe DB, Wardle DA. Reduction in snow depth negatively affects decomposers but impact on decomposition rates is substrate dependent. Soil Biol Biochem. 2013;62:157–164. doi: 10.1016/j.soilbio.2013.03.016. DOI
Bokhorst S, et al. Extreme winter warming events more negatively impact small rather than large soil fauna: shift in community composition explained by traits not taxa. Global Change Biology. 2012;18:1152–1162. doi: 10.1111/j.1365-2486.2011.02565.x. DOI
Bokhorst S, et al. Contrasting responses of springtails and mites to elevation and vegetation type in the sub-Arctic. Pedobiologia. 2018;67:57–64. doi: 10.1016/j.pedobi.2018.02.004. DOI
Bokhorst S, et al. Impact of understory mosses and dwarf shrubs on soil micro-arthropods in a boreal forest chronosequence. Plant and Soil. 2014;379:121–133. doi: 10.1007/s11104-014-2055-3. DOI
Bokhorst S, Wardle DA. Snow fungi as a food source for micro-arthropods. Europ Jour Soil Biol. 2014;60:77–80. doi: 10.1016/j.ejsobi.2013.11.006. DOI
Bolger T, Curry JP. Effects of cattle slurry on soil arthropods in grassland. Pedobiologia. 1980;20:246–253. doi: 10.1016/S0031-4056(23)03537-0. DOI
Bolger T, Curry JP. Influences of pig slurry on soil microarthropods in grassland. Rev d’Ecolog Biolog Sol. 1984;21:269–281.
Raymond-Leonard L, et al. Dead wood provides habitat for springtails across a latitudinal gradient of forests in Quebec, Canada. Forest Ecol Manag. 2020;472:118237. doi: 10.1016/j.foreco.2020.118237. DOI
Gomez-Anaya JA, Castaño-Meneses G, Palacios-Vargas JG. Land use at St. Marta Range, Los Tuxtlas, Veracruz, Mexico-how does it affect the Collembola community? Appl Ecol Envir Res. 2018;16:4357–4373. doi: 10.15666/aeer/1604_43574373. DOI
Chauvat M, et al. Changes in soil faunal assemblages during conversion from pure to mixed forest stands. For Ecol Manag. 2011;262:317–324. doi: 10.1016/j.foreco.2011.03.037. DOI
Chomel M, et al. Secondary metabolites of Pinus halepensis alter decomposer organisms and litter decomposition during afforestation of abandoned agricultural zones. Journal of Ecology. 2014;102:411–424. doi: 10.1111/1365-2745.12205. DOI
Liu WPA, Janion C, Chown SL. Collembola diversity in the critically endangered Cape Flats Sand Fynbos and adjacent pine plantations. Pedobiologia. 2012;55:203–209. doi: 10.1016/j.pedobi.2012.03.002. DOI
Janion-Scheepers C, et al. High spatial turnover of springtails in the Cape Floristic Region. J Biogeogr. 2020;47:1007–1018. doi: 10.1111/jbi.13801. DOI
Treasure AM, et al. Species-energy relationships of indigenous and invasive species may arise in different ways – a demonstration using springtails. Scientific Reports. 2019;9:13799. doi: 10.1038/s41598-019-48871-1. PubMed DOI PMC
Classen AT, et al. Impacts of herbivorous insects on decomposer communities during the early stages of primary succession in a semi-arid woodland. Soil Biol Biochem. 2006;38:972–982. doi: 10.1016/j.soilbio.2005.08.009. DOI
Classen AT, et al. Season mediates herbivore effects on litter and soil microbial abundance and activity in a semi-arid woodland. Plant Soil. 2007;295:217–227. doi: 10.1007/s11104-007-9277-6. DOI
Cebron A, et al. Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Res Microbiol. 2011;162:896–907. doi: 10.1016/j.resmic.2011.02.011. PubMed DOI
Cluzeau D, et al. Intégration de la biodiversité des sols dans les reseaux de surveillance de la qualité des sols: exemple du programme-pilote à l’échelle régionale, le RMQS BioDiv. Etude Gest Sols. 2009;16:187–201.
Cluzeau D, et al. Integration of biodiversity in soil quality monitoring: baselines for microbial and soil fauna parameters for different land-use types. Eur J Soil Biol. 2012;49:63–72. doi: 10.1016/j.ejsobi.2011.11.003. DOI
Cortet J, et al. Evaluation of effects of transgenic Bt maize on microarthropods in a European multi-site experiment. Pedobiologia. 2007;51:207–218. doi: 10.1016/j.pedobi.2007.04.001. DOI
Cortet J, et al. Impacts of different agricultural practices on the biodiversity of microarthropod communities in arable crop systems. Eur J Soil Biol. 2002;38:239–244. doi: 10.1016/S1164-5563(02)01152-4. DOI
El Zemrany H, et al. Field survival of the phytostimulator Azospirillum lipoferum CRT1 and functional impact on maize crop, biodegradation of crop residues, and soil faunal indicators in a context of decreasing nitrogen fertilisation. Soil Biol Biochem. 2006;38:1712–1726. doi: 10.1016/j.soilbio.2005.11.025. DOI
Huot H, et al. Diversity and activity of soil fauna in an industrial settling pond managed by natural attenuation. Appl Soil Ecol. 2018;132:34–44. doi: 10.1016/j.apsoil.2018.08.020. DOI
Joimel S, et al. Contrasting homogenization patterns of plant and collembolan communities in urban vegetable gardens. Urban Ecosystems. 2019;22:553–556. doi: 10.1007/s11252-019-00843-z. DOI
Joimel S, et al. Functional and Taxonomic Diversity of Collembola as Complementary Tools to Assess Land Use Effects on Soils Biodiversity. Frontiers Ecol Evol. 2021;9:630919. doi: 10.3389/fevo.2021.630919. DOI
Renaud A, Poinsot-Balaguer N, Cortet J. & Le Petit, J. Influence of four soil maintenance practices on Collembola communities in a Mediterranean vineyard. Pedobiologia. 2004;48:623–630. doi: 10.1016/j.pedobi.2004.07.002. DOI
Santorufo L, et al. Early colonization of constructed Technosol by microarthropods. Ecol Engin. 2021;162:106174. doi: 10.1016/j.ecoleng.2021.106174. DOI
Doblas-Miranda E, Espelta JM, Pino J. Connectivity affects species turnover in soil microarthropod communities during Mediterranean forest establishment. Ecosphere. 2021;12:e03865. doi: 10.1002/ecs2.3865. DOI
Ferreira AS, Bellini BC, Vasconcellos A. Temporal variations of Collembola (Arthropoda: Hexapoda) in the semiarid Caatinga in northeastern Brazil. Zoologia. 2013;30:639–644. doi: 10.1590/S1984-46702013005000009. DOI
Franken O, et al. A Common Yardstick to Measure the Effects of Different Extreme Climatic Events on Soil Arthropod Community Composition Using Time-Series Data. Frontiers Ecol Evol. 2018;6:195. doi: 10.3389/fevo.2018.00195. DOI
Gao MX, et al. Distinct patterns suggest that assembly processes differ for dominant arthropods in above-ground and below-ground ecosystems. Pedobiologia. 2018;69:17–28. doi: 10.1016/j.pedobi.2018.06.003. DOI
Cassagne N, et al. Changes in humus properties and collembolan communities following the replanting of beech forests with spruce. Pedobiologia. 2004;48:267–276. doi: 10.1016/j.pedobi.2004.01.004. DOI
Hasegawa M, et al. Effects of roads on collembolan community structure in subtropicalevergreen forests on Okinawa Island, southwestern Japan. Pedobiologia. 2015;58:13–21. doi: 10.1016/j.pedobi.2014.11.002. DOI
Hasegawa M, et al. The effects of mixed broad-leaved trees on the collembolan community in larch plantations of central Japan. Appl Soil Ecol. 2014;83:125–132. doi: 10.1016/j.apsoil.2013.06.005. DOI
Heiniger C, et al. Effect of habitat spatiotemporal structure on collembolan diversity. Pedobilogia. 2014;57:103–117. doi: 10.1016/j.pedobi.2014.01.006. DOI
Hishi, T. et al. Topography is more important than forest type as a determinant for functional trait composition of Collembola community. Pedobiologia90, 150776
Bonfanti J, et al. Communities of Collembola show functional resilience in a long-term field experiment simulating climate change. Pedobiologia. 2022;90:10. doi: 10.1016/j.pedobi.2022.150789. DOI
Holmstrup M, et al. Functional diversity of Collembola is reduced in soils subjected to short-term, but not long-term, geothermal warming. Funct Ecol. 2018;32:1304–1316. doi: 10.1111/1365-2435.13058. DOI
Holmstrup M, et al. Soil microarthropods are only weakly impacted after 13 years of repeated drought treatment in wet and dry heathland soils. Soil Biol Biochem. 2013;66:110–118. doi: 10.1016/j.soilbio.2013.06.023. DOI
Homet P, et al. Soil fauna modulates the effect of experimental drought on litter decomposition in forests invaded by an exotic pathogen. Journal of Ecology. 2021;109:2963–2980. doi: 10.1111/1365-2745.13711. DOI
Ivask M, et al. Springtails of flooded meadows along Matsalu Bay and the Kasari River, Estonia. Pedobiologia. 2018;66:1–10. doi: 10.1016/j.pedobi.2017.12.001. DOI
Jacques RG, et al. Earthworm-Collembola interactions affecting water-soluble nutrients, fauna and physiochemistry in a mesocosm manure-straw composting experiment. Waste Management. 2021;134:57–66. doi: 10.1016/j.wasman.2021.08.008. PubMed DOI
Ouvrard S, et al. In situ assessment of phytotechnologies for multicontaminated soil management. Int J Phytoremed. 2011;13:245–263. doi: 10.1080/15226514.2011.568546. PubMed DOI
Jorge BCS, et al. Effects of defoliation frequencies on above- and belowground biodiversity and ecosystem processes in subtropical grasslands of southern Brazil. Pedobiologia. 2022;90:150786. doi: 10.1016/j.pedobi.2021.150786. DOI
Jorge BCS, et al. Grassland afforestation with Eucalyptus affect Collembola communities and soil functions in southern Brazil. Biodivers Conserv. 2022;32:275–295. doi: 10.1007/s10531-022-02501-x. DOI
Jucevica E, Melecis V. Global warming affect Collembola community: A long-term study. Pedobiologia. 2006;50:177–184. doi: 10.1016/j.pedobi.2005.10.006. DOI
Juceviča E, Melecis V. Long-term dynamics of Collembola in a pine forest ecosystem. Pedobiologia. 2002;46:365–372. doi: 10.1078/0031-4056-00144. DOI
Kapinga EM, et al. Collembola Communities, 20 Years After the Establishment of Distinct Revegetation Treatments in a Severely Eroded Area in South Iceland. Studia Ecolog Bioethic. 2022;20:37–50. doi: 10.21697/seb.2022.28. DOI
Kováč, et al. Soil Oribatida and Collembola communities across a land depression in an arable field. Eur J Soil Biol. 2001;37:285–289. doi: 10.1016/S1164-5563(01)01106-2. DOI
Kováč Ľ, et al. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak wood and Pinus nigra plantation in the Slovak Karst (Slovakia) Pedobiologia. 2005;49:29–40. doi: 10.1016/j.pedobi.2004.07.009. DOI
Krab EJ, et al. Turning northern peatlands upside down: disentangling microclimate and substrate quality effects on vertical distribution of Collembola. Functional Ecology. 2010;24:1362–1369. doi: 10.1111/j.1365-2435.2010.01754.x. DOI
Krab EJ, et al. Plant expansion drives bacteria and collembola communities under winter climate change in frost-affected tundra. Soil Biol Biochem. 2019;138:107569. doi: 10.1016/j.soilbio.2019.107569. DOI
Kuznetsova NA, Sterzynska M. Effects of single trees on the community structure of soil-dwelling Collembola in urban and non-urban environments. Fragmenta faunistica. 1995;37:413–426. doi: 10.3161/00159301FF1995.37.18.413. DOI
Sterzynska M, Kuznetsova N. The faunal complex of Collembola in lowland subcontinental pine forests (Peucedano-Pinetum) of Poland, Byelorussia, Lithuania and Russia. Fragmenta faunistica. 1995;38:145–153. doi: 10.3161/00159301FF1995.38.4.145. DOI
Krest’yaninova AI, Kuznetsova NA. Dynamics of collembolan (Hexapoda, Collembola) association in the soil of an urban boulevard. Entomological Review. 1996;76:1220–1230.
Kuznetsova NA, Potapov MB. Changes in structure of communities of soil springtails (Hexapoda: Collembola) under industrial pollution of the south-taiga bilberry pine forests. Russian. J Ecology. 1997;28:386–392.
Sterzynska M, Kuznetsova N. Comparative analysis of dominant species in springtail communities (Hexapoda: Collembola) of urban greens in Moscow and Warsaw. Fragmenta faunistica. 1997;40:15–26. doi: 10.3161/00159301FF1997.40.2.015. DOI
Chernova NM, Kuznetsova NA. Collembolan community organization and its temporal predictability. Pedobiologia. 2000;44:451–466. doi: 10.1078/S0031-4056(04)70063-3. DOI
Kuznetsova NA, Krest’yaninova AI. Long-term dynamics of collembolan communities (Hexapoda: Collembola) in hydrological series of pine forests in southern taiga. Entomological Review. 1998;78:969–981.
Kuznetsova NA. Classification of collembolan communities in the East-European taiga. Pedobiologia. 2002;46:373–384.
Kuznetsova NA. Biotopic Groups of Collembolans in the Mixed Forest Subzone of Eastern Europe. Entomological Review. 2002;82:1047–1057.
Kuznetsova NA. Humidity and Distribution of Springtails. Entomological Review. 2003;83:230–238.
Kuznetsova NA. Long-term dynamics of Collembola in two contrast ecosystems. Pedobiologia. 2006;50:157–164. doi: 10.1016/j.pedobi.2005.12.004. DOI
Kuznetsova NA. Long-term Dynamics of Collembolan population in Forest and Meadow Ecosystems. Entomological Review. 2007;87:11–24. doi: 10.1134/S0013873807010022. DOI
Kuznetsova NA. Soil-Dwelling Collembola in Coniferous Forests along the Gradient of Pollution with Emissions from the Middle Ural Copper Smelter. Russian J Ecology. 2009;40:415–423. doi: 10.1134/S106741360906006X. DOI
Chernov AV, Kuznetsova NA, Potapov MB. Springtail communities (Collembola) of Eastern European broad-leaf forests. Entomological Review. 2010;90:556–570. doi: 10.1134/S0013873810050039. DOI
Saraeva AK, Potapov MB, Kuznetsova NA. Different-Scale Distribution of Collembola in Uniform Ground Cover: Sphagnum Moss. Entomological Review. 2015;95:557–577. doi: 10.1134/S0013873815050012. DOI
Saraeva AK, Potapov MB, Kuznetsova NA. Different-Scale Distribution of Collembola in Uniform Ground Cover: stability of parameters in space and time. Entomological Review. 2015;95:699–713. doi: 10.1134/S0013873815060032. DOI
Kuznetsova NA, Saraeva AK. Beta-diversity partitioning approach in soil zoology: A case of Collembola in pine forests. Geoderma. 2018;332:142–152. doi: 10.1016/j.geoderma.2017.09.030. DOI
Kuznetsova N, Gomina A, Smirnova O, Potapov M. Soil mesofauna and diversity of vegetation: Collembola in pristine taiga forests (Pechora-Ilych Biosphere Reserve, Russia) Eur J Forest Res. 2018;137:659–674. doi: 10.1007/s10342-018-1132-1. DOI
Kuznetsova NA, Bokova AI, Saraeva AK, Shveenkova YB. Communities of Collembola in the Forests of Southern Primorye as a Benchmark of High Diversity and Organization Complexity. Biology Bulletin. 2019;46:483–491. doi: 10.1134/S1062359019050066. DOI
Kuznetsova NA, Bokova AI, Saraeva AK, Shveenkova YB. Structure of the Species Diversity of Soil Springtails (Hexapoda, Collembola) in Pine Forests of the Caucasus and the Russian Plain: a Multi-Scale Approach. Entomological Review. 2019;99:1–15. doi: 10.1134/S0013873819020027. DOI
Kuznetsova N, Ivanova N. Diversity of Collembola under various types of anthropogenic load on ecosystems of European part of Russia. Biodiv Data J. 2020;8:e58951. doi: 10.3897/BDJ.8.e58951. PubMed DOI PMC
Kuznetsova N, et al. The extremely high diversity of Collembola in relict forests of Primorskii Krai of Russia. Biodiv Data J. 2021;9:e76007. doi: 10.3897/BDJ.9.e76007. PubMed DOI PMC
Vasenkova NV, Kuznetsova NA. A multiscale approach to evaluating the diversity structure of Collembola in boreo-nemoral forests of the Russian Plane. Nature Cons Res. 2022;7:38–51.
Potapov MB, et al. Organic farming and moderate tillage change the dominance and spatial structure of soil Collembola communities but have little effects on bulk abundance and species richness. Soil Organisms. 2022;94:99–110.
Striuchkova A, Malykh I, Potapov M, Kuznetsova N. Sympatry of genetic lineages of Parisotoma notabilis s. l. (Collembola, Isotomidae) in the East European Plain. ZooKeys. 2022;1137:1–15. doi: 10.3897/zookeys.1137.95769. PubMed DOI PMC
Lu J-Z, Scheu S. 2022. RTG 2300 - Soil microarthropods (Collembola, Insecta) in current and future forest stands of Central Europe. Pangaea. DOI
Ochoa-Hueso R, et al. Simulated nitrogen deposition affects soil fauna from a semiarid Mediterranean ecosystem in central Spain. Biol Fertil Soil. 2014;50:191–196. doi: 10.1007/s00374-013-0838-y. DOI
Marx MT, et al. Responses and adaptations of collembolan communities (Hexapoda: Collembola) to flooding and hypoxic conditions. Pesq Agropec Brasil. 2009;44:1002–1010. doi: 10.1590/S0100-204X2009000800032. DOI
Marx MT, Weber D. Cave Collembola from Southwestern Germany. Soil Organisms. 2015;87:201–208.
Lessel T, Marx MT, Eisenbeis G. Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera, Carabidae) and springtails (Collembola) in a polder habitat. ZooKeys. 2011;100:421–446. doi: 10.3897/zookeys.100.1538. PubMed DOI PMC
McCary MA, Wise DH. Plant invader alters soil food web via changes to fungal resources. Oecologia. 2019;191:587–599. doi: 10.1007/s00442-019-04510-0. PubMed DOI
Minor M, Babenko A, Ermilov S. Oribatid mites (Acari: Oribatida) and springtails (Collembola) in alpine habitats of southern New Zealand. NZ J Zoology. 2017;44:65–85. doi: 10.1080/03014223.2016.1251950. DOI
Nakamori T, et al. Collembolan fauna in arable land, including the first record of Mesaphorura silvicola (Folsom) from Japan. Edaphologia. 2009;84:5–9.
Negri I. Spatial distribution of Collembola in presence and absence of a predator. Pedobiologia. 2004;48:585–588. doi: 10.1016/j.pedobi.2004.07.004. DOI
Frati F, et al. Ultrastructural and molecular identification of a new Rickettsia endosymbiont in the springtail Onychiurus sinensis (Hexapoda, Collembola) J Invert Path. 2006;93:150–156. doi: 10.1016/j.jip.2006.07.002. PubMed DOI
Frati F, et al. High levels of genetic differentiation between Wolbachia-infected and non-infected populations of Folsomia candida (Collembola, Isotomidae) Pedobiologia. 2004;48:461–468. doi: 10.1016/j.pedobi.2004.04.004. DOI
Mazzoglio PJ, et al. Pedofaunistic and soil investigation in Scots pine forests in the Aosta Valley and Piedmont (northwest Italy) Rev Vald d’Hist Nat. 2011;65:153–170.
Machado JS, et al. Morphological diversity of springtails (Hexapoda: Collembola) as soil quality bioindicators in land use systems. Biota Neotropica. 2019;19:e20180618. doi: 10.1590/1676-0611-bn-2018-0618. DOI
Ortiz DC, et al. Diversity of springtails (Collembola) in agricultural and forest systems in Southern Santa Catarina. Biota Neotropica. 2019;19:e20180720. doi: 10.1590/1676-0611-bn-2018-0720. DOI
Santos MAB, et al. Morphological Diversity of Springtails in Land Use Systems. Rev Brasil Ciên Solo. 2018;41:e0170277.
Pollierer MM, Scheu S. Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecol Evol. 2017;7:4390–4403. doi: 10.1002/ece3.3035. PubMed DOI PMC
Querner P, Bruckner A. Combining pitfall traps and soil cores to collect Collembola for site scale biodiversity assessments. Appl Soil Ecol. 2010;45:293–297. doi: 10.1016/j.apsoil.2010.05.005. DOI
Querner P, et al. Effects of site and landscape parameters on Collembola diversity in 29 winter oilseed rape fields. Agr Ecos Env. 2013;164:145–154. doi: 10.1016/j.agee.2012.09.016. DOI
Winkler M, et al. Side by side? Vascular plant, invertebrate and microorganism distribution patterns along an alpine to nival elevation gradient. AAAR. 2018;50:e1475951.
Buchholz J, et al. Soil biota in vineyards are more influenced by plants than by tillage intensity, site parameters or the surrounding landscape. Scentific Reports. 2017;7:17445. doi: 10.1038/s41598-017-17601-w. PubMed DOI PMC
Bruckner A, et al. No indication of methodological biases in tullgren and macfadyen extraction of edaphic microarthropods. Eur J Soil Biol. 2023;115:103464. doi: 10.1016/j.ejsobi.2022.103464. DOI
Kováč Ľ, Raschmanová N, Miklisová D. Comparison of collembolan assemblages (Hexapoda, Collembola) of thermophilous oak wood and Pinus nigra plantation in the Slovak Karst (Slovakia) Pedobiologia. 2005;49:29–40. doi: 10.1016/j.pedobi.2004.07.009. DOI
Raschmanová N, Kováč Ľ, Miklisová D. The effect of mesoclimate on the Collembola diversity in the Zádiel Valley, Slovak Karst (Slovakia) Eur J Soil Biol. 2008;44:463–472. doi: 10.1016/j.ejsobi.2008.07.005. DOI
Raschmanová N, Miklisová D, Kováč Ľ. A unique small-scale microclimatic gradient in a temperate karst harbours exceptionally high diversity of soil Collembola. Int J Speleol. 2018;47:247–262. doi: 10.5038/1827-806X.47.2.2194. DOI
Rashid MI, et al. Production-ecological modelling explains the difference between potential soil N mineralisation and actual herbage N uptake. Appl Soil Ecol. 2014;84:83–92. doi: 10.1016/j.apsoil.2014.07.002. DOI
Raymond-Léonard LJ, et al. Springtail community structure is influenced by functional traits but not biogeographic origin of leaf litter in soils of novel forest ecosystems. Proc Roy Soc B. 2018;285:20180647. doi: 10.1098/rspb.2018.0647. PubMed DOI PMC
Raymond-Léonard LJ, Bouchard M, Handa IT. Dead wood provides habitat for springtails across a latitudinal gradient of forests in Quebec. Canada. For Ecol Manag. 2020;472:118237.
Rousseau L, et al. Long-term effects of biomass removal on soil mesofaunal communities in northeastern Ontario (Canada) jack pine (Pinus banksiana) stands. For Ecol Manag. 2018;421:72–83. doi: 10.1016/j.foreco.2018.02.017. DOI
Rousseau L, et al. Forest floor mesofauna communities respond to a gradient of biomass removal and soil disturbance in a boreal jack pine (Pinus banksiana) stand of northeastern Ontario (Canada) For Ecol Manag. 2018;407:155–165. doi: 10.1016/j.foreco.2017.08.054. DOI
Saifutdinov RA, Gongalsky KB, Zaitsev AS. Evidence of a trait-specific response to burning in springtails (Hexapoda: Collembola) in the boreal forests of European Russia. Geoderma. 2018;332:173–179. doi: 10.1016/j.geoderma.2017.07.021. DOI
Saifutdinov RA, Gongalsky KB, Zaitsev AS. Springtail (Hexapoda: Collembola) fauna in the burnt boreal forests of European Russia. Invert. Zoology. 2018;15:115–130.
Zaitsev AS, et al. Reduced functionality of soil food webs in burnt boreal forests: a case study in Central Russia. Contemp Probl Ecol. 2017;10:277–285. doi: 10.1134/S199542551703012X. DOI
Sayer EJ, et al. Arthropod abundance and diversity in the forest floor of a lowland tropical forest: the role of habitat space vs. nutrient concentrations. Biotropica. 2010;42:194–200. doi: 10.1111/j.1744-7429.2009.00576.x. DOI
Sayer EJ, Tanner EVJ, Lacey AL. Litter quantity affects early-stage decomposition and meso-arthropod abundance in a moist tropical forest. For Ecol Manag. 2006;229:285–293. doi: 10.1016/j.foreco.2006.04.007. DOI
Laird-Hopkins BC, Brechet LM, Sayer EJ. Tree functional diversity affects litter decomposition and arthropod community composition in a tropical forest. Biotropica. 2017;49:903–911. doi: 10.1111/btp.12477. DOI
Scheunemann N, et al. The role of shoot residues vs. crop species for soil arthropod diversity and abundance of arable systems. Soil Biol Biochem. 2015;81:81–88. doi: 10.1016/j.soilbio.2014.11.006. DOI
Seeber J, et al. Soil invertebrate diversity across steep high elevation snowmelt gradients in the European Alps. Arct Antar Alpine Res. 2021;53:288–299. doi: 10.1080/15230430.2021.1982665. DOI
Sterzynska M, et al. Urban species richness decreases with increasing air pollution. Ecological Indicators. 2018;94:328–335. doi: 10.1016/j.ecolind.2018.06.063. DOI
Rzeszowski K, Sterzyńska M. Changes through time in soil Collembola communities exposed to urbanization. Urban Ecosys. 2015;19:143–158. doi: 10.1007/s11252-015-0478-0. DOI
Xie Z, et al. Drivers of Collembola assemblages along an altitudinal gradient in northeast China. Ecol Evol. 2022;12:e8559. doi: 10.1002/ece3.8559. PubMed DOI PMC
Sun X, et al. Response of Collembola to the addition of nutrients along an altitudinal gradient of tropical montane rainforests. Appl Soil Ecol. 2020;147:103382. doi: 10.1016/j.apsoil.2019.103382. DOI
Taskaeva, A. A. et al. Diversity of soil invertebrates in ecosystems near the Padimeyskie lakes in the Bolshezemelskaya tundra region of Russia. Euroas Entomol J14, 480–488 [in Russian] (2015).
Babenko AB, Potapov MB, Taskaeva AA. The Collembola fauna of the East-European tundra. Rus Entomol J. 2017;26:1–30. doi: 10.15298/rusentj.26.1.01. DOI
Konakova, T. N. et al. Diversity of soil invertebrates in ecosystems of the Chernaya river basin, the Bolshezemelskaya tundra, Nenetskii Autonomnyi Okrug, Russia. Euroas Entomol J16, 88–91 [in Russian] (2017).
Taskaeva, A. A. & Nakul, G. L. Collembola from the Korotaikha river valley of Bolshezemelskaya tundra, Nenetskii Autonomnyi Okrug of Russia. Euroas Entomol J16, 57–59 [in Russian] (2017).
Taskaeva AA, et al. Characteristics of the Microarthropod Communities in Postagrogenic and Tundra Soils of the European Northeast of Russia. Euras Soil Sci. 2019;52:661–670. doi: 10.1134/S1064229319060127. DOI
Konakova TN, Kolesnikova AA, Taskaeva AA. Soil invertebrate occurrences in European North-East of Russia. Biodiv Data J. 2020;8:e58836. doi: 10.3897/BDJ.8.e58836. PubMed DOI PMC
Taskaeva AA, Kolesnikova AA, Nakul GL. Springtails (Hexapoda, Collembola) of some plant communities of the Pechora Delta. Rus Entomol J. 2020;29:343–349. doi: 10.15298/rusentj.29.4.01. DOI
2020. Taskaeva, Collembola of Kolguev, Malozemelskaya tundra and Delta Pechora. GBIF. DOI
Taskaeva A. 2019. Collembola of the Chernaya river basin. GBIF. DOI
Taskaeva A. 2018. Collembola of Padimeiskie lakes territory on the Bolshezemelskaya tundra (European North-East Russia) GBIF. DOI
Konakova T, Kolesnikova A, Taskaeva A. 2020. Soil invertebrates occurrences in European North-East of Russia. GBIF. PubMed DOI PMC
Thakur MP, Berg MP, Eisenhauer N, Van Langevelde F. Disturbance-diversity relation is explained by the community biomass of soil fauna in salt marsh. Soil Biol Biochem. 2014;78:30–37. doi: 10.1016/j.soilbio.2014.06.021. DOI
Tsiafouli MA, et al. Responses of soil microarthropods to experimental short-term manipulations of soil moisture. Appl Soil Ecol. 2005;29:17–26. doi: 10.1016/j.apsoil.2004.10.002. DOI
Widenfalk LW, et al. Small-scale Collembola community composition in a pine forest soil - Overdispersion in functional traits indicate the importance of species interactions. Soil Biol Biochem. 2016;103:52–62. doi: 10.1016/j.soilbio.2016.08.006. DOI
Winkler D, et al. Long-term ecological effects of the red mud disaster in Hungary: Regeneration of red mud flooded areas in a contaminated industrial region. Sci Tot Env. 2018;644:1292–1303. doi: 10.1016/j.scitotenv.2018.07.059. PubMed DOI
Harta I, et al. Collembola communities and soil conditions in forest plantations established in an intensively managed agricultural area. J For Res. 2021;32:1819–1832. doi: 10.1007/s11676-020-01238-z. DOI
Winkler D, Tóth V. Effects of afforestation with pines on Collembola diversity in the limestone hills of Szárhalom (West Hungary) Acta Silv Lign Hung. 2012;8:9–20. doi: 10.2478/v10303-012-0001-8. DOI
Winkler D, Traser GN. Eco-faunistic study on the Collembola fauna in the Vasvár-Nagymákfa area (Western Hungary) Natura Somogyiensis. 2012;22:39–52. doi: 10.24394/NatSom.2012.22.39. DOI
Szigeti N, et al. Soil mesofauna and herbaceous vegetation patterns in an agroforestry landscape. Agroforestry Systems. 2022;96:773–786. doi: 10.1007/s10457-022-00739-6. DOI
Ni Z, et al. Habitat preferences rather than morphological traits affect the recovery process of Collembola (Arthropoda, Hexapoda) on a bare saline–alkaline land. PeerJ. 2020;8:e9519. doi: 10.7717/peerj.9519. PubMed DOI PMC
Burkhardt U, et al. The Edaphobase project of GBIF-Germany—A new online soil-zoological data warehouse. Appl. Soil Ecol. 2014;83:3–12. doi: 10.1016/j.apsoil.2014.03.021. DOI
R Core Team, 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Potapov A, 2023. #GlobalCollembola - full sample-level database. Figshare. DOI
Macfadyen A. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 1961;30:171. doi: 10.2307/2120. DOI
Edwards CA. The assessment of populations of soil-inhabiting invertebrates. Agric. Ecosyst. Environ. 1991;34:145–176. doi: 10.1016/0167-8809(91)90102-4. DOI
Zhang B, Chen T-W, Mateos E, Scheu S, Schaefer I. Cryptic species in Lepidocyrtus lanuginosus (Collembola: Entomobryidae) are sorted by habitat type. Pedobiologia. 2018;68:12–19. doi: 10.1016/j.pedobi.2018.03.001. DOI
Porco D, et al. Challenging species delimitation in Collembola: Cryptic diversity among common springtails unveiled by DNA barcoding. Invertebrate Systematics. 2012;26:470–477. doi: 10.1071/IS12026. DOI
Heberling, J. M., Miller, J. T., Noesgaard, D., Weingart, S. B. & Schigel, D. Data integration enables global biodiversity synthesis. Proc. Natl. Acad. Sci. USA118, (2021). PubMed PMC