Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status

. 2022 Jul 21 ; 10 (7) : . [epub] 20220721

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35885064

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund - Project ENOCH

Odkazy

PubMed 35885064
PubMed Central PMC9313182
DOI 10.3390/biomedicines10071760
PII: biomedicines10071760
Knihovny.cz E-zdroje

The understanding of neurodegenerative diseases, traditionally considered to be well-defined entities with distinguishable clinical phenotypes, has undergone a major shift over the last 20 years. The diagnosis of neurodegenerative diseases primarily requires functional brain imaging techniques or invasive tests such as lumbar puncture to assess cerebrospinal fluid. A new biological approach and research efforts, especially in vivo, have focused on biomarkers indicating underlying proteinopathy in cerebrospinal fluid and blood serum. However, due to the complexity and heterogeneity of neurodegenerative processes within the central nervous system and the large number of overlapping clinical diagnoses, identifying individual proteinopathies is relatively difficult and often not entirely accurate. For this reason, there is an urgent need to develop laboratory methods for identifying specific biomarkers, understand the molecular basis of neurodegenerative disorders and classify the quantifiable and readily available tools that can accelerate efforts to translate the knowledge into disease-modifying therapies that can improve and simplify the areas of differential diagnosis, as well as monitor the disease course with the aim of estimating the prognosis or evaluating the effects of treatment. The aim of this review is to summarize the current knowledge about clinically relevant biomarkers in different neurodegenerative diseases.

Zobrazit více v PubMed

Basha F.H., Waseem M., Srinivasan H. Cellular and molecular mechanism in neurodegeneration: Possible role of neuroprotectants. Cell Biochem. Funct. 2021;39:613–622. doi: 10.1002/cbf.3630. PubMed DOI

Cova I., Priori A. Diagnostic biomarkers for Parkinson’s disease at a glance: Where are we? J. Neural Transm. 2018;125:1417–1432. doi: 10.1007/s00702-018-1910-4. PubMed DOI PMC

He R., Yan X., Guo J., Xu Q., Tang B., Sun Q. Recent advances in biomarkers for Parkinson’s disease. Front. Aging Neurosci. 2018;10:305. doi: 10.3389/fnagi.2018.00305. PubMed DOI PMC

Blennow K., Zetterberg H. The past and future of Alzheimer’s disease fluid biomarkers. J. Alzehimers Dis. 2018;62:1125–1140. doi: 10.3233/JAD-170773. PubMed DOI PMC

Blennow K., Zetterberg H., Fagan A.M. Fluid Biomarkers in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012;2:a00622. doi: 10.1101/cshperspect.a006221. PubMed DOI PMC

Scheltens P., Blennow K., Breteler M.M., de Strooper B., Frisoni G.B., Salloway S., Van der Flier W.M. Alzheimer’s disease. Lancet. 2016;388:505–517. doi: 10.1016/S0140-6736(15)01124-1. PubMed DOI

Zou K., Abdullah M., Michikawa M. Current biomarkers for Alzheimer’s disease: From CSF to blood. J. Pers. Med. 2020;10:85. doi: 10.3390/jpm10030085. PubMed DOI PMC

Sjogren M., Rosengren L., Minthon L., Davidsson P., Blennow K., Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology. 2000;54:1960–1964. doi: 10.1212/WNL.54.10.1960. PubMed DOI

Lee J.M., Blennow K., Andreasen N., Laterza O., Modur V., Olader J., Gao F., Ohlendorf M., Landenson J.H. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin. Chem. 2008;54:1617–1623. doi: 10.1373/clinchem.2008.104497. PubMed DOI PMC

Hansson O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021;27:954–963. doi: 10.1038/s41591-021-01382-x. PubMed DOI

Kovacs G.G. Molecular pathological classification of neurodegenerative diseases: Turning toward precision medicine. Int. J. Mol. Sci. 2016;17:189. doi: 10.3390/ijms17020189. PubMed DOI PMC

Atik A., Stewart T., Zhang J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 2016;26:410–418. doi: 10.1111/bpa.12370. PubMed DOI PMC

Parnetti L., Chiasserini D., Persichetti E., Eusebi P., Varghese S., Qureshi M.M., Dardis A., Deganuto M., De Carlo M., Castrioto A., et al. Cerebrospinal fluid lysosomal enzymes and α-synuclein in Parkinson’s disease. Mov. Disord. 2014;29:1019–1027. doi: 10.1002/mds.25772. PubMed DOI PMC

Wang Y., Shi M., Chung K.A., Zabetian C.P., Leverenz J.B., Berg D., Srulijes K., Trojanowski J.Q., Lee V.M.Y., Siderowf A.D., et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 2012;4:121ra20. doi: 10.1126/scitranslmed.3002566. PubMed DOI PMC

Hermann P., Appleby B., Brandel J.P., Caoughey B., Collins S., Geschwind M.D., Green A., Haïk S., Kovacs G.G., Ladogana A., et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021;20:235–246. doi: 10.1016/S1474-4422(20)30477-4. PubMed DOI PMC

Fairfoul G., McGuire L.I., Pal S., Ironside J.W., Neumann J., Christie S., Joachim C., Esiri M., Evetts S.G., Rolinski M., et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 2016;3:812–818. doi: 10.1002/acn3.338. PubMed DOI PMC

Vranová H., Hényková E., Kaiserová M., Menšíková K., Vaštík M., Mareš J., Hluštík P., Zapletalová J., Strnad M., Stejskal D., et al. Tau protein, beta-amyloid42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J. Neurol. Sci. 2014;343:120–124. doi: 10.1016/j.jns.2014.05.052. PubMed DOI

Hall S., Öhrfelt A., Constantinescu R., Andreason U., Surova Y., Bostrom F., Nilsson C., Håkan W., Decraemer H., Någga K., et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 2012;69:1445–1452. doi: 10.1001/archneurol.2012.1654. PubMed DOI

Magdalinou N.K., Paterson R.W., Schott J.M., Fox N.C., Mummery C., Blennow K., Bhatia K., Morris H.R., Giunti P., Warner T.T., et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry. 2015;86:1240–1247. doi: 10.1136/jnnp-2014-309562. PubMed DOI PMC

Herbert M.K., Eeftens J.M., Aerts M.B., Esselink R.A.J., Bloem B.R., Kuiperij H.B., Verbeek M.M. CSF levels of DJ–1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat. Disord. 2014;20:112–115. doi: 10.1016/j.parkreldis.2013.09.003. PubMed DOI

Jiménez-Jiménez F.J., Alonso-Navarro H., García-Martín E., Agúndez J.A.G. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: Toward a potential search for biomarkers for this disease. Front. Cell Neurosci. 2014;8:369. PubMed PMC

Rusina R., Matěj R., Cséfalvay Z., Keller J., Franková V., Vyhnálek M. Frontotemporální demence. Cesk. Slov. Neurol. N. 2021;84/117:9–29. doi: 10.48095/cccsnn20219. DOI

Menšíková K., Tučková L., Kaňovský P. Atypický parkinsonismus a frontotemporální demence–klinické, patologické a genetické aspekty. Cesk. Slov. Neurol. N. 2016;79/112:275–286. doi: 10.14735/amcsnn2016275. DOI

Li D., Shen D., Tai H., Cui L. Neurofilaments in CSF as diagnostic biomarkers in motor neuron disease: A meta–analysis. Front. Aging Neurosci. 2016;8:290. doi: 10.3389/fnagi.2016.00290. PubMed DOI PMC

Kaiserová M., Grambalová Z., Otruba P., Stejskal D., Prikrylová Vranová H., Mareš J., Menšíková K., Kaňovský P. Cerebrospinal fluid levels of chromogranin A and phosphorylated neurofilament heavy chain are elevated in amyotrophic lateral sclerosis. Acta Neurol. Scand. 2017;136:360–364. doi: 10.1111/ane.12735. PubMed DOI

Swift I.J., Sogorb-Esteve A., Heller C., Synofzik M., Otto M., Graff C., Galimberti D., Todd E., Heslegrave A.J., van der Ende E.L., et al. Fluid biomarkers in frontotemporal dementia: Past, present and future. J. Neurol. Neurosurg. Psychiatry. 2021;92:204–215. doi: 10.1136/jnnp-2020-323520. PubMed DOI

Bruzová M., Rusina R., Stejskalová Z., Matěj R. Autopsy–diagnosed neurodegenerative dementia cases support the use of cerebrospinal fluid protein biomarkers in diagnostic work–up. Sci. Rep. 2021;11:10837. doi: 10.1038/s41598-021-90366-5. PubMed DOI PMC

Saijo E., Ghetti B., Zanusso G., Oblak A., Furman J.L., Diamond M.I., Kraus A., Caughey B. Ultrasensitive and selective detection of 3–repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017;133:751–765. doi: 10.1007/s00401-017-1692-z. PubMed DOI

Saijo E., Metrick M.A., Koga S., Parchi P., Litvan I., Spina S., Boxer A., Rojas J.C., Galasko D., Kraus A., et al. 4–Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020;139:63–77. doi: 10.1007/s00401-019-02080-2. PubMed DOI PMC

Metrick M.A., 2nd, Ferreira N.d.C., Saijo E., Kraus A., Newell K., Zanusso G., Vendruscolo M., Ghetti B., Caughey B.A. single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol. Commun. 2020;8:22. doi: 10.1186/s40478-020-0887-z. PubMed DOI PMC

Lehmer C., Oeckl P., Weishaupt J.H., Volk A.E., Diehl-Schmid J., Schroeter M.L., Lauer M., Kornhuber J., Levin J., Fassbender K., et al. Poly–GP in cerebrospinal fluid links C9orf72–associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. 2017;9:859–868. doi: 10.15252/emmm.201607486. PubMed DOI PMC

Zerr I., Kallenberg K., Summers D.M., Romero C., Taratuto A., Heinemann U., Breithaupt M., Vargers D., Meissner B., Ladogana A., et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain. 2009;132:2659–2668. doi: 10.1093/brain/awp191. PubMed DOI PMC

Park J.H., Choi Y.G., Lee Y.J., Park S.J., Choi H.S., Choi K.C., Choi E.K., Kim Y.S. Real–time quaking–induced conversion analysis for the diagnosis of sporadic Creutzfeldt–Jakob disease in Korea. J. Clin. Neurol. 2016;12:101–106. doi: 10.3988/jcn.2016.12.1.101. PubMed DOI PMC

Franceschini A., Baiardi S., Hughson A.G., McKenzie N., Moda F., Rossi M., Capellari S., Green A., Giaccone G., Caughey B., et al. High diagnostic value of second–generation CSF RT–QuIC across the wide spectrum of CJD prions. Sci. Rep. 2017;7:10655. doi: 10.1038/s41598-017-10922-w. PubMed DOI PMC

Baiardi S., Rizzi R., Capellari S., Bartoletti-Stella A., Zangrandi A., Gasparini F., Ghidoni E., Parchi P. Gerstmann–Sträussler–Scheinker disease (PRNP p.D202N) presenting with atypical parkinsonism. Neurol. Genet. 2020;6:e400. doi: 10.1212/NXG.0000000000000400. PubMed DOI PMC

Barkovits K., Kruse N., Linden A., Tönges L., Pfeiffer K., Mollenhauer B., Marcus K. Blood contamination in CSF and its impact on quantitative analysis of alpha–synuclein. Cells. 2020;9:370. doi: 10.3390/cells9020370. PubMed DOI PMC

Gaetani L., Paoletti F.P., Bellomo G., Mancini A., Simoni S., Di Filipo M., Parnetti L. CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: Implications for treatment. Trend Pharmacol. Sci. 2020;41:1023–1037. doi: 10.1016/j.tips.2020.09.011. PubMed DOI

Zetterberg H., Blennow K. From cerebrospinal fluid to blood: The third wave of fluid biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2018;64:271–279. doi: 10.3233/JAD-179926. PubMed DOI

Zetterberg H., Burnham S.C. Blood–based molecular biomarkers for Alzheimer’s disease. Mol. Brain. 2019;12:26. doi: 10.1186/s13041-019-0448-1. PubMed DOI PMC

Congata V.L., Morello G., Cavallaro S. Omics data and their integrative analysis to support stratified medicine in neurodegenerative diseases. Int. Mol. Sci. 2021;22:4820. PubMed PMC

Baldacci F., Mazzucchi S., Vecchia A.D., Giampietri L., Giannini N., Koronyo-Hamaoui M., Ceravolo R., Siciliano G., Boniccelli U., Elahi F.M., et al. The path to biomarker–based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev. Mol. Diagn. 2020;20:421–441. doi: 10.1080/14737159.2020.1731306. PubMed DOI PMC

Obrocki P., Khatun A., Ness D., Senkevich K., Hanrieder J., Capraro F., Mattsson N., Andreasson U., Portelius E., Ashton N.J., et al. Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course—A joint PhD student course at University College London and University of Gothenburg. Alzheimers Res. Ther. 2020;12:20. doi: 10.1186/s13195-020-00586-6. PubMed DOI PMC

Yu H., Sun T., An J., Wen L., Liu F., Bu Z., Cui Y., Feng J. Potential roles of exosomes in Parkinson’s disease: From pathogenesis, diagnosis, and treatment to prognosis. Front. Cell Dev. Biol. 2020;8:86. doi: 10.3389/fcell.2020.00086. PubMed DOI PMC

Wang X., Zhou Y., Gao Q., Ping D., Wang Y., Wu W., Lin X., Fang Y., Zhang J., Shao A. The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxidative Med. Cell. Longev. 2020;2020:3232869. doi: 10.1155/2020/3232869. PubMed DOI PMC

Kitamura Y., Kojima M., Kurosawa T., Sasaki R., Ichihara S., Hiraku Y., Tomimoto H., Murata M., Oikawa S. Proteomic profiling of exosomal proteins for blood–based biomarkers in Parkinson’s disease. Neuroscience. 2018;392:121–128. doi: 10.1016/j.neuroscience.2018.09.017. PubMed DOI

Console L., Scalise M., Indiveri C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta. 2019;488:165–171. doi: 10.1016/j.cca.2018.11.009. PubMed DOI

Meldolesi J. News about the role of fluid and imaging biomarkers in neurodegenerative diseases. Biomedicines. 2021;9:252. doi: 10.3390/biomedicines9030252. PubMed DOI PMC

Gagliardi D., Bresolin N., Comi G.P., Corti S. Extracellular vesicles and amyotrophic lateral sclerosis: From misfolded protein vehicles to promising clinical biomarkers. Cell Mol. Life Sci. 2021;78:561–572. doi: 10.1007/s00018-020-03619-3. PubMed DOI PMC

Htike T.T., Mishra S., Kumar S., Padmanabhan P., Gulyás B. Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Mol. Neurobiol. 2019;56:2256–2277. doi: 10.1007/s12035-018-1151-4. PubMed DOI

Shao Y., Le W. Recent advances and perspectives of metabolomics–based investigations in Parkinson’s disease. Mol. Neurodegener. 2019;14:3. doi: 10.1186/s13024-018-0304-2. PubMed DOI PMC

Angelopoulou E., Paudel Y.N., Piperi C. miR–124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharm. Res. 2019;150:104515. doi: 10.1016/j.phrs.2019.104515. PubMed DOI

Jiang C., Hopfner F., Katsikoudi A., Hein R., Catli C., Evetts S., Huang Y., Wang H., Ryder J.W., Kuhlenbaeumer G., et al. Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry. 2020;91:720–729. doi: 10.1136/jnnp-2019-322588. PubMed DOI PMC

Lin Y.S., Lee W.J., Wang S.J., Fuh J.L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci. Rep. 2018;8:17368. doi: 10.1038/s41598-018-35766-w. PubMed DOI PMC

Parnetti L., Gaetani L., Eusebi P., Paciotti S., Hansson O., El-Agnaf O., Mollenhauer B., Blennow K., Calabresi P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019;18:573–586. doi: 10.1016/S1474-4422(19)30024-9. PubMed DOI

Pilotto A., Imarisio A., Conforti F., Scalvini A., Masciocchi S., Nocivelli S., Turrone R., Gipponi S., Cottini E., Borroni B., et al. Plasma NfL, clinical subtypes and motor progression in Parkinson’s disease. Parkinsonism Relat. Disord. 2021;87:41–47. doi: 10.1016/j.parkreldis.2021.04.016. PubMed DOI

Hannson O., Janelidze S., Hall S., Magdalinou N., Lees A.J., Andreasson U., Norgren N., Linder J., Forsgren L., Constantinescu R., et al. Blood–based NfL. Neurology. 2017;88:930–937. doi: 10.1212/WNL.0000000000003680. PubMed DOI PMC

Pinell J.R., Cui M., Tieu K. Exosomes in Parkinson disease. J. Neurochem. 2021;157:413–428. doi: 10.1111/jnc.15288. PubMed DOI PMC

Chelliah S.S., Bhuvanendran S., Magalingam K.B., Kamarudin M.N.A., Radharkrishnan A.K. Identification of blood–based biomarkers for diagnosis and prognosis of Parkinson’s disease: A systematic review of proteomics studies. Aging Res. Rev. 2022;73:101514. doi: 10.1016/j.arr.2021.101514. PubMed DOI

Lawton M., Baig F., Toulson G., Morovat A., Evetts S.G., Ben-Shlomo Y., Hu M.T. Blood biomarkers with Parkinson’s disease clusters and prognosis: The Oxford discovery cohort. Mov. Disord. 2020;35:279–287. doi: 10.1002/mds.27888. PubMed DOI PMC

Altuna-Azkargorta M., Mendioroz-Iriarte M. Blood biomarkers in Alzheimer’s disease. Neurologia. 2021;36:704–710. doi: 10.1016/j.nrl.2018.03.006. PubMed DOI

Toombs J., Zetterberg H. In the blood: Biomarkers for amyloid pathology and neurodegeneration in Alzheimer’s disease. Brain Commun. 2020;2:fcaa054. doi: 10.1093/braincomms/fcaa054. PubMed DOI PMC

Lopez O.L., Klunk W.E., Mathis C.A., Snitz B.E., Chang Y., Tracy R.P., Kuller L.H. Relationship of amyloid–β1–42 in blood and brain amyloid: Ginkgo evaluation of memory study. Brain Commun. 2020;2:fcz038. doi: 10.1093/braincomms/fcz038. PubMed DOI PMC

Zvěřová M. Přehled známých fluidních biomarkerů neurodegenerativních změn v mozku u Alzheimerovy choroby a možnosti jejich využití. Čes A Slov. Psychiat. 2019;115:77–80.

Janelidze S., Stomrud E., Palmquist S., Zetterberg H., van Westen D., Jeromin A., Song L., Hanlon D., Hehir C.A.T., Baker D., et al. Plasma β–amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016;6:26801. doi: 10.1038/srep26801. PubMed DOI PMC

Karikari T.K., Pascoal T.A., Ashton N.J., Janelidze S., Benedet A.L., Rodriguez J.L., Chamoun M., Savard M., Kang M.S., Therriault J., et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–433. doi: 10.1016/S1474-4422(20)30071-5. PubMed DOI

Palmquist S., Tideman P., Cullen N., Zetterber H., Blennow K., Dage J.L., Stomrud E., Janelidze S., Mattsson-Calgren N., Hansson O. Prediction of future Alzheimer’s disease dementia using plasma phospho–tau combined with other accessible measures. Nat. Med. 2021;27:1034–1042. doi: 10.1038/s41591-021-01348-z. PubMed DOI

Karikari T.K., Benedet A.L., Ashton N.J., Rodriguez J.L., Snellman A., Suárez-Calvet M., Saha-Chaudhuri P., Lussier F., Kvatsberg H., Rial A.M., et al. Diagnostic performance and prediction of clinical progression of plasma phospho–tau181 in the Alzheimer’s disease neuroimaging initiative. Mol. Psychiatry. 2021;26:429–442. doi: 10.1038/s41380-020-00923-z. PubMed DOI

Moscoso A., Grothe M.J., Ashton N.J., Karikari T.K., Rodriguez J.L., Snallman A., Suárez-Calvet M., Zetterberg H., Blennow K., Schöll M., et al. Time course of phosphorylated–tau181 in blood across the Alzheimer’s disease spectrum. Brain. 2021;144:325–339. doi: 10.1093/brain/awaa399. PubMed DOI PMC

Mattsson-Carlgren N., Janelidze S., Palmquist S., Cullen N., Svenningsson A.L., Strandberg O., Mengel. D., Walsh D.M., Stomrud E., Dage J.L., et al. Longitudinal plasma p–tau217 increased in early stages of Alzheimer’s disease. Brain. 2020;143:3234–3241. doi: 10.1093/brain/awaa286. PubMed DOI PMC

Doxakis E. Insights into the multifaceted role of circular RNAs: Implications for Parkinson’s disease pathogenesis and diagnosis. NPJ Parkinsons Dis. 2022;8:7. doi: 10.1038/s41531-021-00265-9. PubMed DOI PMC

van den Berg M.M.J., Krauskopf J., Ramaekers J.G., Kleinjans J.C.S., Prickaerts J., Briedé J.J. Circulating microRNA as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020;185:101732. doi: 10.1016/j.pneurobio.2019.101732. PubMed DOI

Siedlecki-Wullich D., Miñano-Molina A.J., Rodríguez-Álvarez J. microRNAs as early biomarkers of Alzheimer’s disease: A synaptic perspective. Cells. 2021;10:113. doi: 10.3390/cells10010113. PubMed DOI PMC

Wu Q., Kong W., Wang S. Peripheral blood biomarkers CXCL12 and TNFRSF13C associate with cerebrospinal fluid biomarkers and infiltrating immune cells in Alzheimer disease. J. Mol. Neurosci. 2021;71:1485–1494. doi: 10.1007/s12031-021-01809-7. PubMed DOI

Abdullah M., Kimura N., Akatsu H., Hashizume Y., Ferdous T., Tachita T., Iida S., Zou K., Matsubara E., Michikawa M. Flotillin is a novel diagnostic blood marker of Alzheimer’s disease. J. Alzheimers Dis. 2019;72:1165–1176. doi: 10.3233/JAD-190908. PubMed DOI

Varma V.R., Oommen A.M., Varma S., Casanova R., An Y., Andrews R.M., O’Brien R., Pletnikova O., Troncoso J.C., Toledo J., et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A target metabolomics study. PLoS Med. 2018;15:e1002482. doi: 10.1371/journal.pmed.1002482. PubMed DOI PMC

Leuzy A., Mattsson-Carlgren N., Palqvist S., Janelidze S., Dage J.L., Hansson O. Blood–based biomarkers for Alzheimer’s disease. EMBO Mol. Med. 2021;14:e14408. doi: 10.15252/emmm.202114408. PubMed DOI PMC

Xiong Y.I., Meng T., Luo J., Zhang H. The potential of neurofilament light as a biomarker in Alzheimer’s disease. Eur. Neurol. 2021;84:6–15. doi: 10.1159/000513008. PubMed DOI

Moscoso A., Grothe M.J., Ashton N.J., Karikari T.K., Rodríguez J.L., Snellman A., Suárez-Calvet M., Blennow K., Zetterberg H., Schöll M. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2020;78:396–406. doi: 10.1001/jamaneurol.2020.4986. PubMed DOI PMC

Mattsson N., Cullen N.C., Andreasson U., Zetterberg H., Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76:791–799. doi: 10.1001/jamaneurol.2019.0765. PubMed DOI PMC

Menšíková K., Tučková L., Kolařiková K., Bartoníková T., Vodička R., Ehrmann J., Vrtěl R., Procházka M., Kaňovský P., Kovacs G.G. Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP–P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 2019;137:171–173. doi: 10.1007/s00401-018-1923-y. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace