Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868
European Regional Development Fund - Project ENOCH
PubMed
35885064
PubMed Central
PMC9313182
DOI
10.3390/biomedicines10071760
PII: biomedicines10071760
Knihovny.cz E-zdroje
- Klíčová slova
- Alzheimer’s disease, Parkinson’s disease, biomarkers, blood-based biomarkers, cerebrospinal fluid, neurodegeneration, neurodegenerative diseases,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The understanding of neurodegenerative diseases, traditionally considered to be well-defined entities with distinguishable clinical phenotypes, has undergone a major shift over the last 20 years. The diagnosis of neurodegenerative diseases primarily requires functional brain imaging techniques or invasive tests such as lumbar puncture to assess cerebrospinal fluid. A new biological approach and research efforts, especially in vivo, have focused on biomarkers indicating underlying proteinopathy in cerebrospinal fluid and blood serum. However, due to the complexity and heterogeneity of neurodegenerative processes within the central nervous system and the large number of overlapping clinical diagnoses, identifying individual proteinopathies is relatively difficult and often not entirely accurate. For this reason, there is an urgent need to develop laboratory methods for identifying specific biomarkers, understand the molecular basis of neurodegenerative disorders and classify the quantifiable and readily available tools that can accelerate efforts to translate the knowledge into disease-modifying therapies that can improve and simplify the areas of differential diagnosis, as well as monitor the disease course with the aim of estimating the prognosis or evaluating the effects of treatment. The aim of this review is to summarize the current knowledge about clinically relevant biomarkers in different neurodegenerative diseases.
Zobrazit více v PubMed
Basha F.H., Waseem M., Srinivasan H. Cellular and molecular mechanism in neurodegeneration: Possible role of neuroprotectants. Cell Biochem. Funct. 2021;39:613–622. doi: 10.1002/cbf.3630. PubMed DOI
Cova I., Priori A. Diagnostic biomarkers for Parkinson’s disease at a glance: Where are we? J. Neural Transm. 2018;125:1417–1432. doi: 10.1007/s00702-018-1910-4. PubMed DOI PMC
He R., Yan X., Guo J., Xu Q., Tang B., Sun Q. Recent advances in biomarkers for Parkinson’s disease. Front. Aging Neurosci. 2018;10:305. doi: 10.3389/fnagi.2018.00305. PubMed DOI PMC
Blennow K., Zetterberg H. The past and future of Alzheimer’s disease fluid biomarkers. J. Alzehimers Dis. 2018;62:1125–1140. doi: 10.3233/JAD-170773. PubMed DOI PMC
Blennow K., Zetterberg H., Fagan A.M. Fluid Biomarkers in Alzheimer Disease. Cold Spring Harb. Perspect. Med. 2012;2:a00622. doi: 10.1101/cshperspect.a006221. PubMed DOI PMC
Scheltens P., Blennow K., Breteler M.M., de Strooper B., Frisoni G.B., Salloway S., Van der Flier W.M. Alzheimer’s disease. Lancet. 2016;388:505–517. doi: 10.1016/S0140-6736(15)01124-1. PubMed DOI
Zou K., Abdullah M., Michikawa M. Current biomarkers for Alzheimer’s disease: From CSF to blood. J. Pers. Med. 2020;10:85. doi: 10.3390/jpm10030085. PubMed DOI PMC
Sjogren M., Rosengren L., Minthon L., Davidsson P., Blennow K., Wallin A. Cytoskeleton proteins in CSF distinguish frontotemporal dementia from AD. Neurology. 2000;54:1960–1964. doi: 10.1212/WNL.54.10.1960. PubMed DOI
Lee J.M., Blennow K., Andreasen N., Laterza O., Modur V., Olader J., Gao F., Ohlendorf M., Landenson J.H. The brain injury biomarker VLP-1 is increased in the cerebrospinal fluid of Alzheimer disease patients. Clin. Chem. 2008;54:1617–1623. doi: 10.1373/clinchem.2008.104497. PubMed DOI PMC
Hansson O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021;27:954–963. doi: 10.1038/s41591-021-01382-x. PubMed DOI
Kovacs G.G. Molecular pathological classification of neurodegenerative diseases: Turning toward precision medicine. Int. J. Mol. Sci. 2016;17:189. doi: 10.3390/ijms17020189. PubMed DOI PMC
Atik A., Stewart T., Zhang J. Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol. 2016;26:410–418. doi: 10.1111/bpa.12370. PubMed DOI PMC
Parnetti L., Chiasserini D., Persichetti E., Eusebi P., Varghese S., Qureshi M.M., Dardis A., Deganuto M., De Carlo M., Castrioto A., et al. Cerebrospinal fluid lysosomal enzymes and α-synuclein in Parkinson’s disease. Mov. Disord. 2014;29:1019–1027. doi: 10.1002/mds.25772. PubMed DOI PMC
Wang Y., Shi M., Chung K.A., Zabetian C.P., Leverenz J.B., Berg D., Srulijes K., Trojanowski J.Q., Lee V.M.Y., Siderowf A.D., et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 2012;4:121ra20. doi: 10.1126/scitranslmed.3002566. PubMed DOI PMC
Hermann P., Appleby B., Brandel J.P., Caoughey B., Collins S., Geschwind M.D., Green A., Haïk S., Kovacs G.G., Ladogana A., et al. Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. Lancet Neurol. 2021;20:235–246. doi: 10.1016/S1474-4422(20)30477-4. PubMed DOI PMC
Fairfoul G., McGuire L.I., Pal S., Ironside J.W., Neumann J., Christie S., Joachim C., Esiri M., Evetts S.G., Rolinski M., et al. Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies. Ann. Clin. Transl. Neurol. 2016;3:812–818. doi: 10.1002/acn3.338. PubMed DOI PMC
Vranová H., Hényková E., Kaiserová M., Menšíková K., Vaštík M., Mareš J., Hluštík P., Zapletalová J., Strnad M., Stejskal D., et al. Tau protein, beta-amyloid42 and clusterin CSF levels in the differential diagnosis of Parkinsonian syndrome with dementia. J. Neurol. Sci. 2014;343:120–124. doi: 10.1016/j.jns.2014.05.052. PubMed DOI
Hall S., Öhrfelt A., Constantinescu R., Andreason U., Surova Y., Bostrom F., Nilsson C., Håkan W., Decraemer H., Någga K., et al. Accuracy of a panel of 5 cerebrospinal fluid biomarkers in the differential diagnosis of patients with dementia and/or parkinsonian disorders. Arch. Neurol. 2012;69:1445–1452. doi: 10.1001/archneurol.2012.1654. PubMed DOI
Magdalinou N.K., Paterson R.W., Schott J.M., Fox N.C., Mummery C., Blennow K., Bhatia K., Morris H.R., Giunti P., Warner T.T., et al. A panel of nine cerebrospinal fluid biomarkers may identify patients with atypical parkinsonian syndromes. J. Neurol. Neurosurg. Psychiatry. 2015;86:1240–1247. doi: 10.1136/jnnp-2014-309562. PubMed DOI PMC
Herbert M.K., Eeftens J.M., Aerts M.B., Esselink R.A.J., Bloem B.R., Kuiperij H.B., Verbeek M.M. CSF levels of DJ–1 and tau distinguish MSA patients from PD patients and controls. Parkinsonism Relat. Disord. 2014;20:112–115. doi: 10.1016/j.parkreldis.2013.09.003. PubMed DOI
Jiménez-Jiménez F.J., Alonso-Navarro H., García-Martín E., Agúndez J.A.G. Cerebrospinal fluid biochemical studies in patients with Parkinson’s disease: Toward a potential search for biomarkers for this disease. Front. Cell Neurosci. 2014;8:369. PubMed PMC
Rusina R., Matěj R., Cséfalvay Z., Keller J., Franková V., Vyhnálek M. Frontotemporální demence. Cesk. Slov. Neurol. N. 2021;84/117:9–29. doi: 10.48095/cccsnn20219. DOI
Menšíková K., Tučková L., Kaňovský P. Atypický parkinsonismus a frontotemporální demence–klinické, patologické a genetické aspekty. Cesk. Slov. Neurol. N. 2016;79/112:275–286. doi: 10.14735/amcsnn2016275. DOI
Li D., Shen D., Tai H., Cui L. Neurofilaments in CSF as diagnostic biomarkers in motor neuron disease: A meta–analysis. Front. Aging Neurosci. 2016;8:290. doi: 10.3389/fnagi.2016.00290. PubMed DOI PMC
Kaiserová M., Grambalová Z., Otruba P., Stejskal D., Prikrylová Vranová H., Mareš J., Menšíková K., Kaňovský P. Cerebrospinal fluid levels of chromogranin A and phosphorylated neurofilament heavy chain are elevated in amyotrophic lateral sclerosis. Acta Neurol. Scand. 2017;136:360–364. doi: 10.1111/ane.12735. PubMed DOI
Swift I.J., Sogorb-Esteve A., Heller C., Synofzik M., Otto M., Graff C., Galimberti D., Todd E., Heslegrave A.J., van der Ende E.L., et al. Fluid biomarkers in frontotemporal dementia: Past, present and future. J. Neurol. Neurosurg. Psychiatry. 2021;92:204–215. doi: 10.1136/jnnp-2020-323520. PubMed DOI
Bruzová M., Rusina R., Stejskalová Z., Matěj R. Autopsy–diagnosed neurodegenerative dementia cases support the use of cerebrospinal fluid protein biomarkers in diagnostic work–up. Sci. Rep. 2021;11:10837. doi: 10.1038/s41598-021-90366-5. PubMed DOI PMC
Saijo E., Ghetti B., Zanusso G., Oblak A., Furman J.L., Diamond M.I., Kraus A., Caughey B. Ultrasensitive and selective detection of 3–repeat tau seeding activity in Pick disease brain and cerebrospinal fluid. Acta Neuropathol. 2017;133:751–765. doi: 10.1007/s00401-017-1692-z. PubMed DOI
Saijo E., Metrick M.A., Koga S., Parchi P., Litvan I., Spina S., Boxer A., Rojas J.C., Galasko D., Kraus A., et al. 4–Repeat tau seeds and templating subtypes as brain and CSF biomarkers of frontotemporal lobar degeneration. Acta Neuropathol. 2020;139:63–77. doi: 10.1007/s00401-019-02080-2. PubMed DOI PMC
Metrick M.A., 2nd, Ferreira N.d.C., Saijo E., Kraus A., Newell K., Zanusso G., Vendruscolo M., Ghetti B., Caughey B.A. single ultrasensitive assay for detection and discrimination of tau aggregates of Alzheimer and Pick diseases. Acta Neuropathol. Commun. 2020;8:22. doi: 10.1186/s40478-020-0887-z. PubMed DOI PMC
Lehmer C., Oeckl P., Weishaupt J.H., Volk A.E., Diehl-Schmid J., Schroeter M.L., Lauer M., Kornhuber J., Levin J., Fassbender K., et al. Poly–GP in cerebrospinal fluid links C9orf72–associated dipeptide repeat expression to the asymptomatic phase of ALS/FTD. EMBO Mol. Med. 2017;9:859–868. doi: 10.15252/emmm.201607486. PubMed DOI PMC
Zerr I., Kallenberg K., Summers D.M., Romero C., Taratuto A., Heinemann U., Breithaupt M., Vargers D., Meissner B., Ladogana A., et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt–Jakob disease. Brain. 2009;132:2659–2668. doi: 10.1093/brain/awp191. PubMed DOI PMC
Park J.H., Choi Y.G., Lee Y.J., Park S.J., Choi H.S., Choi K.C., Choi E.K., Kim Y.S. Real–time quaking–induced conversion analysis for the diagnosis of sporadic Creutzfeldt–Jakob disease in Korea. J. Clin. Neurol. 2016;12:101–106. doi: 10.3988/jcn.2016.12.1.101. PubMed DOI PMC
Franceschini A., Baiardi S., Hughson A.G., McKenzie N., Moda F., Rossi M., Capellari S., Green A., Giaccone G., Caughey B., et al. High diagnostic value of second–generation CSF RT–QuIC across the wide spectrum of CJD prions. Sci. Rep. 2017;7:10655. doi: 10.1038/s41598-017-10922-w. PubMed DOI PMC
Baiardi S., Rizzi R., Capellari S., Bartoletti-Stella A., Zangrandi A., Gasparini F., Ghidoni E., Parchi P. Gerstmann–Sträussler–Scheinker disease (PRNP p.D202N) presenting with atypical parkinsonism. Neurol. Genet. 2020;6:e400. doi: 10.1212/NXG.0000000000000400. PubMed DOI PMC
Barkovits K., Kruse N., Linden A., Tönges L., Pfeiffer K., Mollenhauer B., Marcus K. Blood contamination in CSF and its impact on quantitative analysis of alpha–synuclein. Cells. 2020;9:370. doi: 10.3390/cells9020370. PubMed DOI PMC
Gaetani L., Paoletti F.P., Bellomo G., Mancini A., Simoni S., Di Filipo M., Parnetti L. CSF and blood biomarkers in neuroinflammatory and neurodegenerative diseases: Implications for treatment. Trend Pharmacol. Sci. 2020;41:1023–1037. doi: 10.1016/j.tips.2020.09.011. PubMed DOI
Zetterberg H., Blennow K. From cerebrospinal fluid to blood: The third wave of fluid biomarkers of Alzheimer’s disease. J. Alzheimers Dis. 2018;64:271–279. doi: 10.3233/JAD-179926. PubMed DOI
Zetterberg H., Burnham S.C. Blood–based molecular biomarkers for Alzheimer’s disease. Mol. Brain. 2019;12:26. doi: 10.1186/s13041-019-0448-1. PubMed DOI PMC
Congata V.L., Morello G., Cavallaro S. Omics data and their integrative analysis to support stratified medicine in neurodegenerative diseases. Int. Mol. Sci. 2021;22:4820. PubMed PMC
Baldacci F., Mazzucchi S., Vecchia A.D., Giampietri L., Giannini N., Koronyo-Hamaoui M., Ceravolo R., Siciliano G., Boniccelli U., Elahi F.M., et al. The path to biomarker–based diagnostic criteria for the spectrum of neurodegenerative diseases. Expert Rev. Mol. Diagn. 2020;20:421–441. doi: 10.1080/14737159.2020.1731306. PubMed DOI PMC
Obrocki P., Khatun A., Ness D., Senkevich K., Hanrieder J., Capraro F., Mattsson N., Andreasson U., Portelius E., Ashton N.J., et al. Perspectives in fluid biomarkers in neurodegeneration from the 2019 biomarkers in neurodegenerative diseases course—A joint PhD student course at University College London and University of Gothenburg. Alzheimers Res. Ther. 2020;12:20. doi: 10.1186/s13195-020-00586-6. PubMed DOI PMC
Yu H., Sun T., An J., Wen L., Liu F., Bu Z., Cui Y., Feng J. Potential roles of exosomes in Parkinson’s disease: From pathogenesis, diagnosis, and treatment to prognosis. Front. Cell Dev. Biol. 2020;8:86. doi: 10.3389/fcell.2020.00086. PubMed DOI PMC
Wang X., Zhou Y., Gao Q., Ping D., Wang Y., Wu W., Lin X., Fang Y., Zhang J., Shao A. The role of exosomal microRNAs and oxidative stress in neurodegenerative diseases. Oxidative Med. Cell. Longev. 2020;2020:3232869. doi: 10.1155/2020/3232869. PubMed DOI PMC
Kitamura Y., Kojima M., Kurosawa T., Sasaki R., Ichihara S., Hiraku Y., Tomimoto H., Murata M., Oikawa S. Proteomic profiling of exosomal proteins for blood–based biomarkers in Parkinson’s disease. Neuroscience. 2018;392:121–128. doi: 10.1016/j.neuroscience.2018.09.017. PubMed DOI
Console L., Scalise M., Indiveri C. Exosomes in inflammation and role as biomarkers. Clin. Chim. Acta. 2019;488:165–171. doi: 10.1016/j.cca.2018.11.009. PubMed DOI
Meldolesi J. News about the role of fluid and imaging biomarkers in neurodegenerative diseases. Biomedicines. 2021;9:252. doi: 10.3390/biomedicines9030252. PubMed DOI PMC
Gagliardi D., Bresolin N., Comi G.P., Corti S. Extracellular vesicles and amyotrophic lateral sclerosis: From misfolded protein vehicles to promising clinical biomarkers. Cell Mol. Life Sci. 2021;78:561–572. doi: 10.1007/s00018-020-03619-3. PubMed DOI PMC
Htike T.T., Mishra S., Kumar S., Padmanabhan P., Gulyás B. Peripheral biomarkers for early detection of Alzheimer’s and Parkinson’s diseases. Mol. Neurobiol. 2019;56:2256–2277. doi: 10.1007/s12035-018-1151-4. PubMed DOI
Shao Y., Le W. Recent advances and perspectives of metabolomics–based investigations in Parkinson’s disease. Mol. Neurodegener. 2019;14:3. doi: 10.1186/s13024-018-0304-2. PubMed DOI PMC
Angelopoulou E., Paudel Y.N., Piperi C. miR–124 and Parkinson’s disease: A biomarker with therapeutic potential. Pharm. Res. 2019;150:104515. doi: 10.1016/j.phrs.2019.104515. PubMed DOI
Jiang C., Hopfner F., Katsikoudi A., Hein R., Catli C., Evetts S., Huang Y., Wang H., Ryder J.W., Kuhlenbaeumer G., et al. Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism. J. Neurol. Neurosurg. Psychiatry. 2020;91:720–729. doi: 10.1136/jnnp-2019-322588. PubMed DOI PMC
Lin Y.S., Lee W.J., Wang S.J., Fuh J.L. Levels of plasma neurofilament light chain and cognitive function in patients with Alzheimer or Parkinson disease. Sci. Rep. 2018;8:17368. doi: 10.1038/s41598-018-35766-w. PubMed DOI PMC
Parnetti L., Gaetani L., Eusebi P., Paciotti S., Hansson O., El-Agnaf O., Mollenhauer B., Blennow K., Calabresi P. CSF and blood biomarkers for Parkinson’s disease. Lancet Neurol. 2019;18:573–586. doi: 10.1016/S1474-4422(19)30024-9. PubMed DOI
Pilotto A., Imarisio A., Conforti F., Scalvini A., Masciocchi S., Nocivelli S., Turrone R., Gipponi S., Cottini E., Borroni B., et al. Plasma NfL, clinical subtypes and motor progression in Parkinson’s disease. Parkinsonism Relat. Disord. 2021;87:41–47. doi: 10.1016/j.parkreldis.2021.04.016. PubMed DOI
Hannson O., Janelidze S., Hall S., Magdalinou N., Lees A.J., Andreasson U., Norgren N., Linder J., Forsgren L., Constantinescu R., et al. Blood–based NfL. Neurology. 2017;88:930–937. doi: 10.1212/WNL.0000000000003680. PubMed DOI PMC
Pinell J.R., Cui M., Tieu K. Exosomes in Parkinson disease. J. Neurochem. 2021;157:413–428. doi: 10.1111/jnc.15288. PubMed DOI PMC
Chelliah S.S., Bhuvanendran S., Magalingam K.B., Kamarudin M.N.A., Radharkrishnan A.K. Identification of blood–based biomarkers for diagnosis and prognosis of Parkinson’s disease: A systematic review of proteomics studies. Aging Res. Rev. 2022;73:101514. doi: 10.1016/j.arr.2021.101514. PubMed DOI
Lawton M., Baig F., Toulson G., Morovat A., Evetts S.G., Ben-Shlomo Y., Hu M.T. Blood biomarkers with Parkinson’s disease clusters and prognosis: The Oxford discovery cohort. Mov. Disord. 2020;35:279–287. doi: 10.1002/mds.27888. PubMed DOI PMC
Altuna-Azkargorta M., Mendioroz-Iriarte M. Blood biomarkers in Alzheimer’s disease. Neurologia. 2021;36:704–710. doi: 10.1016/j.nrl.2018.03.006. PubMed DOI
Toombs J., Zetterberg H. In the blood: Biomarkers for amyloid pathology and neurodegeneration in Alzheimer’s disease. Brain Commun. 2020;2:fcaa054. doi: 10.1093/braincomms/fcaa054. PubMed DOI PMC
Lopez O.L., Klunk W.E., Mathis C.A., Snitz B.E., Chang Y., Tracy R.P., Kuller L.H. Relationship of amyloid–β1–42 in blood and brain amyloid: Ginkgo evaluation of memory study. Brain Commun. 2020;2:fcz038. doi: 10.1093/braincomms/fcz038. PubMed DOI PMC
Zvěřová M. Přehled známých fluidních biomarkerů neurodegenerativních změn v mozku u Alzheimerovy choroby a možnosti jejich využití. Čes A Slov. Psychiat. 2019;115:77–80.
Janelidze S., Stomrud E., Palmquist S., Zetterberg H., van Westen D., Jeromin A., Song L., Hanlon D., Hehir C.A.T., Baker D., et al. Plasma β–amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016;6:26801. doi: 10.1038/srep26801. PubMed DOI PMC
Karikari T.K., Pascoal T.A., Ashton N.J., Janelidze S., Benedet A.L., Rodriguez J.L., Chamoun M., Savard M., Kang M.S., Therriault J., et al. Blood phosphorylated tau 181 as a biomarker for Alzheimer’s disease: A diagnostic performance and prediction modelling study using data from four prospective cohorts. Lancet Neurol. 2020;19:422–433. doi: 10.1016/S1474-4422(20)30071-5. PubMed DOI
Palmquist S., Tideman P., Cullen N., Zetterber H., Blennow K., Dage J.L., Stomrud E., Janelidze S., Mattsson-Calgren N., Hansson O. Prediction of future Alzheimer’s disease dementia using plasma phospho–tau combined with other accessible measures. Nat. Med. 2021;27:1034–1042. doi: 10.1038/s41591-021-01348-z. PubMed DOI
Karikari T.K., Benedet A.L., Ashton N.J., Rodriguez J.L., Snellman A., Suárez-Calvet M., Saha-Chaudhuri P., Lussier F., Kvatsberg H., Rial A.M., et al. Diagnostic performance and prediction of clinical progression of plasma phospho–tau181 in the Alzheimer’s disease neuroimaging initiative. Mol. Psychiatry. 2021;26:429–442. doi: 10.1038/s41380-020-00923-z. PubMed DOI
Moscoso A., Grothe M.J., Ashton N.J., Karikari T.K., Rodriguez J.L., Snallman A., Suárez-Calvet M., Zetterberg H., Blennow K., Schöll M., et al. Time course of phosphorylated–tau181 in blood across the Alzheimer’s disease spectrum. Brain. 2021;144:325–339. doi: 10.1093/brain/awaa399. PubMed DOI PMC
Mattsson-Carlgren N., Janelidze S., Palmquist S., Cullen N., Svenningsson A.L., Strandberg O., Mengel. D., Walsh D.M., Stomrud E., Dage J.L., et al. Longitudinal plasma p–tau217 increased in early stages of Alzheimer’s disease. Brain. 2020;143:3234–3241. doi: 10.1093/brain/awaa286. PubMed DOI PMC
Doxakis E. Insights into the multifaceted role of circular RNAs: Implications for Parkinson’s disease pathogenesis and diagnosis. NPJ Parkinsons Dis. 2022;8:7. doi: 10.1038/s41531-021-00265-9. PubMed DOI PMC
van den Berg M.M.J., Krauskopf J., Ramaekers J.G., Kleinjans J.C.S., Prickaerts J., Briedé J.J. Circulating microRNA as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020;185:101732. doi: 10.1016/j.pneurobio.2019.101732. PubMed DOI
Siedlecki-Wullich D., Miñano-Molina A.J., Rodríguez-Álvarez J. microRNAs as early biomarkers of Alzheimer’s disease: A synaptic perspective. Cells. 2021;10:113. doi: 10.3390/cells10010113. PubMed DOI PMC
Wu Q., Kong W., Wang S. Peripheral blood biomarkers CXCL12 and TNFRSF13C associate with cerebrospinal fluid biomarkers and infiltrating immune cells in Alzheimer disease. J. Mol. Neurosci. 2021;71:1485–1494. doi: 10.1007/s12031-021-01809-7. PubMed DOI
Abdullah M., Kimura N., Akatsu H., Hashizume Y., Ferdous T., Tachita T., Iida S., Zou K., Matsubara E., Michikawa M. Flotillin is a novel diagnostic blood marker of Alzheimer’s disease. J. Alzheimers Dis. 2019;72:1165–1176. doi: 10.3233/JAD-190908. PubMed DOI
Varma V.R., Oommen A.M., Varma S., Casanova R., An Y., Andrews R.M., O’Brien R., Pletnikova O., Troncoso J.C., Toledo J., et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A target metabolomics study. PLoS Med. 2018;15:e1002482. doi: 10.1371/journal.pmed.1002482. PubMed DOI PMC
Leuzy A., Mattsson-Carlgren N., Palqvist S., Janelidze S., Dage J.L., Hansson O. Blood–based biomarkers for Alzheimer’s disease. EMBO Mol. Med. 2021;14:e14408. doi: 10.15252/emmm.202114408. PubMed DOI PMC
Xiong Y.I., Meng T., Luo J., Zhang H. The potential of neurofilament light as a biomarker in Alzheimer’s disease. Eur. Neurol. 2021;84:6–15. doi: 10.1159/000513008. PubMed DOI
Moscoso A., Grothe M.J., Ashton N.J., Karikari T.K., Rodríguez J.L., Snellman A., Suárez-Calvet M., Blennow K., Zetterberg H., Schöll M. Longitudinal associations of blood phosphorylated Tau181 and neurofilament light chain with neurodegeneration in Alzheimer disease. JAMA Neurol. 2020;78:396–406. doi: 10.1001/jamaneurol.2020.4986. PubMed DOI PMC
Mattsson N., Cullen N.C., Andreasson U., Zetterberg H., Blennow K. Association between longitudinal plasma neurofilament light and neurodegeneration in patients with Alzheimer disease. JAMA Neurol. 2019;76:791–799. doi: 10.1001/jamaneurol.2019.0765. PubMed DOI PMC
Menšíková K., Tučková L., Kolařiková K., Bartoníková T., Vodička R., Ehrmann J., Vrtěl R., Procházka M., Kaňovský P., Kovacs G.G. Atypical parkinsonism of progressive supranuclear palsy–parkinsonism (PSP–P) phenotype with rare variants in FBXO7 and VPS35 genes associated with Lewy body pathology. Acta Neuropathol. 2019;137:171–173. doi: 10.1007/s00401-018-1923-y. PubMed DOI