Simultaneous Determination of Selected Steroids with Neuroactive Effects in Human Serum by Ultrahigh-Performance Liquid Chromatography-Tandem Mass Spectrometry

. 2024 May 15 ; 15 (10) : 1990-2005. [epub] 20240424

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38655788

Neuroactive steroids are a group of steroid molecules that are involved in the regulation of functions of the nervous system. The nervous system is not only the site of their action, but their biosynthesis can also occur there. Neuroactive steroid levels depend not only on the physiological state of an individual (person's sex, age, diurnal variation, etc.), but they are also affected by various pathological processes in the nervous system (some neurological and psychiatric diseases or injuries), and new knowledge can be gained by monitoring these processes. The aim of our research was to develop and validate a comprehensive method for the simultaneous determination of selected steroids with neuroactive effects in human serum. The developed method enables high throughput and a sensitive quantitative analysis of nine neuroactive steroid substances (pregnenolone, progesterone, 5α-dihydroprogesterone, allopregnanolone, testosterone, 5α-dihydrotestosterone, androstenedione, dehydroepiandrosterone, and epiandrosterone) in 150 μL of human serum by ultrahigh-performance liquid chromatography with tandem mass spectrometry. The correlation coefficients above 0.999 indicated that the developed analytical procedure was linear in the range of 0.90 nmol/L to 28.46 μmol/L in human serum. The accuracy and precision of the method for all analytes ranged from 83 to 118% and from 0.9 to 14.1%, respectively. This described method could contribute to a deeper understanding of the pathophysiology of various diseases. Similarly, it can also be helpful in the search for new biomarkers and diagnostic options or therapeutic approaches.

Zobrazit více v PubMed

Melcangi R. C.; Giatti S.; Garcia-Segura L. M. Levels and Actions of Neuroactive Steroids in the Nervous System under Physiological and Pathological Conditions: Sex-Specific Features. Neurosci Biobehav Rev. 2016, 67, 25–40. 10.1016/j.neubiorev.2015.09.023. PubMed DOI

Giatti S.; Garcia-Segura L. M.; Barreto G. E.; Melcangi R. C. Neuroactive Steroids, Neurosteroidogenesis and Sex. Prog. Neurobiol 2019, 176, 1–17. 10.1016/j.pneurobio.2018.06.007. PubMed DOI

Tuem K. B.; Atey T. M. Neuroactive Steroids: Receptor Interactions and Responses. Front Neurol 2017, 8, 1–10. 10.3389/fneur.2017.00442. PubMed DOI PMC

Reddy D. S. Neurosteroids: Endogenous Role in the Human Brain and Therapeutic Potentials. Prog. Brain Res. 2010, 186 (1), 113–137. 10.1016/B978-0-444-53630-3.00008-7. PubMed DOI PMC

Taylor A.; Al-Azzawi F. Immunolocalisation of Oestrogen Receptor Beta in Human Tissues. J. Mol. Endocrinol 2000, 24 (1), 145–155. 10.1677/jme.0.0240145. PubMed DOI

Reul J. M. H. M.; Kloet E. R. D. Two Receptor Systems for Corticosterone in Rat Brain: Microdistribution and Differential Occupation. Endocrinology 1985, 117 (6), 2505–2511. 10.1210/endo-117-6-2505. PubMed DOI

Brinton R. D.; Thompson R. F.; Foy M. R.; Baudry M.; Wang J.; Finch C. E.; Morgan T. E.; Pike C. J.; Mack W. J.; Stanczyk F. Z.; Nilsen J. Progesterone Receptors: Form and Function in Brain. Front Neuroendocrinol 2008, 29 (2), 313–339. 10.1016/j.yfrne.2008.02.001. PubMed DOI PMC

Sarkey S.; Azcoitia I.; Garcia-Segura L. M.; Garcia-Ovejero D.; DonCarlos L. L. Classical Androgen Receptors in Non-Classical Sites in the Brain. Horm Behav 2008, 53 (5), 753–764. 10.1016/j.yhbeh.2008.02.015. PubMed DOI PMC

Koníčková D.; Menšíková K.; Tučková L.; Hényková E.; Strnad M.; Friedecký D.; Stejskal D.; Matěj R.; Kaňovský P.. Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022, 10 ( (7), ). 1760.10.3390/biomedicines10071760. PubMed DOI PMC

Hényková E.; Kaleta M.; Klíčová K.; Gonzalez G.; Novák O.; Strnad M.; Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson’s Disease Biomarkers, in Mammals. ACS Chem. Neurosci. 2022, 13 (23), 3230–3246. 10.1021/acschemneuro.2c00516. PubMed DOI

Kaleta M.; Hényková E.; Menšíková K.; Friedecký D.; Kvasnička A.; Klíčová K.; Koníčková D.; Strnad M.; Kaňovský P.; Novák O. Patients with Neurodegenerative Proteinopathies Exhibit Altered Tryptophan Metabolism in the Serum and Cerebrospinal Fluid. ACS Chem. Neurosci. 2024, 15 (3), 582–592. 10.1021/acschemneuro.3c00611. PubMed DOI PMC

Kanceva R.; Stárka L.; Kancheva L.; Hill M.; Veliková M.; Havrdová E. Increased Serum Levels of C21 Steroids in Female Patients with Multiple Sclerosis. Physiol Res. 2015, 64, S247–S254. 10.33549/physiolres.933145. PubMed DOI

Caruso D.; Melis M.; Fenu G.; Giatti S.; Romano S.; Grimoldi M.; Crippa D.; Marrosu M. G.; Cavaletti G.; Melcangi R. C. Neuroactive Steroid Levels in Plasma and Cerebrospinal Fluid of Male Multiple Sclerosis Patients. J. Neurochem 2014, 130 (4), 591–597. 10.1111/jnc.12745. PubMed DOI

di Michele F.; Longone P.; Romeo E.; Lucchetti S.; Brusa L.; Pierantozzi M.; Bassi A.; Bernardi G.; Stanzione P. Decreased Plasma and Cerebrospinal Fluid Content of Neuroactive Steroids in Parkinson’s Disease. Neurol Sci. 2003, 24 (3), 172–173. 10.1007/s10072-003-0115-1. PubMed DOI

Akwa Y. Steroids and Alzheimer’s Disease: Changes Associated with Pathology and Therapeutic Potential. Int. J. Mol. Sci. 2020, 21 (13), 4812.10.3390/ijms21134812. PubMed DOI PMC

Smith C. D.; Wekstein D. R.; Markesbery W. R.; Frye C. A. 3α,5α-THP: A Potential Plasma Neurosteroid Biomarker in Alzheimer’s Disease and Perhaps Non-Alzheimer’s Dementia. Psychopharmacology (Berl) 2006, 186 (3), 481–485. 10.1007/s00213-005-0186-1. PubMed DOI

Markianos M.; Panas M.; Kalfakis N.; Vassilopoulos D. Plasma Testosterone in Male Patients with Huntington’s Disease: Relations to Severity of Illness and Dementia. Ann. Neurol. 2005, 57 (4), 520–525. 10.1002/ana.20428. PubMed DOI

Lopez-Rodriguez A. B.; Acaz-Fonseca E.; Giatti S.; Caruso D.; Viveros M. P.; Melcangi R. C.; Garcia-Segura L. M. Correlation of Brain Levels of Progesterone and Dehydroepiandrosterone with Neurological Recovery after Traumatic Brain Injury in Female Mice. Psychoneuroendocrinology 2015, 56, 1–11. 10.1016/j.psyneuen.2015.02.018. PubMed DOI

Lopez-Rodriguez A. B.; Acaz-Fonseca E.; Spezzano R.; Giatti S.; Caruso D.; Viveros M. P.; Melcangi R. C.; Garcia-Segura L. M. Profiling Neuroactive Steroid Levels after Traumatic Brain Injury in Male Mice. Endocrinology 2016, 157 (10), 3983–3993. 10.1210/en.2016-1316. PubMed DOI

Conklin S. E.; Knezevic C. E. Advancements in the Gold Standard: Measuring Steroid Sex Hormones by Mass Spectrometry. Clin Biochem 2020, 82, 21–32. 10.1016/j.clinbiochem.2020.03.008. PubMed DOI

Parikh T. P.; Stolze B.; Ozarda Y.; Jonklaas J.; Welsh K.; Masika L.; Hill M.; Decherney A.; Soldin S. J. Diurnal Variation of Steroid Hormones and Their Reference Intervals Using Mass Spectrometric Analysis. Endocr Connect 2018, 7 (12), 1354–1361. 10.1530/EC-18-0417. PubMed DOI PMC

van der Veen A.; van Faassen M.; de Jong W. H. A.; van Beek A. P.; Dijck-Brouwer D. A. J.; Kema I. P. Development and Validation of a LC-MS/MS Method for the Establishment of Reference Intervals and Biological Variation for Five Plasma Steroid Hormones. Clin Biochem 2019, 68, 15–23. 10.1016/j.clinbiochem.2019.03.013. PubMed DOI

Kurniawan A. L.; Hsu C. Y.; Rau H. H.; Lin L. Y.; Chao J. C. J. Dietary Patterns in Relation to Testosterone Levels and Severity of Impaired Kidney Function among Middle-Aged and Elderly Men in Taiwan: A Cross-Sectional Study. Nutr J. 2019, 18 (1), 1–12. 10.1186/s12937-019-0467-x. PubMed DOI PMC

Dušková M.; Kolátorová L.; Šimková M.; Šrámková M.; Malíková M.; Horáčková L.; Vítků J.; Stárka L. Steroid Diagnostics of 21st Century in the Light of Their New Roles and Analytical Tools. Physiol. Res. 2020, 69 (Suppl. 2), S193–S203. 10.33549/physiolres.934517. PubMed DOI PMC

Cohen H.; Bates R. W. A Simple Quantitative Colorimetric Method for Estrogenic Steroids. J. Clin Endocrinol Metab 1947, 7 (10), 701–707. 10.1210/jcem-7-10-701. PubMed DOI

Pincus G.; Wheeler G.; Young G.; Zahl P. A. The Colorimetric Determination of Urinary Estrin. J. Biol. Chem. 1936, 253–266. 10.1016/S0021-9258(18)74680-2. DOI

Auchus R. J. Steroid Assays and Endocrinology: Best Practices for Basic Scientists. Endocrinology 2014, 155 (6), 2049–2051. 10.1210/en.2014-7534. PubMed DOI PMC

Yalow R. S. Radioimmunoassay: A Probe for the Fine Structure of Biologic Systems. Science (1979) 1978, 200 (4347), 1236–1245. 10.1126/science.208142. PubMed DOI

Zendjabil M.; Chellouai Z.; Abbou O. Role of Mass Spectrometry in Steroid Assays. Ann. Endocrinol (Paris) 2016, 77 (1), 43–48. 10.1016/j.ando.2016.01.004. PubMed DOI

Abraham G. E. Solid-Phase Radioimmunoassay of Estradiol-17β. J. Clin Endocrinol Metab 1969, 29 (6), 866–870. 10.1210/jcem-29-6-866. PubMed DOI

Kancheva R.; Hill M.; Novák Z.; Chrastina J.; Velíková M.; Kancheva L.; Říha I.; Stárka L. Peripheral Neuroactive Steroids May Be as Good as the Steroids in the Cerebrospinal Fluid for the Diagnostics of CNS Disturbances. J. Steroid Biochem Mol. Biol. 2010, 119 (1–2), 35–44. 10.1016/j.jsbmb.2009.12.006. PubMed DOI

Taieb J.; Mathian B.; Millot F.; Patricot M. C.; Mathieu E.; Queyrel N.; Lacroix I.; Somma-Delpero C.; Boudou P. Testosterone Measured by 10 Immunoassays and by Isotope-Dilution Gas Chromatography-Mass Spectrometry in Sera from 116 Men, Women, and Children. Clin Chem. 2003, 49 (8), 1381–1395. 10.1373/49.8.1381. PubMed DOI

Faupel-Badger J. M.; Fuhrman B. J.; Xu X.; Falk R. T.; Keefer L. K.; Veenstra T. D.; Hoover R. N.; Ziegler R. G. Comparison of Liquid Chromatography-Tandem Mass Spectrometry, RIA, and ELISA Methods for Measurement of Urinary Estrogens. Cancer Epidemiol Biomarkers Prev 2010, 19 (1), 292–300. 10.1158/1055-9965.EPI-09-0643. PubMed DOI PMC

Yuan T. F.; Le J.; Wang S. T.; Li Y. An LC/MS/MS Method for Analyzing the Steroid Metabolome with High Accuracy and from Small Serum Samples. J. Lipid Res. 2020, 61 (4), 580–586. 10.1194/jlr.D119000591. PubMed DOI PMC

Nilsson M. E.; Vandenput L.; Tivesten Å.; Norlén A.-K. K.; Lagerquist M. K.; Windahl S. H.; Börjesson A. E.; Farman H. H.; Poutanen M.; Benrick A.; Maliqueo M.; Stener-Victorin E.; Ryberg H.; Ohlsson C. Measurement of a Comprehensive Sex Steroid Profile in Rodent Serum by High-Sensitive Gas Chromatography-Tandem Mass Spectrometry. Endocrinology 2015, 156 (7), 2492–2502. 10.1210/en.2014-1890. PubMed DOI

Eneroth P.; Hellstroem K.; Ryhage R. Identification and Quantification of Neutral Fecal Steroids By Gas-Liquid Chromatography and Mass Spectrometry: Studies of Human Excretion During Two Dietary Regimens. J. Lipid Res. 1964, 5 (2), 245–262. 10.1016/S0022-2275(20)40246-9. PubMed DOI

Hill M.; Hána V.; Velíková M.; Pařízek A.; Kolátorová L.; Vítků J.; Škodová T.; Šimková M.; Šimják P.; Kancheva R.; Koucký M.; Kokrdová Z.; Adamcová K.; Černý A.; Hájek Z.; Dušková M.; Bulant J.; Stárka L. A Method for Determination of One Hundred Endogenous Steroids in Human Serum by Gas Chromatography-Tandem Mass Spectrometry. Physiol. Res. 2019, 68 (2), 179–207. 10.33549/physiolres.934124. PubMed DOI

Matysik S.; Schmitz G. Determination of Steroid Hormones in Human Plasma by GC–Triple Quadrupole MS. Steroids 2015, 99, 151–154. 10.1016/j.steroids.2015.01.016. PubMed DOI

Hansen M.; Jacobsen N. W.; Nielsen F. K.; Björklund E.; Styrishave B.; Halling-Sørensen B. Determination of Steroid Hormones in Blood by GC-MS/MS. Anal. Bioanal. Chem. 2011, 400 (10), 3409–3417. 10.1007/s00216-011-5038-8. PubMed DOI

Pennell K. D.; Woodin M. A.; Pennell P. B. Quantification of Neurosteroids during Pregnancy Using Selective Ion Monitoring Mass Spectrometry. Steroids 2015, 95 (1), 24–31. 10.1016/j.steroids.2014.12.007. PubMed DOI PMC

Yesildal F.; Serdar M.; Ozgurtas T. A Practical ID-LC-MS/MS Method for the Most Commonly Analyzed Steroid Hormones in Clinical Laboratories. Turkish J. Biochem 2019, 44 (2), 130–141. 10.1515/tjb-2018-0214. DOI

Li X. (.; Li S.; Kellermann G. Simultaneous Determination of Three Estrogens in Human Saliva without Derivatization or Liquid-Liquid Extraction for Routine Testing via Miniaturized Solid Phase Extraction with LC-MS/MS Detection. Talanta 2018, 178, 464–472. 10.1016/j.talanta.2017.09.062. PubMed DOI

Sosvorova L.; Vitku J.; Chlupacova T.; Mohapl M.; Hampl R. Determination of Seven Selected Neuro- and Immunomodulatory Steroids in Human Cerebrospinal Fluid and Plasma Using LC-MS/MS. Steroids 2015, 98, 1–8. 10.1016/j.steroids.2015.01.019. PubMed DOI

Márta Z.; Bobály B.; Fekete J.; Magda B.; Imre T.; Mészáros K. V.; Bálint M.; Szabó P. T. Simultaneous Determination of Thirteen Different Steroid Hormones Using Micro UHPLC-MS/MS with on-Line SPE System. J. Pharm. Biomed Anal 2018, 150, 258–267. 10.1016/j.jpba.2017.12.014. PubMed DOI

Wang Z.; Wang H.; Peng Y.; Chen F.; Zhao L.; Li X.; Qin J.; Li Q.; Wang B.; Pan B.; Guo W. A Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Assay to Profile 20 Plasma Steroids in Endocrine Disorders. Clin Chem. Lab Med. 2020, 58 (9), 1477–1487. 10.1515/cclm-2019-0869. PubMed DOI

Gomez-Gomez A.; Pozo O. J. Determination of Steroid Profile in Hair by Liquid Chromatography Tandem Mass Spectrometry. J. Chromatogr A 2020, 1624, 46117910.1016/j.chroma.2020.461179. PubMed DOI

Wang Y.; Tang L.; Yin W.; Chen J.; Leng T.; Zheng X.; Zhu W.; Zhang H.; Qiu P.; Yang X.; Yan G.; Hu H. Simultaneous Determination of Seven Neuroactive Steroids Associated with Depression in Rat Plasma and Brain by High Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Sci. 2016, 32 (9), 981–988. 10.2116/analsci.32.981. PubMed DOI

Dury A. Y.; Ke Y.; Gonthier R.; Isabelle M.; Simard J. N.; Labrie F. Validated LC–MS/MS Simultaneous Assay of Five Sex Steroid/Neurosteroid-Related Sulfates in Human Serum. J. Steroid Biochem Mol. Biol. 2015, 149, 1–10. 10.1016/j.jsbmb.2015.01.006. PubMed DOI

Zhang J.; Tang C.; Oberly P. J.; Minnigh M. B.; Achilles S. L.; Poloyac S. M. A Sensitive and Robust UPLC–MS/MS Method for Quantitation of Estrogens and Progestogens in Human Serum. Contraception 2019, 99 (4), 244–250. 10.1016/j.contraception.2018.12.010. PubMed DOI PMC

Higashi T.; Aiba N.; Tanaka T.; Yoshizawa K.; Ogawa S. Methods for Differential and Quantitative Analyses of Brain Neurosteroid Levels by LC/MS/MS with ESI-Enhancing and Isotope-Coded Derivatization. J. Pharm. Biomed Anal 2016, 117, 155–162. 10.1016/j.jpba.2015.08.040. PubMed DOI

Sharp S.; Mitchell S. J.; Vallée M.; Kuzmanova E.; Cooper M.; Belelli D.; Lambert J. J.; Huang J. T. J. Isotope Dilution-Based Targeted and Nontargeted Carbonyl Neurosteroid/Steroid Profiling. Anal. Chem. 2018, 90 (8), 5247–5255. 10.1021/acs.analchem.8b00055. PubMed DOI

Naldi A. C.; Fayad P. B.; Prévost M.; Sauvé S. Analysis of Steroid Hormones and Their Conjugated Forms in Water and Urine by On-Line Solid-Phase Extraction Coupled to Liquid Chromatography Tandem Mass Spectrometry. Chem. Cent J. 2016, 10 (1), 1–17. 10.1186/s13065-016-0174-z. PubMed DOI PMC

Wozniak B.; Matraszek-Zuchowska I.; Zmudzki J. LC-MS/MS Fast Analysis of Androgenic Steroids in Urine. Anal Bioanal Chem. 2012, 403 (10), 2965–2972. 10.1007/s00216-012-5859-0. PubMed DOI

Gao W.; Stalder T.; Kirschbaum C. Quantitative Analysis of Estradiol and Six Other Steroid Hormones in Human Saliva Using a High Throughput Liquid Chromatography-Tandem Mass Spectrometry Assay. Talanta 2015, 143, 353–358. 10.1016/j.talanta.2015.05.004. PubMed DOI

Jurgens E.; Knaven E. J.; Hegeman E. C. A.; van Gemert M. W. M.; Emmen J. M. A.; Mulder Y.; Ijsselstijn L.; de Rooij B. M.; Noij T. H. M. Quantitative Profiling of Seven Steroids in Saliva Using LC-MS/MS. J. Appl. Bioanal 2019, 5 (2), 34–45. 10.17145/jab.19.006. DOI

Hobo Y.; Nishikawa J.; Miyashiro Y.; Fujikata A. Measurement of Steroid Hormones by Liquid Chromatography-Tandem Mass Spectrometry with Small Amounts of Hair. Steroids 2020, 164, 10873210.1016/j.steroids.2020.108732. PubMed DOI

Voegel C. D.; La Marca-Ghaemmaghami P.; Ehlert U.; Baumgartner M. R.; Kraemer T.; Binz T. M. Steroid Profiling in Nails Using Liquid Chromatography-Tandem Mass Spectrometry. Steroids 2018, 140, 144–150. 10.1016/j.steroids.2018.09.015. PubMed DOI

Storbeck K. H.; Gilligan L.; Jenkinson C.; Baranowski E. S.; Quanson J. L.; Arlt W.; Taylor A. E. The Utility of Ultra-High Performance Supercritical Fluid Chromatography–Tandem Mass Spectrometry (UHPSFC-MS/MS) for Clinically Relevant Steroid Analysis. J. Chromatogr B 2018, 1085, 36–41. 10.1016/j.jchromb.2018.03.033. PubMed DOI

Kaleta M.; Oklestkova J.; Novák O.; Strnad M.. Analytical Methods for the Determination of Neuroactive Steroids. Biomolecules 2021, 11 ( (4), ). 553.10.3390/biom11040553. PubMed DOI PMC

Koníčková D.; Menšíková K.; Klíčová K.; Chudáčková M.; Kaiserová M.; Přikrylová H.; Otruba P.; Nevrlý M.; Hluštík P.; Hényková E.; Kaleta M.; Friedecký D.; Matěj R.; Strnad M.; Novák O.; Plíhalová L.; Rosales R.; Colosimo C.; Kaňovský P. Cerebrospinal Fluid and Blood Serum Biomarkers in Neurodegenerative Proteinopathies: A Prospective, Open, Cross-Correlation Study. J. Neurochem 2023, 167 (2), 168–182. 10.1111/jnc.15944. PubMed DOI

Vallée M. Neurosteroids and Potential Therapeutics: Focus on Pregnenolone. J. Steroid Biochem Mol. Biol. 2016, 160, 78–87. 10.1016/j.jsbmb.2015.09.030. PubMed DOI

Gursoy E.; Cardounel A.; Kalimi M. Pregnenolone Protects Mouse Hippocampal (HT-22) Cells against Glutamate and Amyloid Beta Protein Toxicity. Neurochem. Res. 2001, 26 (1), 15–21. 10.1023/A:1007668213330. PubMed DOI

Djebaili M.; Guo Q.; Pettus E. H.; Hoffman S. W.; Stein D. G. The Neurosteroids Progesterone and Allopregnanolone Reduce Cell Death, Gliosis, and Functional Deficits after Traumatic Brain Injury in Rats. J. Neurotrauma 2005, 22 (1), 106–118. 10.1089/neu.2005.22.106. PubMed DOI

Roglio I.; Bianchi R.; Gotti S.; Scurati S.; Giatti S.; Pesaresi M.; Caruso D.; Panzica G. C.; Melcangi R. C. Neuroprotective Effects of Dihydroprogesterone and Progesterone in an Experimental Model of Nerve Crush Injury. Neuroscience 2008, 155 (3), 673–685. 10.1016/j.neuroscience.2008.06.034. PubMed DOI

Atif F.; Yousuf S.; Stein D. G. Anti-Tumor Effects of Progesterone in Human Glioblastoma Multiforme: Role of PI3K/Akt/mTOR Signaling. J. Steroid Biochem Mol. Biol. 2015, 146, 62–73. 10.1016/j.jsbmb.2014.04.007. PubMed DOI

Belelli D.; Bolger M. B.; Gee K. W. Anticonvulsant Profile of the Progesterone Metabolite 5α-Pregnan-3α-Ol-20-One. Eur. J. Pharmacol. 1989, 166 (2), 325–329. 10.1016/0014-2999(89)90077-0. PubMed DOI

Khisti R. T.; Chopde C. T.; Jain S. P. Antidepressant-like Effect of the Neurosteroid 3α-Hydroxy-5α-Pregnan-20-One in Mice Forced Swim Test. Pharmacol., Biochem. Behav. 2000, 67 (1), 137–143. 10.1016/S0091-3057(00)00300-2. PubMed DOI

Kavaliers M.; Wiebe J. P. Analgesic Effects of the Progesterone Metabolite, 3α-Hydroxy-5α-Pregnan-20-One, and Possible Modes of Action in Mice. Brain Res. 1987, 415 (2), 393–398. 10.1016/0006-8993(87)90228-9. PubMed DOI

Stárka L.; Dušková M.; Hill M. Dehydroepiandrosterone: A Neuroactive Steroid. J. Steroid Biochem Mol. Biol. 2015, 145, 254–260. 10.1016/j.jsbmb.2014.03.008. PubMed DOI

Dubrovsky B. O. Steroids, Neuroactive Steroids and Neurosteroids in Psychopathology. Prog. Neuropsychopharmacol Biol. Psychiatry 2005, 29 (2), 169–192. 10.1016/j.pnpbp.2004.11.001. PubMed DOI

Yang L.; Zhou R.; Tong Y.; Chen P.; Shen Y.; Miao S.; Liu X. Neuroprotection by Dihydrotestosterone in LPS-Induced Neuroinflammation. Neurobiol Dis 2020, 140, 10481410.1016/j.nbd.2020.104814. PubMed DOI

Romanutti C.; Bruttomesso A. C.; Castilla V.; Galagovsky L. R.; Wachsman M. B. Anti-Adenovirus Activity of Epiandrosterone and Dehydroepiandrosterone Derivatives. Chemotherapy 2010, 56 (2), 158–165. 10.1159/000313530. PubMed DOI

Vitku J.; Kolatorova L.; Ricco C.; Ferroud C.; Hennebert O.; Skodova T.; Heracek J.; Starka L. The Quantitation of 7β-Hydroxy-Epiandrosterone in the Plasma and Seminal Plasma of Men With Different Degrees of Fertility. Physiol Res. 2018, 67, S511–S519. 10.33549/physiolres.933963. PubMed DOI

Hauser B.; Deschner T.; Boesch C. Development of a Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of 23 Endogenous Steroids in Small Quantities of Primate Urine. J. Chromatogr. B 2008, 862 (1–2), 100–112. 10.1016/j.jchromb.2007.11.009. PubMed DOI

Jalabert C.; Ma C.; Soma K. K. Profiling of Systemic and Brain Steroids in Male Songbirds: Seasonal Changes in Neurosteroids. J. Neuroendocrinol 2021, 33 (1), e1292210.1111/jne.12922. PubMed DOI

Liu S. S.; Ying G. G.; Liu S.; Lai H. J.; Chen Z. F.; Pan C. G.; Zhao J. L.; Chen J. Analysis of 21 Progestagens in Various Matrices by Ultra-High-Performance Liquid Chromatography Tandem Mass Spectrometry (UHPLC-MS/MS) with Diverse Sample Pretreatment. Anal Bioanal Chem. 2014, 406 (28), 7299–7311. 10.1007/s00216-014-8146-4. PubMed DOI

Tömösi F.; Kecskeméti G.; Cseh E. K.; Szabó E.; Rajda C.; Kormány R.; Szabó Z.; Vécsei L.; Janáky T. A Validated UHPLC-MS Method for Tryptophan Metabolites: Application in the Diagnosis of Multiple Sclerosis. J. Pharm. Biomed Anal 2020, 185, 11324610.1016/j.jpba.2020.113246. PubMed DOI

Lindner J. M.; Vogeser M.; Grimm S. H. Biphenyl Based Stationary Phases for Improved Selectivity in Complex Steroid Assays. J. Pharm. Biomed Anal 2017, 142, 66–73. 10.1016/j.jpba.2017.04.020. PubMed DOI

Stachniuk A.; Fornal E. Liquid Chromatography-Mass Spectrometry in the Analysis of Pesticide Residues in Food. Food Anal Methods 2016, 9 (6), 1654–1665. 10.1007/s12161-015-0342-0. DOI

Ciccimaro E.; Blair I. A. Stable-Isotope Dilution LC-MS for Quantitative Biomarker Analysis. Bioanalysis 2010, 2 (2), 311–341. 10.4155/bio.09.185. PubMed DOI PMC

Owen L. J.; Wu F. C.; Büttler R. M.; Keevil B. G. A Direct Assay for the Routine Measurement of Testosterone, Androstenedione, Dihydrotestosterone and Dehydroepiandrosterone by Liquid Chromatography Tandem Mass Spectrometry. Ann. Clin Biochem 2016, 53 (5), 580–587. 10.1177/0004563215621096. PubMed DOI

Büttler R. M.; Martens F.; Kushnir M. M.; Ackermans M. T.; Blankenstein M. A.; Heijboer A. C. Simultaneous Measurement of Testosterone, Androstenedione and Dehydroepiandrosterone (DHEA) in Serum and Plasma Using Isotope-Dilution 2-Dimension Ultra High Performance Liquid-Chromatography Tandem Mass Spectrometry (ID-LC-MS/MS). Clin. Chim. Acta 2015, 438, 157–159. 10.1016/j.cca.2014.08.023. PubMed DOI

Simerský R.; Novák O.; Morris D. A.; Pouzar V.; Strnad M. Identification and Quantification of Several Mammalian Steroid Hormones in Plants by UPLC-MS/MS. J. Plant Growth Regul 2009, 28 (2), 125–136. 10.1007/s00344-009-9081-z. DOI

Legacki E. L.; Scholtz E. L.; Ball B. A.; Stanley S. D.; Berger T.; Conley A. J. The Dynamic Steroid Landscape of Equine Pregnancy Mapped by Mass Spectrometry. Reproduction 2016, 151 (4), 421–430. 10.1530/REP-15-0547. PubMed DOI

Xu W.; Li H.; Guan Q.; Shen Y.; Cheng L. A Rapid and Simple Liquid Chromatography-Tandem Mass Spectrometry Method for the Measurement of Testosterone, Androstenedione, and Dehydroepiandrosterone in Human Serum. J. Clin Lab Anal 2017, 31 (5), e2210210.1002/jcla.22102. PubMed DOI PMC

European Medicines Agency . Guideline on Bioanalytical Method Validation; European Medicines Agency: UK, 2011; pp 1–23. PubMed

Wishart D. S.; Guo A. C.; Oler E.; Wang F.; Anjum A.; Peters H.; Dizon R.; Sayeeda Z.; Tian S.; Lee B. L.; Berjanskii M.; Mah R.; Yamamoto M.; Jovel J.; Torres-Calzada C.; Hiebert-Giesbrecht M.; Lui V. W.; Varshavi D.; Varshavi D.; Allen D.; Arndt D.; Khetarpal N.; Sivakumaran A.; Harford K.; Sanford S.; Yee K.; Cao X.; Budinski Z.; Liigand J.; Zhang L.; Zheng J.; Mandal R.; Karu N.; Dambrova M.; Schiöth H. B.; Greiner R.; Gautam V. HMDB 5.0: The Human Metabolome Database for 2022. Nucleic Acids Res. 2022, 50, D622–D631. 10.1093/nar/gkab1062. PubMed DOI PMC

Wald J.; Henningsson A.; Hanze E.; Hoffmann E.; Li H.; Colquhoun H.; Deligiannidis K. M. Allopregnanolone Concentrations in Breast Milk and Plasma from Healthy Volunteers Receiving Brexanolone Injection, With Population Pharmacokinetic Modeling of Potential Relative Infant Dose. Clin Pharmacokinet 2022, 61 (9), 1307–1319. 10.1007/s40262-022-01155-w. PubMed DOI PMC

Irwin R. W.; Solinsky C. M.; Loya C. M.; Salituro F. G.; Rodgers K. E.; Bauer G.; Rogawski M. A.; Brinton R. D.; Stutzmann G. E. Allopregnanolone Preclinical Acute Pharmacokinetic and Pharmacodynamic Studies to Predict Tolerability and Efficacy for Alzheimer’s Disease. PLoS One 2015, 10 (6), e012831310.1371/journal.pone.0128313. PubMed DOI PMC

Zhou W.; Yang S.; Wang P. G. Matrix Effects and Application of Matrix Effect Factor. Bioanalysis 2017, 9 (23), 1839–1844. 10.4155/bio-2017-0214. PubMed DOI

Keevil B. G. LC–MS/MS Analysis of Steroids in the Clinical Laboratory. Clin Biochem 2016, 49 (13–14), 989–997. 10.1016/j.clinbiochem.2016.04.009. PubMed DOI

Blackwell B. R.; Ankley G. T. Simultaneous Determination of a Suite of Endogenous Steroids by LC-APPI-MS: Application to the Identification of Endocrine Disruptors in Aquatic Toxicology. Journal of Chromatography B 2021, 1163, 12251310.1016/j.jchromb.2020.122513. PubMed DOI PMC

Kushnir M. M.; Rockwood A. L.; Roberts W. L.; Yue B.; Bergquist J.; Meikle A. W. Liquid Chromatography Tandem Mass Spectrometry for Analysis of Steroids in Clinical Laboratories. Clin Biochem 2011, 44 (1), 77–88. 10.1016/j.clinbiochem.2010.07.008. PubMed DOI

Ceglarek U.; Kortz L.; Leichtle A.; Fiedler G. M.; Kratzsch J.; Thiery J. Rapid Quantification of Steroid Patterns in Human Serum by On-Line Solid Phase Extraction Combined with Liquid Chromatography–Triple Quadrupole Linear Ion Trap Mass Spectrometry. Clin. Chim. Acta 2009, 401 (1–2), 114–118. 10.1016/j.cca.2008.11.022. PubMed DOI

Sun Q.; Gu J.; Stolze B. R.; Soldin S. J. Atmospheric Pressure Chemical Ionization Is a Suboptimal Ionization Source for Steroids. Clin Chem. 2018, 64 (6), 974–976. 10.1373/clinchem.2018.287029. PubMed DOI

Keevil B. G. Novel Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS) Methods for Measuring Steroids. Best Pract Res. Clin Endocrinol Metab 2013, 27 (5), 663–674. 10.1016/j.beem.2013.05.015. PubMed DOI

Matuszewski B. K.; Constanzer M. L.; Chavez-Eng C. M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC-MS/MS. Anal. Chem. 2003, 75 (13), 3019–3030. 10.1021/ac020361s. PubMed DOI

Soleimani N.; Mohammadzadeh S.; Asadian F.. Lipemia Interferences in Biochemical Tests, Investigating the Efficacy of Different Removal Methods in Comparison with Ultracentrifugation as the Gold Standard. J. Anal Methods Chem. 2020, 2020. 1.10.1155/2020/9857636. PubMed DOI PMC

Moosavi S. M.; Ghassabian S.. Linearity of Calibration Curves for Analytical Methods: A Review of Criteria for Assessment of Method Reliability. In Calibration and Validation of Analytical Methods - A Sampling of Current Approaches; InTech, 2018; pp 109–127. 10.5772/intechopen.72932. DOI

De Nicolò A.; Cantù M.; D’Avolio A. Matrix Effect Management in Liquid Chromatography Mass Spectrometry: The Internal Standard Normalized Matrix Effect. Bioanalysis 2017, 9 (14), 1093–1105. 10.4155/bio-2017-0059. PubMed DOI

Xia Y.; Jemal M. Phospholipids in Liquid Chromatography/Mass Spectrometry Bioanalysis: Comparison of Three Tandem Mass Spectrometric Techniques for Monitoring Plasma Phospholipids, the Effect of Mobile Phase Composition on Phospholipids Elution and the Association of Phospholipids with Matrix Effects. Rapid Commun. Mass Spectrom. 2009, 23 (14), 2125–2138. 10.1002/rcm.4121. PubMed DOI

Nováková L.; Vlčková H. A Review of Current Trends and Advances in Modern Bio-Analytical Methods: Chromatography and Sample Preparation. Anal. Chim. Acta 2009, 656 (1–2), 8–35. 10.1016/j.aca.2009.10.004. PubMed DOI

Handelsman D. J.; Desai R.; Seibel M. J.; Le Couteur D. G.; Cumming R. G. Circulating Sex Steroid Measurements of Men by Mass Spectrometry Are Highly Reproducible after Prolonged Frozen Storage. Journal of Steroid Biochemistry and Molecular Biology 2020, 197, 10552810.1016/j.jsbmb.2019.105528. PubMed DOI

Khonmee J.; Brown J. L.; Li M. Y.; Somgird C.; Boonprasert K.; Norkaew T.; Punyapornwithaya V.; Lee W. M.; Thitaram C. Effect of Time and Temperature on Stability of Progestagens, Testosterone and Cortisol in Asian Elephant Blood Stored with and without Anticoagulant. Conserv. Physiol. 2019, 7 (1), 1–7. 10.1093/conphys/coz031. PubMed DOI PMC

Fanelli F.; Belluomo I.; Di Lallo V. D.; Cuomo G.; De Iasio R.; Baccini M.; Casadio E.; Casetta B.; Vicennati V.; Gambineri A.; Grossi G.; Pasquali R.; Pagotto U. Serum Steroid Profiling by Isotopic Dilution-Liquid Chromatography–Mass Spectrometry: Comparison with Current Immunoassays and Reference Intervals in Healthy Adults. Steroids 2011, 76 (3), 244–253. 10.1016/j.steroids.2010.11.005. PubMed DOI

Marchetti P. M.; Barth J. H. Clinical Biochemistry of Dihydrotestosterone. Ann. Clin Biochem 2013, 50 (2), 95–107. 10.1258/acb.2012.012159. PubMed DOI

Swerdloff R. S.; Dudley R. E.; Page S. T.; Wang C.; Salameh W. A. Dihydrotestosterone: Biochemistry, Physiology, and Clinical Implications of Elevated Blood Levels. Endocr Rev. 2017, 38 (3), 220–254. 10.1210/er.2016-1067. PubMed DOI PMC

Kushnir M. M.; Rockwood A. L.; Roberts W. L.; Pattison E. G.; Owen W. E.; Bunker A. M.; Meikle A. W. Development and Performance Evaluation of a Tandem Mass Spectrometry Assay for 4 Adrenal Steroids. Clin Chem. 2006, 52 (8), 1559–1567. 10.1373/clinchem.2006.068445. PubMed DOI

Wald J.; Henningsson A.; Hanze E.; Hoffmann E.; Li H.; Colquhoun H.; Deligiannidis K. M. Allopregnanolone Concentrations in Breast Milk and Plasma from Healthy Volunteers Receiving Brexanolone Injection, with Population Pharmacokinetic Modeling of Potential Relative Infant Dose. Clin Pharmacokinet 2022, 61 (9), 1307–1319. 10.1007/s40262-022-01155-w. PubMed DOI PMC

Hernandez G. D.; Brinton R. D. Allopregnanolone: Regenerative Therapeutic to Restore Neurological Health. Neurobiol Stress 2022, 21, 10050210.1016/j.ynstr.2022.100502. PubMed DOI PMC

Genazzani A. R.; Petraglia F.; Bernardi F.; Casarosa E.; Salvestroni C.; Tonetti A.; Nappi R. E.; Luisi S.; Palumbo M.; Purdy R. H.; Luisi M. Circulating Levels of Allopregnanolone in Humans: Gender, Age, and Endocrine Influences. J. Clin Endocrinol Metab 1998, 83 (6), 2099–2103. 10.1210/jcem.83.6.4905. PubMed DOI

Pearson Murphy B. E.; Steinberg S. I.; Hu F.-Y.; Allison C. M. Neuroactive Ring A-Reduced Metabolites of Progesterone in Human Plasma during Pregnancy: Elevated Levels of 5α-Dihydroprogesterone in Depressed Patients during the Latter Half of Pregnancy. J. Clin Endocrinol Metab 2001, 86 (12), 5981–5987. 10.1210/jcem.86.12.8122. PubMed DOI

Nieminen L. R. G.; Makino K. K.; Mehta N.; Virkkunen M.; Kim H. Y.; Hibbeln J. R. Relationship between Omega-3 Fatty Acids and Plasma Neuroactive Steroids in Alcoholism, Depression and Controls. Prostaglandins Leukot Essent Fatty Acids 2006, 75 (4–5), 309–314. 10.1016/j.plefa.2006.07.012. PubMed DOI

Martín-Fernández J. A.; Barceló-Vidal C.; Pawlowsky-Glahn V. Dealing with Zeros and Missing Values in Compositional Data Sets Using Nonparametric Imputation. Math Geol 2003, 35 (3), 253–278. 10.1023/A:1023866030544. DOI

Kohyama A.; Yokoyama R.; Dibwe D. F.; El-Mekkawy S.; Meselhy M. R.; Awale S.; Matsuya Y. Synthesis of Guggulsterone Derivatives as Potential Anti-Austerity Agents against PANC-1 Human Pancreatic Cancer Cells. Bioorg. Med. Chem. Lett. 2020, 30 (7), 12696410.1016/j.bmcl.2020.126964. PubMed DOI

Hényková E.; Vránová H. P.; Amakorová P.; Pospíšil T.; Žukauskaite A.; Vlčková M.; Urbánek L.; Novák O.; Mareš J.; Kaňovský P.; Strnad M. Stable Isotope Dilution Ultra-High Performance Liquid Chromatography-Tandem Mass Spectrometry Quantitative Profiling of Tryptophan-Related Neuroactive Substances in Human Serum and Cerebrospinal Fluid. J. Chromatogr A 2016, 1437, 145–157. 10.1016/j.chroma.2016.02.009. PubMed DOI

de Kock N.; Acharya S. R.; Ubhayasekera S. J. K. A.; Bergquist J. A Novel Targeted Analysis of Peripheral Steroids by Ultra-Performance Supercritical Fluid Chromatography Hyphenated to Tandem Mass Spectrometry. Sci. Rep 2018, 8 (1), 1–9. 10.1038/s41598-018-35007-0. PubMed DOI PMC

U.S. Food and Drug Administration . Bioanalytical Method Validation, Guidance for Industry; U.S. Food and Drug Administration: USA, 2018; pp 1–41.

Steiner D.; Krska R.; Malachová A.; Taschl I.; Sulyok M. Evaluation of Matrix Effects and Extraction Efficiencies of LC-MS/MS Methods as the Essential Part for Proper Validation of Multiclass Contaminants in Complex Feed. J. Agric. Food Chem. 2020, 68 (12), 3868–3880. 10.1021/acs.jafc.9b07706. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...