Analytical Methods for the Determination of Neuroactive Steroids

. 2021 Apr 09 ; 11 (4) : . [epub] 20210409

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33918915

Grantová podpora
IGA_PrF_2021_011 Palacky University
No. CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF project "Plants as a tool for sustainable global development"

Neuroactive steroids are a family of all steroid-based compounds, of both natural and synthetic origin, which can affect the nervous system functions. Their biosynthesis occurs directly in the nervous system (so-called neurosteroids) or in peripheral endocrine tissues (hormonal steroids). Steroid hormone levels may fluctuate due to physiological changes during life and various pathological conditions affecting individuals. A deeper understanding of neuroactive steroids' production, in addition to reliable monitoring of their levels in various biological matrices, may be useful in the prevention, diagnosis, monitoring, and treatment of some neurodegenerative and psychiatric diseases. The aim of this review is to highlight the most relevant methods currently available for analysis of neuroactive steroids, with an emphasis on immunoanalytical methods and gas, or liquid chromatography combined with mass spectrometry.

Zobrazit více v PubMed

Melcangi R.C., Giatti S., Garcia-Segura L.M. Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci. Biobehav. Rev. 2016;67:25–40. doi: 10.1016/j.neubiorev.2015.09.023. PubMed DOI

Giatti S., Garcia-Segura L.M., Barreto G.E., Melcangi R.C. Neuroactive steroids, neurosteroidogenesis and sex. Prog. Neurobiol. 2019;176:1–17. doi: 10.1016/j.pneurobio.2018.06.007. PubMed DOI

Greaves R.F., Jevalikar G., Hewitt J.K., Zacharin M.R. A guide to understanding the steroid pathway: New insights and diagnostic implications. Clin. Biochem. 2014;47:5–15. doi: 10.1016/j.clinbiochem.2014.07.017. PubMed DOI

Belvederi Murri M., Fanelli F., Pagotto U., Bonora E., Triolo F., Chiri L., Allegri F., Mezzullo M., Menchetti M., Mondelli V., et al. Neuroactive steroids in first-episode psychosis: A role for progesterone? Schizophr. Res. Treat. 2016;2016:1–6. doi: 10.1155/2016/1942828. PubMed DOI PMC

Melcangi R.C., Garcia-Segura L.M., Mensah-Nyagan A.G. Neuroactive steroids: State of the art and new perspectives. Cell. Mol. Life Sci. 2008;65:777–797. doi: 10.1007/s00018-007-7403-5. PubMed DOI PMC

Baulieu E.-E. Steroid Hormone Regulation of the Brain. Pergamon, Press; Oxford, UK: 1981. Steroid hormones in the brain: Several mechanisms? pp. 3–14.

Tuem K.B., Atey T.M. Neuroactive steroids: Receptor interactions and responses. Front. Neurol. 2017;8:1–10. doi: 10.3389/fneur.2017.00442. PubMed DOI PMC

Wang M. Neurosteroids and GABA-A Receptor function. Front. Endocrinol. 2011;2:1–23. doi: 10.3389/fendo.2011.00044. PubMed DOI PMC

Reddy D.S. Neurosteroids: Endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 2010;186:113–137. doi: 10.1016/B978-0-444-53630-3.00008-7. PubMed DOI PMC

Holst J.P., Soldin O.P., Guo T., Soldin S.J. Steroid hormones: Relevance and measurement in the clinical laboratory. Clin. Lab. Med. 2004;24:105–118. doi: 10.1016/j.cll.2004.01.004. PubMed DOI PMC

Zheng P. Neuroactive steroid regulation of neurotransmitter release in the CNS: Action, mechanism and possible significance. Prog. Neurobiol. 2009;89:134–152. doi: 10.1016/j.pneurobio.2009.07.001. PubMed DOI

Caruso D., Melis M., Fenu G., Giatti S., Romano S., Grimoldi M., Crippa D., Marrosu M.G., Cavaletti G., Melcangi R.C. Neuroactive steroid levels in plasma and cerebrospinal fluid of male multiple sclerosis patients. J. Neurochem. 2014;130:591–597. doi: 10.1111/jnc.12745. PubMed DOI

Cohen S.L., Marrian G.F. The application of the Kober test to the quantitative estimation of oestrone and oestriol in human pregnancy urine. Biochem. J. 1934;28:1603–1614. doi: 10.1042/bj0281603. PubMed DOI PMC

Cohen H., Bates R.W. A simple quantitative colorimetric method for estrogenic steroids. J. Clin. Endocrinol. Metab. 1947;7:701–707. doi: 10.1210/jcem-7-10-701. PubMed DOI

Pincus G., Wheeler G., Young G., Zahl P.A. The colorimetric determination of urinary estrin. J. Biol. Chem. 1936;116:253–266. doi: 10.1016/S0021-9258(18)74680-2. DOI

Auchus R.J. Steroid assays and endocrinology: Best practices for basic scientists. Endocrinology. 2014;155:2049–2051. doi: 10.1210/en.2014-7534. PubMed DOI PMC

Handelsman D.J. Mass spectrometry, immunoassay and valid steroid measurements in reproductive medicine and science. Hum. Reprod. 2017;32:1147–1150. doi: 10.1093/humrep/dex078. PubMed DOI

Wudy S.A., Schuler G., Sánchez-Guijo A., Hartmann M.F. The art of measuring steroids: Principles and practice of current hormonal steroid analysis. J. Steroid Biochem. Mol. Biol. 2018;179:88–103. doi: 10.1016/j.jsbmb.2017.09.003. PubMed DOI

Conklin S.E., Knezevic C.E. Advancements in the gold standard: Measuring steroid sex hormones by mass spectrometry. Clin. Biochem. 2020;82:21–32. doi: 10.1016/j.clinbiochem.2020.03.008. PubMed DOI

Gröschl M. Current status of salivary hormone analysis. Clin. Chem. 2008;54:1759–1769. doi: 10.1373/clinchem.2008.108910. PubMed DOI

Li X.S., Li S., Kellermann G. Simultaneous determination of three estrogens in human saliva without derivatization or liquid-liquid extraction for routine testing via miniaturized solid phase extraction with LC-MS/MS detection. Talanta. 2018;178:464–472. doi: 10.1016/j.talanta.2017.09.062. PubMed DOI

Cardoso E., Persi G., González N., Tumilasci O., Arregger A., Burgos M., Rodríguez V., Molina A., Contreras L.N. Assessment of adrenal function by measurement of salivary steroids in response to corticotrophin in patients infected with human immunodeficiency virus. Steroids. 2007;72:328–334. doi: 10.1016/j.steroids.2006.12.003. PubMed DOI

Wood P. Salivary steroid assays-research or routine? Ann. Clin. Biochem. 2009;46:183–196. doi: 10.1258/acb.2008.008208. PubMed DOI

Keevil B.G., Clifton S., Tanton C., Macdowall W., Copas A.J., Lee D., Field N., Mitchell K.R., Sonnenberg P., Bancroft J., et al. Distribution of salivary testosterone in men and women in a british general population-based sample: The third national survey of sexual attitudes and lifestyles (Natsal-3) J. Endocr. Soc. 2017;1:14–25. doi: 10.1210/js.2016-1029. PubMed DOI PMC

Prokai-Tatrai K., Bonds D., Prokai L. Simultaneous measurement of 17β-estradiol, 17α-estradiol and estrone by GC–isotope dilution MS–MS. Chromatographia. 2010;71:311–315. doi: 10.1365/s10337-009-1441-0. PubMed DOI PMC

Noppe G., de Rijke Y.B., Dorst K., van den Akker E.L.T., van Rossum E.F.C. LC-MS/MS-based method for long-term steroid profiling in human scalp hair. Clin. Endocrinol. 2015;83:162–166. doi: 10.1111/cen.12781. PubMed DOI

Shafigullina Z.R., Velikanova L.I., Vorokhobina N.V., Shustov S.B., Lisitsin A.A., Malevanaia E.V., Buinova M.O., Bessonova E.A., Kirsanov D.O. Urinary steroid profiling by gas chromatography mass spectrometry: Early features of malignancy in patients with adrenal incidentalomas. Steroids. 2018;135:31–35. doi: 10.1016/j.steroids.2018.04.006. PubMed DOI

Voegel C.D., La Marca-Ghaemmaghami P., Ehlert U., Baumgartner M.R., Kraemer T., Binz T.M. Steroid profiling in nails using liquid chromatography-tandem mass spectrometry. Steroids. 2018;140:144–150. doi: 10.1016/j.steroids.2018.09.015. PubMed DOI

Naldi A.C., Fayad P.B., Prévost M., Sauvé S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 2016;10:30. doi: 10.1186/s13065-016-0174-z. PubMed DOI PMC

Wozniak B., Matraszek-Zuchowska I., Zmudzki J. LC-MS/MS fast analysis of androgenic steroids in urine. Anal. Bioanal. Chem. 2012;403:2965–2972. doi: 10.1007/s00216-012-5859-0. PubMed DOI

Borts D.J., Bowers L.D. Direct measurement of urinary testosterone and epitestosterone conjugates using high-performance liquid chromatography/tandem mass spectrometry. J. Mass Spectrom. 2000;35:50–61. doi: 10.1002/(SICI)1096-9888(200001)35:1<50::AID-JMS912>3.0.CO;2-J. PubMed DOI

Sosvorova L., Vitku J., Chlupacova T., Mohapl M., Hampl R. Determination of seven selected neuro- and immunomodulatory steroids in human cerebrospinal fluid and plasma using LC-MS/MS. Steroids. 2015;98:1–8. doi: 10.1016/j.steroids.2015.01.019. PubMed DOI

Krone N., Hughes B.A., Lavery G.G., Stewart P.M., Arlt W., Shackleton C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS) J. Steroid Biochem. Mol. Biol. 2010;121:496–504. doi: 10.1016/j.jsbmb.2010.04.010. PubMed DOI PMC

Teubel J., Parr M.K. Determination of neurosteroids in human cerebrospinal fluid in the 21st century: A review. J. Steroid Biochem. Mol. Biol. 2020;204:105753. doi: 10.1016/j.jsbmb.2020.105753. PubMed DOI

Martin J., Plank E., Jungwirth B., Hapfelmeier A., Podtschaske A., Kagerbauer S.M. Weak correlations between serum and cerebrospinal fluid levels of estradiol, progesterone and testosterone in males. BMC Neurosci. 2019;20:1–6. doi: 10.1186/s12868-019-0535-3. PubMed DOI PMC

Nguyen H.P., Li L., Gatson J.W., Maass D., Wigginton J.G., Simpkins J.W., Schug K.A. Simultaneous quantification of four native estrogen hormones at trace levels in human cerebrospinal fluid using liquid chromatography–tandem mass spectrometry. J. Pharm. Biomed. Anal. 2011;54:830–837. doi: 10.1016/j.jpba.2010.11.014. PubMed DOI

Parikh T.P., Stolze B., Ozarda Y., Jonklaas J., Welsh K., Masika L., Hill M., DeCherney A., Soldin S.J. Diurnal variation of steroid hormones and their reference intervals using mass spectrometric analysis. Endocr. Connect. 2018;7:1354–1361. doi: 10.1530/EC-18-0417. PubMed DOI PMC

Stolze B.R., Gounden V., Gu J., Abel B.S., Merke D.P., Skarulis M.C., Soldin S.J. Use of Micro-HPLC-MS/MS Method to Assess Diurnal Effects on Steroid Hormones. Clin. Chem. 2015;61:556–558. doi: 10.1373/clinchem.2014.232546. PubMed DOI

Boyce M.J., Baisley K.J., Clark E.V., Warrington S.J. Are published normal ranges of serum testosterone too high? Results of a cross-sectional survey of serum testosterone and luteinizing hormone in healthy men. BJU Int. 2004;94:881–885. doi: 10.1111/j.1464-410X.2004.05051.x. PubMed DOI

Rosner W., Auchus R.J., Azziz R., Sluss P.M., Raff H. Utility, Limitations, and pitfalls in measuring testosterone: An endocrine society position statement. J. Clin. Endocrinol. Metab. 2007;92:405–413. doi: 10.1210/jc.2006-1864. PubMed DOI

Yalow R.S., Berson S.A. Assay of plasma insulin in human subjects by immunological methods. Nature. 1959;184:1648–1649. doi: 10.1038/1841648b0. PubMed DOI

Glick S. Rosalyn Sussman Yalow (1921–2011) Nature. 2011;474:580. doi: 10.1038/474580a. PubMed DOI

Yalow R.S. Radioimmunoassay: A probe for the fine structure of biologic systems. Science. 1978;200:1236–1245. doi: 10.1126/science.208142. PubMed DOI

Abraham G.E. Solid-phase radioimmunoassay of estradiol-17β. J. Clin. Endocrinol. Metab. 1969;29:866–870. doi: 10.1210/jcem-29-6-866. PubMed DOI

Zendjabil M., Chellouai Z., Abbou O. Role of mass spectrometry in steroid assays. Ann. Endocrinol. 2016;77:43–48. doi: 10.1016/j.ando.2016.01.004. PubMed DOI

Tian W., Wang L., Lei H., Sun Y., Xiao Z. Antibody production and application for immunoassay development of environmental hormones: A review. Chem. Biol. Technol. Agric. 2018;5:1–12. doi: 10.1186/s40538-018-0117-0. DOI

Lequin R.M. Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA) Clin. Chem. 2005;51:2415–2418. doi: 10.1373/clinchem.2005.051532. PubMed DOI

Wang Y., Karu K., Griffiths W.J. Analysis of neurosterols and neurosteroids by mass spectrometry. Biochimie. 2007;89:182–191. doi: 10.1016/j.biochi.2006.10.008. PubMed DOI

Garratty G. Immune hemolytic anemia associated with drug therapy. Blood Rev. 2010;24:143–150. doi: 10.1016/j.blre.2010.06.004. PubMed DOI

Handelsman D.J., Wartofsky L. Requirement for mass spectrometry sex steroid assays in the journal of clinical endocrinology and metabolism. J. Clin. Endocrinol. Metab. 2013;98:3971–3973. doi: 10.1210/jc.2013-3375. PubMed DOI

Taylor A.E., Keevil B., Huhtaniemi I.T. Mass spectrometry and immunoassay: How to measure steroid hormones today and tomorrow. Eur. J. Endocrinol. 2015;173:D1–D12. doi: 10.1530/EJE-15-0338. PubMed DOI

Berzofsky J.A., Berkower I.J., Epstein S.L. Fundamental Immunology. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2008. Antigen–antibody interactions and monoclonal antibodies; pp. 152–191.

Gao W., Stalder T., Kirschbaum C. Quantitative analysis of estradiol and six other steroid hormones in human saliva using a high throughput liquid chromatography–tandem mass spectrometry assay. Talanta. 2015;143:353–358. doi: 10.1016/j.talanta.2015.05.004. PubMed DOI

Krasowski M.D., Drees D., Morris C.S., Maakestad J., Blau J.L., Ekins S. Cross-reactivity of steroid hormone immunoassays: Clinical significance and two-dimensional molecular similarity prediction. BMC Clin. Pathol. 2014;14:33. doi: 10.1186/1472-6890-14-33. PubMed DOI PMC

Middle J.G. Dehydroepiandrostenedione sulphate interferes in many direct immunoassays for testosterone. Ann. Clin. Biochem. 2007;44:173–177. doi: 10.1258/000456307780118082. PubMed DOI

Warner M.H., Kane J.W., Atkin S.L., Kilpatrick E.S. Dehydroepiandrosterone sulphate interferes with the Abbott Architect direct immunoassay for testosterone. Ann. Clin. Biochem. 2006;43:196–199. doi: 10.1258/000456306776865034. PubMed DOI

Tejada F., Cremades A., Monserrat F., Peñafiel R. Interference of the antihormone RU486 in the determination of testosterone and estradiol by enzyme-immunoassay. Clin. Chim. Acta. 1998;275:63–69. doi: 10.1016/S0009-8981(98)00077-1. PubMed DOI

Hoofnagle A.N., Wener M.H. The fundamental flaws of immunoassays and potential solutions using tandem mass spectrometry. J. Immunol. Methods. 2009;347:3–11. doi: 10.1016/j.jim.2009.06.003. PubMed DOI PMC

Akın L., Kurtoglu S., Kendirci M., Akın M.A., Hartmann M.F., Wudy S.A. Hook Effect: A pitfall leading to misdiagnosis of hypoaldosteronism in an infant with pseudohypoaldosteronism. Horm. Res. Paediatr. 2010;74:72–75. doi: 10.1159/000281404. PubMed DOI

Güran T., Yeşil G., Güran Ö., Cesur S., Bosnalı O., Celayir A., Topçuoğlu S., Bereket A. A giant ovarian cyst in a neonate with classical 21-hydroxylase deficiency with very high testosterone levels demonstrating a high-dose hook effect. J. Clin. Res. Pediatr. Endocrinol. 2012;4:151–153. doi: 10.4274/Jcrpe.685. PubMed DOI PMC

Parlak M., Ellidağ H.Y., Türkkahraman D. High-dose hook effect in 17-hydroxyprogesterone assay in a patient with 21-hydroxylase deficiency. J. Clin. Res. Pediatr. Endocrinol. 2015;7:329–332. doi: 10.4274/jcrpe.2180. PubMed DOI PMC

Huhtaniemi I.T., Tajar A., Lee D.M., O’Neill T.W., Finn J.D., Bartfai G., Boonen S., Casanueva F.F., Giwercman A., Han T.S., et al. Comparison of serum testosterone and estradiol measurements in 3174 European men using platform immunoassay and mass spectrometry; relevance for the diagnostics in aging men. Eur. J. Endocrinol. 2012;166:983–991. doi: 10.1530/EJE-11-1051. PubMed DOI

Faupel-Badger J.M., Fuhrman B.J., Xu X., Falk R.T., Keefer L.K., Veenstra T.D., Hoover R.N., Ziegler R.G. Comparison of liquid chromatography-tandem mass spectrometry, RIA, and ELISA methods for measurement of urinary estrogens. Cancer Epidemiol. Biomark. Prev. 2010;19:292–300. doi: 10.1158/1055-9965.EPI-09-0643. PubMed DOI PMC

Stanczyk F.Z., Cho M.M., Endres D.B., Morrison J.L., Patel S., Paulson R.J. Limitations of direct estradiol and testosterone immunoassay kits. Steroids. 2003;68:1173–1178. doi: 10.1016/j.steroids.2003.08.012. PubMed DOI

McDonald J.G., Matthew S., Auchus R.J. steroid profiling by gas chromatography–mass spectrometry and high performance liquid chromatography–mass spectrometry for adrenal diseases. Horm. Cancer. 2011;2:324–332. doi: 10.1007/s12672-011-0099-x. PubMed DOI PMC

Nilsson M.E., Vandenput L., Tivesten Å., Norlén A.-K., Lagerquist M.K., Windahl S.H., Börjesson A.E., Farman H.H., Poutanen M., Benrick A., et al. Measurement of a comprehensive sex steroid profile in rodent serum by high-sensitive gas chromatography-tandem mass spectrometry. Endocrinology. 2015;156:2492–2502. doi: 10.1210/en.2014-1890. PubMed DOI

Taieb J., Mathian B., Millot F., Patricot M.C., Mathieu E., Queyrel N., Lacroix I., Somma-Delpero C., Boudou P. Testosterone measured by 10 immunoassays and by isotope-dilution gas chromatography-mass spectrometry in sera from 116 men, women, and children. Clin. Chem. 2003;49:1381–1395. doi: 10.1373/49.8.1381. PubMed DOI

Picó Y. Chromatography–mass spectrometry: Recent evolution and current trends in environmental science. Curr. Opin. Environ. Sci. Health. 2020;18:47–53. doi: 10.1016/j.coesh.2020.07.002. DOI

Stokvis E., Rosing H., Beijnen J.H. Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: Necessity or not? Rapid Commun. Mass Spectrom. 2005;19:401–407. doi: 10.1002/rcm.1790. PubMed DOI

Reddy N.R. Stable labeled isotopes as internal standards: A critical review. Mod. Appl. Pharm. Pharmacol. 2017;1:1–4. doi: 10.31031/MAPP.2017.01.000508. DOI

Moosavi S.M., Ghassabian S. Calibration and Validation of Analytical Methods-A Sampling of Current Approaches. InTech Open; London, UK: 2018. Linearity of calibration curves for analytical methods: A review of criteria for assessment of method reliability; pp. 109–127.

Khodadadi M., Pourfarzam M. A review of strategies for untargeted urinary metabolomic analysis using gas chromatography–mass spectrometry. Metabolomics. 2020;16:66. doi: 10.1007/s11306-020-01687-x. PubMed DOI

Tokuoka S.M., Yasumoto A., Kita Y., Shimizu T., Yatomi Y., Oda Y. Limitations of deuterium-labeled internal standards for quantitative electrospray ionization mass spectrometry analysis of fatty acid metabolites. Rapid Commun. Mass Spectrom. 2020;34:1–8. doi: 10.1002/rcm.8814. PubMed DOI

Wieling J. LC-MS-MS experiences with internal standards. Chromatographia. 2002;55:S107–S113. doi: 10.1007/BF02493365. DOI

VandenHeuvel W.J.A., Horning E.C. Gas chromatography of adrenal cortical steroid hormones. Biochem. Biophys. Res. Commun. 1960;3:356–360. doi: 10.1016/0006-291X(60)90044-9. PubMed DOI

Eneroth P., Hellstroem K., Ryhage R. Identification and quantification of neutral fecal steroids by gas-liquid chromatography and mass spectrometry: Studies of human excretion during two dietary regimens. J. Lipid Res. 1964;5:245–262. doi: 10.1016/S0022-2275(20)40246-9. PubMed DOI

Coskun O. Separation techniques: Chromatography. N. Clin. Istanb. 2016;3:156–160. doi: 10.14744/nci.2016.32757. PubMed DOI PMC

Al-Bukhaiti W.Q., Noman A., Qasim A.S., Al-Farga A. Gas chromatography: Principles, advantages and applications in food analysis. Int. J. Agric. Innov. Res. 2017;6:123–128.

Makin H.L.J., Honour J.W., Shackleton C.H.L., Griffiths W.J. Steroid Analysis. Springer; Dordrecht, The Netherlands: 2010. General methods for the extraction, purification, and measurement of steroids by chromatography and mass spectrometry; pp. 163–282.

Gruber B., David F., Sandra P. Capillary gas chromatography-mass spectrometry: Current trends and perspectives. TrAC Trends Anal. Chem. 2020;124:115475. doi: 10.1016/j.trac.2019.04.007. DOI

Beale D.J., Pinu F.R., Kouremenos K.A., Poojary M.M., Narayana V.K., Boughton B.A., Kanojia K., Dayalan S., Jones O.A.H., Dias D.A. Review of recent developments in GC–MS approaches to metabolomics-based research. Metabolomics. 2018;14:152. doi: 10.1007/s11306-018-1449-2. PubMed DOI

Moldoveanu C.S., David V. Gas Chromatography-Derivatization, Sample Preparation, Application. Volume I. IntechOpen; London, UK: 2019. Derivatization methods in GC and GC/MS; pp. 1–33.

Poojary M.M., Passamonti P. Improved conventional and microwave-assisted silylation protocols for simultaneous gas chromatographic determination of tocopherols and sterols: Method development and multi-response optimization. J. Chromatogr. A. 2016;1476:88–104. doi: 10.1016/j.chroma.2016.10.064. PubMed DOI

Dury A.Y., Ke Y., Gonthier R., Isabelle M., Simard J., Labrie F. Validated LC–MS/MS simultaneous assay of five sex steroid/neurosteroid-related sulfates in human serum. J. Steroid Biochem. Mol. Biol. 2015;149:1–10. doi: 10.1016/j.jsbmb.2015.01.006. PubMed DOI

Sánchez-Guijo A., Oji V., Hartmann M.F., Traupe H., Wudy S.A. Simultaneous quantification of cholesterol sulfate, androgen sulfates, and progestagen sulfates in human serum by LC-MS/MS. J. Lipid Res. 2015;56:1843–1851. doi: 10.1194/jlr.D061499. PubMed DOI PMC

Tsugawa H., Tsujimoto Y., Arita M., Bamba T., Fukusaki E. GC/MS based metabolomics: Development of a data mining system for metabolite identification by using soft independent modeling of class analogy (SIMCA) BMC Bioinformatics. 2011;12:131. doi: 10.1186/1471-2105-12-131. PubMed DOI PMC

Fiehn O. Metabolomics by gas chromatography–mass spectrometry: Combined targeted and untargeted profiling. Curr. Protoc. Mol. Biol. 2016;114:1–43. doi: 10.1002/0471142727.mb3004s114. PubMed DOI PMC

Kanceva R., Stárka L., Kancheva L., Hill M., Veliková M., Havrdová E. Increased serum levels of C21 steroids in female patients with multiple sclerosis. Physiol. Res. 2015;64:S247–S254. doi: 10.33549/physiolres.933145. PubMed DOI

Kancheva R., Hill M., Novák Z., Chrastina J., Velíková M., Kancheva L., Říha I., Stárka L. Peripheral neuroactive steroids may be as good as the steroids in the cerebrospinal fluid for the diagnostics of CNS disturbances. J. Steroid Biochem. Mol. Biol. 2010;119:35–44. doi: 10.1016/j.jsbmb.2009.12.006. PubMed DOI

Polet M., Van Gansbeke W., Van Eenoo P., Deventer K. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: Ionization and collision-induced dissociation behavior. Rapid Commun. Mass Spectrom. 2016;30:511–522. doi: 10.1002/rcm.7472. PubMed DOI

Hansen M., Jacobsen N.W., Nielsen F.K., Björklund E., Styrishave B., Halling-Sørensen B. Determination of steroid hormones in blood by GC–MS/MS. Anal. Bioanal. Chem. 2011;400:3409–3417. doi: 10.1007/s00216-011-5038-8. PubMed DOI

Matysik S., Schmitz G. Determination of steroid hormones in human plasma by GC–triple quadrupole MS. Steroids. 2015;99:151–154. doi: 10.1016/j.steroids.2015.01.016. PubMed DOI

Christakoudi S., Cowan D.A., Taylor N.F. Steroids excreted in urine by neonates with 21-hydroxylase deficiency: Characterization, using GC–MS and GC–MS/MS, of the D-ring and side chain structure of pregnanes and pregnenes. Steroids. 2010;75:34–52. doi: 10.1016/j.steroids.2009.09.011. PubMed DOI

Hill M., Pařízek A., Kancheva R., Dušková M.M., Velíková M., Kříž L., Klímková M., Pašková A., Žižka Z., Matucha P., et al. Steroid metabolome in plasma from the umbilical artery, umbilical vein, maternal cubital vein and in amniotic fluid in normal and preterm labor. J. Steroid Biochem. Mol. Biol. 2010;121:594–610. doi: 10.1016/j.jsbmb.2009.10.012. PubMed DOI

Hill M., Hána V., Velíková M., Pařízek A., Kolátorová L., Vítků J., Škodová T., Šimková M., Šimják P., Kancheva R., et al. A method for determination of one hundred endogenous steroids in human serum by gas chromatography-tandem mass spectrometry. Physiol. Res. 2019;68:179–207. doi: 10.33549/physiolres.934124. PubMed DOI

Shackleton C. Clinical steroid mass spectrometry: A 45-year history culminating in HPLC–MS/MS becoming an essential tool for patient diagnosis. J. Steroid Biochem. Mol. Biol. 2010;121:481–490. doi: 10.1016/j.jsbmb.2010.02.017. PubMed DOI

Shackleton C. Laboratory Guide to the Methods in Biochemical Genetics. Springer; Berlin/Heidelberg, Germany: 2008. Genetic disorders of steroid metabolism diagnosed by mass spectrometry; pp. 549–605.

Storbeck K.H., Gilligan L., Jenkinson C., Baranowski E.S., Quanson J.L., Arlt W., Taylor A.E. The utility of ultra-high performance supercritical fluid chromatography–tandem mass spectrometry (UHPSFC-MS/MS) for clinically relevant steroid analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2018;1085:36–41. doi: 10.1016/j.jchromb.2018.03.033. PubMed DOI

Pilařová V., Plachká K., Khalikova M.A., Svec F., Nováková L. Recent developments in supercritical fluid chromatography–mass spectrometry: Is it a viable option for analysis of complex samples? TrAC-Trends Anal. Chem. 2019;112:212–225. doi: 10.1016/j.trac.2018.12.023. DOI

De Kock N., Acharya S.R., Ubhayasekera S.J.K.A., Bergquist J. A novel targeted analysis of peripheral steroids by ultra-performance supercritical fluid chromatography hyphenated to tandem mass spectrometry. Sci. Rep. 2018;8:1–9. doi: 10.1038/s41598-018-35007-0. PubMed DOI PMC

Verplaetse R., Tytgat J. Liquid chromatography tandem mass spectrometry in forensic toxicology: What about matrix effects? TIAFT Bull. 2011;41:8–16.

Keevil B.G. Novel liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for measuring steroids. Best Pract. Res. Clin. Endocrinol. Metab. 2013;27:663–674. doi: 10.1016/j.beem.2013.05.015. PubMed DOI

Taylor P.J. Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography–electrospray–tandem mass spectrometry. Clin. Biochem. 2005;38:328–334. doi: 10.1016/j.clinbiochem.2004.11.007. PubMed DOI

Stachniuk A., Fornal E. Liquid chromatography-mass spectrometry in the analysis of pesticide residues in food. Food Anal. Methods. 2016;9:1654–1665. doi: 10.1007/s12161-015-0342-0. DOI

Zhou W., Yang S., Wang P.G. Matrix effects and application of matrix effect factor. Bioanalysis. 2017;9:1839–1844. doi: 10.4155/bio-2017-0214. PubMed DOI

Antignac J.-P., de Wasch K., Monteau F., De Brabander H., Andre F., Le Bizec B. The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Anal. Chim. Acta. 2005;529:129–136. doi: 10.1016/j.aca.2004.08.055. DOI

Wooding K.M., Auchus R.J. Mass spectrometry theory and application to adrenal diseases. Mol. Cell. Endocrinol. 2013;371:201–207. doi: 10.1016/j.mce.2012.12.026. PubMed DOI PMC

Márta Z., Bobály B., Fekete J., Magda B., Imre T., Mészáros K.V., Bálint M., Szabó P.T. Simultaneous determination of thirteen different steroid hormones using micro UHPLC-MS/MS with on-line SPE system. J. Pharm. Biomed. Anal. 2018;150:258–267. doi: 10.1016/j.jpba.2017.12.014. PubMed DOI

Wang Y., Tang L., Yin W., Chen J., Leng T., Zheng X., Zhu W., Zhang H., Qiu P., Yang X., et al. Simultaneous determination of seven neuroactive steroids associated with depression in rat plasma and brain by high performance liquid chromatography-tandem mass spectrometry. Anal. Sci. 2016;32:981–988. doi: 10.2116/analsci.32.981. PubMed DOI

Tuomola M., Hakala M., Manninen P. Determination of androstenone in pig fat using packed column supercritical fluid chromatography-mass spectrometry. J. Chromatogr. B Biomed. Appl. 1998;719:25–30. doi: 10.1016/S0378-4347(98)00409-5. PubMed DOI

Xu X., Roman J.M., Veenstra T.D., Van Anda J., Ziegler R.G., Issaq H.J. Analysis of fifteen estrogen metabolites using packed column supercritical fluid chromatography-mass spectrometry. Anal. Chem. 2006;78:1553–1558. doi: 10.1021/ac051425c. PubMed DOI

Doué M., Dervilly-Pinel G., Pouponneau K., Monteau F., Le Bizec B. Analysis of glucuronide and sulfate steroids in urine by ultra-high-performance supercritical-fluid chromatography hyphenated tandem mass spectrometry. Anal. Bioanal. Chem. 2015;407:4473–4484. doi: 10.1007/s00216-015-8573-x. PubMed DOI

Teubel J., Wüst B., Schipke C.G., Peters O., Parr M.K. Methods in endogenous steroid profiling–A comparison of gas chromatography mass spectrometry (GC–MS) with supercritical fluid chromatography tandem mass spectrometry (SFC-MS/MS) J. Chromatogr. A. 2018;1554:101–116. doi: 10.1016/j.chroma.2018.04.035. PubMed DOI

Nováková L., Desfontaine V., Ponzetto F., Nicoli R., Saugy M., Veuthey J.L., Guillarme D. Fast and sensitive supercritical fluid chromatography-tandem mass spectrometry multi-class screening method for the determination of doping agents in urine. Anal. Chim. Acta. 2016;915:102–110. doi: 10.1016/j.aca.2016.02.010. PubMed DOI

Rister A.L., Dodds E.D. Liquid chromatography-ion mobility spectrometry-mass spectrometry analysis of multiple classes of steroid hormone isomers in a mixture. J. Chromatogr. B. 2020;1137:121941. doi: 10.1016/j.jchromb.2019.121941. PubMed DOI PMC

Chouinard C.D., Beekman C.R., Kemperman R.H.J., King H.M., Yost R.A. Ion mobility-mass spectrometry separation of steroid structural isomers and epimers. Int. J. Ion Mobil. Spectrom. 2017;20:31–39. doi: 10.1007/s12127-016-0213-4. DOI

Rister A.L., Dodds E.D. Steroid analysis by ion mobility spectrometry. Steroids. 2020;153:108531. doi: 10.1016/j.steroids.2019.108531. PubMed DOI PMC

Ray J.A., Kushnir M.M., Yost R.A., Rockwood A.L., Wayne Meikle A. Performance enhancement in the measurement of 5 endogenous steroids by LC–MS/MS combined with differential ion mobility spectrometry. Clin. Chim. Acta. 2015;438:330–336. doi: 10.1016/j.cca.2014.07.036. PubMed DOI

Ren S., Hinzman A.A., Kang E.L., Szczesniak R.D., Lu L.J. Computational and statistical analysis of metabolomics data. Metabolomics. 2015;11:1492–1513. doi: 10.1007/s11306-015-0823-6. DOI

Dunn W.B., Bailey N.J.C., Johnson H.E. Measuring the metabolome: Current analytical technologies. Analyst. 2005;130:606–625. doi: 10.1039/b418288j. PubMed DOI

Olesti E., Boccard J., Visconti G., González-Ruiz V., Rudaz S. From a single steroid to the steroidome: Trends and analytical challenges. J. Steroid Biochem. Mol. Biol. 2021;206 doi: 10.1016/j.jsbmb.2020.105797. PubMed DOI

Athimulam S., Grebe S., Bancos I. Steroid profiling in the diagnosis of mild and overt Cushing’s syndrome. Best Pract. Res. Clin. Endocrinol. Metab. 2021:101488. doi: 10.1016/j.beem.2021.101488. PubMed DOI PMC

Wang Z., Wang H., Peng Y., Chen F., Zhao L., Li X., Qin J., Li Q., Wang B., Pan B., et al. A liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based assay to profile 20 plasma steroids in endocrine disorders. Clin. Chem. Lab. Med. 2020;58:1477–1487. doi: 10.1515/cclm-2019-0869. PubMed DOI

Cao T., Li N.N., Cai H.L. Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr. Res. 2020;226:95–110. doi: 10.1016/j.schres.2019.03.009. PubMed DOI

Bicikova M., Hill M., Ripova D., Mohr P., Hampl R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J. Steroid Biochem. Mol. Biol. 2013;133:77–83. doi: 10.1016/j.jsbmb.2012.08.009. PubMed DOI

Dušková M., Hill M., Bičíková M., Šrámková M., Řípová D., Mohr P., Stárka L. The steroid metabolome in men with mood and anxiety disorders. Physiol. Res. 2015;64:S275–S282. doi: 10.33549/physiolres.933067. PubMed DOI

Humer E., Pieh C., Probst T. Metabolomic biomarkers in anxiety disorders. Int. J. Mol. Sci. 2020;21:4784. doi: 10.3390/ijms21134784. PubMed DOI PMC

Palermo A., Botrè F., de la Torre X., Zamboni N. Non-targeted LC-MS based metabolomics analysis of the urinary steroidal profile. Anal. Chim. Acta. 2017;964:112–122. doi: 10.1016/j.aca.2017.01.055. PubMed DOI

Sharp S., Mitchell S.J., Vallée M., Kuzmanova E., Cooper M., Belelli D., Lambert J.J., Huang J.T.J. Isotope dilution-based targeted and nontargeted carbonyl neurosteroid/steroid profiling. Anal. Chem. 2018;90:5247–5255. doi: 10.1021/acs.analchem.8b00055. PubMed DOI

Jeanneret F., Tonoli D., Rossier M.F., Saugy M., Boccard J., Rudaz S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J. Chromatogr. A. 2016;1430:97–112. doi: 10.1016/j.chroma.2015.07.008. PubMed DOI

Shackleton C., Pozo O.J., Marcos J. GC/MS in recent years has defined the normal and clinically disordered steroidome: Will it soon be surpassed by LC/Tandem MS in this role? J. Endocr. Soc. 2018;2:974–996. doi: 10.1210/js.2018-00135. PubMed DOI PMC

European Medicines Agency . Guideline on Bioanalytical Method Validation. European Medicines Agency; Parma, Italy: 2012. pp. 1–23. PubMed

Food and Drug Administration . Bioanalytical Method Validation Guidance for Industry. Food and Drug Administration; Silver Spring, MA, USA: 2018. pp. 1–44.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...