Patients with Neurodegenerative Proteinopathies Exhibit Altered Tryptophan Metabolism in the Serum and Cerebrospinal Fluid

. 2024 Feb 07 ; 15 (3) : 582-592. [epub] 20240109

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38194490

Some pathological conditions affecting the human body can also disrupt metabolic pathways and thus alter the overall metabolic profile. Knowledge of metabolic disturbances in specific diseases could thus enable the differential diagnosis of otherwise similar conditions. This work therefore aimed to comprehensively characterize changes in tryptophan metabolism in selected neurodegenerative diseases. Levels of 18 tryptophan-related neuroactive substances were determined by high throughput and sensitive ultrahigh-performance liquid chromatography-tandem mass spectrometry in time-linked blood serum and cerebrospinal fluid samples from 100 age-matched participants belonging to five cohorts: healthy volunteers (n = 21) and patients with Lewy body disease (Parkinson's disease and dementia with Lewy bodies; n = 31), four-repeat tauopathy (progressive supranuclear palsy and corticobasal syndrome; n = 10), multiple system atrophy (n = 13), and Alzheimer's disease (n = 25). Although these conditions have different pathologies and clinical symptoms, the discovery of new biomarkers is still important. The most statistically significant differences (with p-values of ≤0.05 to ≤0.0001) between the study cohorts were observed for three tryptophan metabolites: l-kynurenine in cerebrospinal fluid and 3-hydroxy-l-kynurenine and 5-hydroxy-l-tryptophan in blood serum. This led to the discovery of distinctive correlation patterns between the profiled cerebrospinal fluid and serum metabolites that could provide a basis for the differential diagnosis of neurodegenerative tauopathies and synucleinopathies. However, further large-scale studies are needed to determine the direct involvement of these metabolites in the studied neuropathologies, their response to medication, and their potential therapeutic relevance.

Zobrazit více v PubMed

Jacobs K. R.; Lim C. K.; Blennow K.; Zetterberg H.; Chatterjee P.; Martins R. N.; Brew B. J.; Guillemin G. J.; Lovejoy D. B. Correlation between Plasma and CSF Concentrations of Kynurenine Pathway Metabolites in Alzheimer’s Disease and Relationship to Amyloid-β and Tau. Neurobiology of Aging 2019, 80, 11–20. 10.1016/j.neurobiolaging.2019.03.015. PubMed DOI

Hényková E.; Vránová H. P.; Amakorová P.; Pospíšil T.; Žukauskaitė A.; Vlčková M.; Urbánek L.; Novák O.; Mareš J.; Kaňovský P.; Strnad M. Stable Isotope Dilution Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry Quantitative Profiling of Tryptophan-related Neuroactive Substances in Human Serum and Cerebrospinal Fluid. Journal of Chromatography A 2016, 1437, 145–157. 10.1016/j.chroma.2016.02.009. PubMed DOI

Anesi A.; Rubert J.; Oluwagbemigun K.; Orozco-Ruiz X.; Nöthlings U.; Breteler M. M. B.; Mattivi F. Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways. Metabolites 2019, 9 (11), 261.10.3390/metabo9110261. PubMed DOI PMC

Ostapiuk A.; Urbanska E. M. Kynurenic Acid in Neurodegenerative Disorders-unique Neuroprotection or Double-edged Sword?. CNS Neuroscience & Therapeutics 2022, 28 (1), 19–35. 10.1111/cns.13768. PubMed DOI PMC

Bender D. A. Biochemistry of Tryptophan in Health and Disease. Molecular Aspects of Medicine 1983, 6 (2), 101–197. 10.1016/0098-2997(83)90005-5. PubMed DOI

Keszthelyi D.; Troost F. J.; Masclee A. A. M. Understanding the Role of Tryptophan and Serotonin Metabolism in Gastrointestinal Function. Neurogastroenterology and Motility 2009, 21 (12), 1239–1249. 10.1111/j.1365-2982.2009.01370.x. PubMed DOI

Hardeland R.; Tan D. X.; Reiter R. J. Kynuramines, Metabolites of Melatonin and Other Indoles: The Resurrection of an Almost Forgotten Class of Biogenic Amines. Journal of Pineal Research 2009, 47 (2), 109–126. 10.1111/j.1600-079X.2009.00701.x. PubMed DOI

Oxenkrug G.; van der Hart M.; Roeser J.; Summergrad P. Peripheral Tryptophan - Kynurenine Metabolism Associated with Metabolic Syndrome is Different in Parkinson’s and Alzheimer’s Diseases. Endocrinol., Diabetes Metab. J. 2017, 1 (4), 1–10. PubMed PMC

Höglund E.; Øverli Ø.; Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Frontiers in Endocrinology 2019, 10, 1–11. 10.3389/fendo.2019.00158. PubMed DOI PMC

Sorgdrager F. J. H.; Vermeiren Y.; Van Faassen M.; van der Ley C.; Nollen E. A. A.; Kema I. P.; De Deyn P. P. Age- and Disease-specific Changes of the Kynurenine Pathway in Parkinson’s and Alzheimer’s Disease. Journal of Neurochemistry 2019, 151 (5), 656–668. 10.1111/jnc.14843. PubMed DOI PMC

Klatt S.; Doecke J. D.; Roberts A.; Boughton B. A.; Masters C. L.; Horne M.; Roberts B. R. A Six-metabolite Panel as Potential Blood-based Biomarkers for Parkinson’s Disease. Npj Parkinsons Disease 2021, 7 (1), 1–14. 10.1038/s41531-021-00239-x. PubMed DOI PMC

Widner B.; Leblhuber F.; Fuchs D. Increased Neopterin Production and Tryptophan Degradation in Advanced Parkinson’s Disease. Journal of Neural Transmission 2002, 109 (2), 181–189. 10.1007/s007020200014. PubMed DOI

LeWitt P. A.; Li J.; Lu M.; Beach T. G.; Adler C. H.; Guo L.; 3-Hydroxykynurenine and Other Parkinson’s Disease Biomarkers Discovered by Metabolomic Analysis. Mov. Disorders 2013, 28 (12), 1653–1660. 10.1002/mds.25555. PubMed DOI

Heilman P. L.; Wang E. W.; Lewis M. M.; Krzyzanowski S.; Capan C. D.; Burmeister A. R.; Du G. W.; Escobar Galvis M. L.; Brundin P.; Huang X. M.; Brundin L. Tryptophan Metabolites are Associated With Symptoms and Nigral Pathology in Parkinson’s Disease. Mov. Disord. 2020, 35 (11), 2028–2037. 10.1002/mds.28202. PubMed DOI PMC

Iwaoka K.; Otsuka C.; Maeda T.; Yamahara K.; Kato K.; Takahashi K.; Takahashi K.; Terayama Y. Impaired Metabolism of Kynurenine and its Metabolites in CSF of Parkinson’s Disease. Neurosci. Lett. 2020, 714, 134576.10.1016/j.neulet.2019.134576. PubMed DOI

Chang K. H.; Cheng M. L.; Tang H. Y.; Huang C. Y.; Wu Y. R.; Chen C. M. Alternations of Metabolic Profile and Kynurenine Metabolism in the Plasma of Parkinson’s Disease. Molecular Neurobiology 2018, 55 (8), 6319–6328. 10.1007/s12035-017-0845-3. PubMed DOI

Han W.; Sapkota S.; Camicioli R.; Dixon R. A.; Li L. Profiling Novel Metabolic Biomarkers for Parkinson’s Disease Using In-depth Metabolomic Analysis. Movement Disorders 2017, 32 (12), 1720–1728. 10.1002/mds.27173. PubMed DOI PMC

Havelund J. F.; Andersen A. D.; Binzer M.; Blaabjerg M.; Heegaard N. H. H.; Stenager E.; Faergeman N. J.; Gramsbergen J. B. Changes in Kynurenine Pathway Metabolism in Parkinson Patients with L-DOPA-induced Dyskinesia. Journal of Neurochemistry 2017, 142 (5), 756–766. 10.1111/jnc.14104. PubMed DOI

Hatano T.; Saiki S.; Okuzumi A.; Mohney R. P.; Hattori N. Identification of Novel Biomarkers for Parkinson’s Disease by Metabolomic Technologies. Journal of Neurology Neurosurgery, and Psychiatry 2016, 87 (3), 295–301. 10.1136/jnnp-2014-309676. PubMed DOI

Molina J. A.; Jiménez-Jiménez F. J.; Gomez P.; Vargas C.; Navarro J. A.; Ortí-Pareja M.; Gasalla T.; Benito-León J.; Bermejo F.; Arenas J. Decreased Cerebrospinal Fluid Levels of Neutral and Basic Amino Acids in Patients with Parkinson’s Disease. J, Neurol. Sci. 1997, 150 (2), 123–127. 10.1016/S0022-510X(97)00069-5. PubMed DOI

Widner B.; Leblhuber F.; Walli J.; Tilz G. P.; Demel U.; Fuchs D. Tryptophan Degradation and Immune Activation in Alzheimer’s Disease. Journal of Neural Transmission 2000, 107 (3), 343–353. 10.1007/s007020050029. PubMed DOI

Schwarz M. J.; Guillemin G. J.; Teipel S. J.; Buerger K.; Hampel H. Increased 3-Hydroxykynurenine Serum Concentrations Differentiate Alzheimer’s Disease Patients from Controls. European Archives of Psychiatry and Clinical Neuroscience 2013, 263 (4), 345–352. 10.1007/s00406-012-0384-x. PubMed DOI

Volicer L.; Langlais P. J.; Matson W. R.; Mark K. A.; Gamache P. H. Serotoninergic System in Dementia of the Alzheimer Type. Abnormal Forms of 5-Hydroxytryptophan and Serotonin in Cerebrospinal Fluid. Archives of Neurology 1985, 42 (12), 1158–1161. 10.1001/archneur.1985.04060110040013. PubMed DOI

Koníčková D.; Menšíková K.; Tučková L.; Hényková E.; Strnad M.; Friedecký D.; Stejskal D.; Matěj R.; Kaňovský P. Biomarkers of Neurodegenerative Diseases: Biology, Taxonomy, Clinical Relevance, and Current Research Status. Biomedicines 2022, 10 (7), 1760.10.3390/biomedicines10071760. PubMed DOI PMC

Koníčková D.; Menšíková K.; Klíčová K.; Chudáčková M.; Kaiserová M.; Přikrylová H.; Otruba P.; Nevrlý M.; Hluštík P.; Hényková E.; Kaleta M.; Friedecký D.; Matěj R.; Strnad M.; Novák O.; Plíhalová L.; Rosales R.; Colosimo C.; Kaňovský P. Cerebrospinal Fluid and Blood Serum Biomarkers in Neurodegenerative Proteinopathies: A Prospective, Open, Cross-correlation Study. J. Neurochem. 2023, 167, 168.10.1111/jnc.15944. PubMed DOI

Hényková E.; Kaleta M.; Klíčová K.; Gonzalez G.; Novák O.; Strnad M.; Kaňovský P. Quantitative Determination of Endogenous Tetrahydroisoquinolines, Potential Parkinson’s Disease Biomarkers, in Mammals. ACS Chem. Neurosci. 2022, 13 (23), 3230–3246. 10.1021/acschemneuro.2c00516. PubMed DOI

Kaleta M.; Oklestkova J.; Novák O.; Strnad M. Analytical Methods for the Determination of Neuroactive Steroids. Biomolecules 2021, 11 (4), 553.10.3390/biom11040553. PubMed DOI PMC

Wei R.; Wang J.; Su M.; Jia E.; Chen S.; Chen T.; Ni Y. Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data. Sci. Rep. 2018, 8 (1), 663.10.1038/s41598-017-19120-0. PubMed DOI PMC

Lee J. Y.; Styczynski M. P. NS-kNN: A Modified k-Nearest Neighbors Approach for Imputing Metabolomics Data. Metabolomics 2018, 14 (12), 153.10.1007/s11306-018-1451-8. PubMed DOI PMC

Meloni M.; Figorilli M.; Carta M.; Tamburrino L.; Cannas A.; Sanna F.; Defazio G.; Puligheddu M. Preliminary Finding of a Randomized, Double-blind, Placebo-controlled, Crossover Study to Evaluate the Safety and Efficacy of 5-Hydroxytryptophan on REM Sleep Behavior Disorder in Parkinson’s Disease. Sleep and Breathing 2022, 26 (3), 1023–1031. 10.1007/s11325-021-02417-w. PubMed DOI PMC

Meloni M.; Puligheddu M.; Carta M.; Cannas A.; Figorilli M.; Defazio G. Efficacy and Safety of 5-Hydroxytryptophan on Depression and Apathy in Parkinson’s Disease: A Preliminary Finding. European Journal of Neurology 2020, 27 (5), 779–786. 10.1111/ene.14179. PubMed DOI

Meloni M.; Puligheddu M.; Sanna F.; Cannas A.; Farris R.; Tronci E.; Figorilli M.; Defazio G.; Carta M. Efficacy and Safety of 5-Hydroxytryptophan on Levodopa-induced Motor Complications in Parkinson’s Disease: A Preliminary Finding. J. Neurol. Sci. 2020, 415, 116869.10.1016/j.jns.2020.116869. PubMed DOI

Rousseau J. J. Effects of a Levo-5-hydroxytryptophan-dihydroergocristine Combination on Depression and Neuropsychic Performance: A Double-blind Placebo-controlled Clinical Trial in Elderly Patients. Clin. Ther. 1987, 9 (3), 267–272. PubMed

Mendlewicz J.; Youdim M. B. H. Antidepressant Potentiation of 5-Hydroxytryptophan by L-deprenil in Affective Illness. Journal of Affective Disorders 1980, 2 (2), 137–146. 10.1016/0165-0327(80)90013-0. PubMed DOI

Paik M. J.; Ahn Y. H.; Lee P. H.; Kang H.; Park C. B.; Choi S.; Lee G. Polyamine Patterns in the Cerebrospinal Fluid of Patients with Parkinson’s Disease and Multiple System Atrophy. Clin. Chim. Acta 2010, 411 (19–20), 1532–1535. 10.1016/j.cca.2010.05.034. PubMed DOI

Goldstein D. S.; Holmes C.; Sharabi Y. Cerebrospinal Fluid Biomarkers of Central Catecholamine Deficiency in Parkinson’s Disease and Other Synucleinopathies. Brain 2012, 135, 1900–1913. 10.1093/brain/aws055. PubMed DOI PMC

Kuiper M. A.; Teerlink T.; Visser J. J.; Bergmans P. L. M.; Scheltens P.; Wolters E. C. L-Glutamate, L-arginine and L-citrulline Levels in Cerebrospinal Fluid of Parkinson’s Disease, Multiple System Atrophy, and Alzheimer’s Disease Patients. Journal of Neural Transmission 2000, 107 (2), 183–189. 10.1007/s007020050016. PubMed DOI

Lee P. H.; Lee G.; Paik M. J. Polyunsaturated Fatty Acid Levels in the Cerebrospinal Fluid of Patients with Parkinson’s Disease and Multiple System Atrophy. Movement Disorders 2008, 23 (2), 309–310. 10.1002/mds.21846. PubMed DOI

Kuiper M. A.; Visser J. J.; Bergmans P. L. M.; Scheltens P.; Wolters E. C. Decreased Cerebrospinal Fluid Nitrate Levels in Parkinson’s Disease, Alzheimer’s Disease and Multiple System Atrophy Patients. Journal of the Neurological Sciences 1994, 121 (1), 46–49. 10.1016/0022-510X(94)90155-4. PubMed DOI

Compta Y.; Giraldo D. M.; Muñoz E.; Antonelli F.; Fernández M.; Bravo P.; Soto M.; Cámara A.; Torres F.; Martí M. J.; Cerebrospinal Fluid Levels of Coenzyme Q10 are Reduced in Multiple System Atrophy. Parkinsonism Relat. Disord. 2018, 46, 16–23. 10.1016/j.parkreldis.2017.10.010. PubMed DOI

Konings C. H.; Kuiper M. A.; Teerlink T.; Mulder C.; Scheltens P.; Wolters E. C. Normal Cerebrospinal Fluid Glutathione Concentrations in Parkinson’s Disease, Alzheimer’s Disease and Multiple System Atrophy. J. Neurol. Sci. 1999, 168 (2), 112–115. 10.1016/S0022-510X(99)00167-7. PubMed DOI

Kaiserova M.; Chudackova M.; Prikrylova Vranova H.; Mensikova K.; Kastelikova A.; Stejskal D.; Kanovsky P. Cerebrospinal Fluid Levels of 5-Hydroxyindoleacetic Acid in Parkinson’s Disease and Atypical Parkinsonian Syndromes. Neurodegener. Dis. 2021, 21 (1–2), 30–35. 10.1159/000520302. PubMed DOI

Mori A.; Ishikawa K. I.; Saiki S.; Hatano T.; Oji Y.; Okuzumi A.; Fujimaki M.; Koinuma T.; Ueno S. I.; Imamichi Y.; Hattori N. Plasma Metabolite Biomarkers for Multiple System Atrophy and Progressive Supranuclear Palsy. PLoS One 2019, 14 (9), e0223113.10.1371/journal.pone.0223113. PubMed DOI PMC

Pathan M.; Wu J.; Lakso H. Å.; Forsgren L.; Öhman A. Plasma Metabolite Markers of Parkinson’s Disease and Atypical Parkinsonism. Metabolites 2021, 11 (12), 860.10.3390/metabo11120860. PubMed DOI PMC

Nagatsu T.; Sawada M. Biochemistry of Postmortem Brains in Parkinson’s Disease: Historical Overview and Future Prospects. Journal of Neural Transmission-Supplementa 2007, 72, 113–120. 10.1007/978-3-211-73574-9_14. PubMed DOI

Tehranian R.; Montoya S. E.; Van Laar A. D.; Hastings T. G.; Perez R. G. Alpha-synuclein Inhibits Aromatic Amino Acid Decarboxylase Activity in Dopaminergic Cells. Journal of Neurochemistry 2006, 99 (4), 1188–1196. 10.1111/j.1471-4159.2006.04146.x. PubMed DOI

Poeggeler B.; Singh S. K.; Pappolla M. A. Tryptophan in Nutrition and Health. Int. J. Mol. Sci. 2022, 23 (10), 5455.10.3390/ijms23105455. PubMed DOI PMC

Ogawa T.; Matson W. R.; Beal M. F.; Myers R. H.; Bird E. D.; Milbury P.; Saso S. Kynurenine Pathway Abnormalities in Parkinson’s Disease. Neurology 1992, 42 (9), 1702–1706. 10.1212/WNL.42.9.1702. PubMed DOI

Tohgi H.; Abe T.; Takahashi S.; Takahashi J.; Hamato H. Concentrations of Serotonin and its Related Substances in the Cerebrospinal Fluid of Parkinsonian Patients and their Relations to the Severity of Symptoms. Neurosci. Lett. 1993, 150 (1), 71–74. 10.1016/0304-3940(93)90111-W. PubMed DOI

Tohgi H.; Abe T.; Takahashi S.; Takahashi J.; Hamato H. Alterations in the Concentration of Serotonergic and Dopaminergic Substances in the Cerebrospinal Fluid of Patients with Parkinson’s Disease, and their Changes after L-dopa Administration. Neurosci. Lett. 1993, 159 (1–2), 135–138. 10.1016/0304-3940(93)90817-5. PubMed DOI

Kennedy P. J.; Cryan J. F.; Dinan T. G.; Clarke G. Kynurenine Pathway Metabolism and the Microbiota-gut-brain Axis. Neuropharmacology 2017, 112, 399–412. 10.1016/j.neuropharm.2016.07.002. PubMed DOI

Morenas-Rodríguez E.; Alcolea D.; Suárez-Calvet M.; Muñoz-Llahuna L.; Vilaplana E.; Sala I.; Subirana A.; Querol-Vilaseca M.; Carmona-Iragui M.; Illán-Gala I.; Ribosa-Nogué R.; Blesa R.; Haass C.; Fortea J.; Lleó A. Different Pattern of CSF Glial Markers between Dementia with Lewy Bodies and Alzheimer’s Disease. Sci. Rep. 2019, 9 (1), 1–10. 10.1038/s41598-019-44173-8. PubMed DOI PMC

Chouliaras L.; Thomas A.; Malpetti M.; Donaghy P.; Kane J.; Mak E.; Savulich G.; Prats-Sedano M. A.; Heslegrave A. J.; Zetterberg H.; Su L.; Rowe J. B.; O’Brien J. T. Differential Levels of Plasma Biomarkers of Neurodegeneration in Lewy Body Dementia, Alzheimer’s Disease, Frontotemporal Dementia and Progressive Supranuclear Palsy. Journal of Neurology Neurosurgery and Psychiatry 2022, 93 (6), 651–658. 10.1136/jnnp-2021-327788. PubMed DOI PMC

Lourenco M. V.; Ribeiro F. C.; Santos L. E.; Beckman D.; Melo H. M.; Sudo F. K.; Drummond C.; Assunção N.; Vanderborght B.; Tovar-Moll F.; De Felice F. G.; Mattos P.; Ferreira S. T. Cerebrospinal Fluid Neurotransmitters, Cytokines, and Chemokines in Alzheimer’s and Lewy Body Diseases. Journal of Alzheimers Disease 2021, 82 (3), 1067–1074. 10.3233/JAD-210147. PubMed DOI

Kovacs G. G. Molecular Pathological Classification of Neurodegenerative Diseases: Turning towards Precision Medicine. Int. J. Mol. Sci. 2016, 17 (2), 189.10.3390/ijms17020189. PubMed DOI PMC

Maitre M.; Klein C.; Patte-Mensah C.; Mensah-Nyagan A. G. Tryptophan Metabolites Modify Brain Aβ Peptide Degradation: A Role in Alzheimer’s disease?. Prog. Neurobiol. 2020, 190, 101800.10.1016/j.pneurobio.2020.101800. PubMed DOI

van der Goot A. T.; Zhu W.; Vázquez-Manrique R. P.; Seinstra R. I.; Dettmer K.; Michels H.; Farina F.; Krijnen J.; Melki R.; Buijsman R. C.; Ruiz Silva M.; Thijssen K. L.; Kema I. P.; Neri C.; Oefner P. J.; Nollen E. A. A. Delaying Aging and the Aging-associated Decline in Protein Homeostasis by Inhibition of Tryptophan Degradation. Proc. Natl. Acad. Sci. U.S.A. 2012, 109 (37), 14912–14917. 10.1073/pnas.1203083109. PubMed DOI PMC

Ano Y.; Takaichi Y.; Ohya R.; Uchida K.; Nakayama H.; Takashima A. Tryptophan-tyrosine Dipeptide Improves Tau-related Symptoms in Tauopathy Mice. Nutritional Neuroscience 2023, 26 (8), 766–777. 10.1080/1028415X.2022.2090075. PubMed DOI

Majerova P.; Olesova D.; Golisova G.; Buralova M.; Michalicova A.; Vegh J.; Piestansky J.; Bhide M.; Hanes J.; Kovac A. Analog of Kynurenic Acid Decreases Tau Pathology by Modulating Astrogliosis in Rat Model for Tauopathy. Biomed. Pharmacother. 2022, 152, 113257.10.1016/j.biopha.2022.113257. PubMed DOI

Gore S.; Baskaran S.; König B. Fischer Indole Synthesis in Low Melting Mixtures. Org. Lett. 2012, 14 (17), 4568–4571. 10.1021/ol302034r. PubMed DOI

Suzuki T.; Ota Y.; Ri M.; Bando M.; Gotoh A.; Itoh Y.; Tsumoto H.; Tatum P. R.; Mizukami T.; Nakagawa H.; Iida S.; Ueda R.; Shirahige K.; Miyata N. Rapid Discovery of Highly Potent and Selective Inhibitors of Histone Deacetylase 8 Using Click Chemistry to Generate Candidate Libraries. J. Med. Chem. 2012, 55 (22), 9562–9575. 10.1021/jm300837y. PubMed DOI

Postuma R. B.; Berg D.; Stern M.; Poewe W.; Olanow C. W.; Oertel W.; Obeso J.; Marek K.; Litvan I.; Lang A. E.; Halliday G.; Goetz C. G.; Gasser T.; Dubois B.; Chan P.; Bloem B. R.; Adler C. H.; Deuschl G. MDS Clinical Diagnostic Criteria for Parkinson’s Disease. Movement Disorders 2015, 30 (12), 1591–1599. 10.1002/mds.26424. PubMed DOI

McKeith I. G.; Dickson D. W.; Lowe J.; Emre M.; O’Brien J. T.; Feldman H.; Cummings J.; Duda J. E.; Lippa C.; Perry E. K.; Aarsland D.; Arai H.; Ballard C. G.; Boeve B.; Burn D. J.; Costa D.; Del Ser T.; Dubois B.; Galasko D.; Gauthier S.; Goetz C. G.; Gomez-Tortosa E.; Halliday G.; Hansen L. A.; Hardy J.; Iwatsubo T.; Kalaria R. N.; Kaufer D.; Kenny R. A.; Korczyn A.; Kosaka K.; Lee V. M.Y.; Lees A.; Litvan I.; Londos E.; Lopez O. L.; Minoshima S.; Mizuno Y.; Molina J. A.; Mukaetova-Ladinska E. B.; Pasquier F.; Perry R. H.; Schulz J. B.; Trojanowski J. Q.; Yamada M.; Diagnosis and Management of Dementia with Lewy Bodies. Third Report of the DLB Consortium. Neurology 2005, 65 (12), 1863–1872. 10.1212/01.wnl.0000187889.17253.b1. PubMed DOI

McKeith I. G.; Boeve B. F.; Dickson D. W.; Halliday G.; Taylor J. P.; Weintraub D.; Aarsland D.; Galvin J.; Attems J.; Ballard C. G.; Bayston A.; Beach T. G.; Blanc F.; Bohnen N.; Bonanni L.; Bras J.; Brundin P.; Burn D.; Chen-Plotkin A.; Duda J. E.; El-Agnaf O.; Feldman H.; Ferman T. J.; Ffytche D.; Fujishiro H.; Galasko D.; Goldman J. G.; Gomperts S. N.; Graff-Radford N. R.; Honig L. S.; Iranzo A.; Kantarci K.; Kaufer D.; Kukull W.; Lee V. M. Y.; Leverenz J. B.; Lewis S.; Lippa C.; Lunde A.; Masellis M.; Masliah E.; McLean P.; Mollenhauer B.; Montine T. J.; Moreno E.; Mori E.; Murray M.; O’Brien J. T.; Orimo S.; Postuma R. B.; Ramaswamy S.; Ross O. A.; Salmon D. P.; Singleton A.; Taylor A.; Thomas A.; Tiraboschi P.; Toledo J. B.; Trojanowski J. Q.; Tsuang D.; Walker Z.; Yamada M.; Kosaka K. Diagnosis and Management of Dementia with Lewy bodies: Fourth Consensus Report of the DLB Consortium. Neurology 2017, 89 (1), 88–100. 10.1212/WNL.0000000000004058. PubMed DOI PMC

Litvan I.; Agid Y.; Calne D.; Campbell G.; Dubois B.; Duvoisin R. C.; Goetz C. G.; Golbe L. I.; Grafman J.; Growdon J. H.; Hallett M.; Jankovic J.; Quinn N. P.; Tolosa E.; Zee D. S. Clinical Research Criteria for the Diagnosis of Progressive Supranuclear Palsy (Steele-Richardson-Olszewski Syndrome): Report of the NINDS-SPSP International Workshop. Neurology 1996, 47 (1), 1–9. 10.1212/WNL.47.1.1. PubMed DOI

Höglinger G. U.; Respondek G.; Stamelou M.; Kurz C.; Josephs K. A.; Lang A. E.; Mollenhauer B.; Müller U.; Nilsson C.; Whitwell J. L.; Arzberger T.; Englund E.; Gelpi E.; Giese A.; Irwin D. J.; Meissner W. G.; Pantelyat A.; Rajput A.; van Swieten J. C.; Troakes C.; Antonini A.; Bhatia K. P.; Bordelon Y.; Compta Y.; Corvol J. C.; Colosimo C.; Dickson D. W.; Dodel R.; Ferguson L.; Grossman M.; Kassubek J.; Krismer F.; Levin J.; Lorenzl S.; Morris H. R.; Nestor P.; Oertel W. H.; Poewe W.; Rabinovici G.; Rowe J. B.; Schellenberg G. D.; Seppi K.; van Eimeren T.; Wenning G. K.; Boxer A. L.; Golbe L. I.; Litvan I. Clinical Diagnosis of Progressive Supranuclear Palsy: The Movement Disorder Society Criteria. Movement Disorders 2017, 32 (6), 853–864. 10.1002/mds.26987. PubMed DOI PMC

Armstrong M. J.; Litvan I.; Lang A. E.; Bak T. H.; Bhatia K. P.; Borroni B.; Boxer A. L.; Dickson D. W.; Grossman M.; Hallett M.; Josephs K. A.; Kertesz A.; Lee S. E.; Miller B. L.; Reich S. G.; Riley D. E.; Tolosa E.; Tröster A. I.; Vidailhet M.; Weiner W. J. Criteria for the Diagnosis of Corticobasal Degeneration. Neurology 2013, 80 (5), 496–503. 10.1212/WNL.0b013e31827f0fd1. PubMed DOI PMC

Gilman S.; Wenning G. K.; Low P. A.; Brooks D. J.; Mathias C. J.; Trojanowski J. Q.; Wood N. W.; Colosimo C.; Dürr A.; Fowler C. J.; Kaufmann H.; Klockgether T.; Lees A.; Poewe W.; Quinn N.; Revesz T.; Robertson D.; Sandroni P.; Seppi K.; Vidailhet M. Second Consensus Statement on the Diagnosis of Multiple System Atrophy. Neurology 2008, 71 (9), 670–676. 10.1212/01.wnl.0000324625.00404.15. PubMed DOI PMC

McKhann G. M.; Knopman D. S.; Chertkow H.; Hyman B. T.; Jack C. R.; Kawas C. H.; Klunk W. E.; Koroshetz W. J.; Manly J. J.; Mayeux R.; Mohs R. C.; Morris J. C.; Rossor M. N.; Scheltens P.; Carrillo M. C.; Thies B.; Weintraub S.; Phelps C. H. The Diagnosis of Dementia due to Alzheimer’s Disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimers & Dementia 2011, 7 (3), 263–269. 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Attems J.; Toledo J. B.; Walker L.; Gelpi E.; Gentleman S.; Halliday G.; Hortobagyi T.; Jellinger K.; Kovacs G. G.; Lee E. B.; Love S.; McAleese K. E.; Nelson P. T.; Neumann M.; Parkkinen L.; Polvikoski T.; Sikorska B.; Smith C.; Grinberg L. T.; Thal D. R.; Trojanowski J. Q.; McKeith I. G. Neuropathological Consensus Criteria for the Evaluation of Lewy Pathology in Post-mortem Brains: A Multi-centre Study. Acta Neuropathologica 2021, 141 (2), 159–172. 10.1007/s00401-020-02255-2. PubMed DOI PMC

Kovacs G. G. Neuropathology of Tauopathies: Principles and Practice. Neuropathology and Applied Neurobiology 2015, 41 (1), 3–23. 10.1111/nan.12208. PubMed DOI

Mackenzie I. R. A.; Neumann M. Molecular Neuropathology of Frontotemporal Dementia: Insights into Disease Mechanisms from Postmortem Studies. Journal of Neurochemistry 2016, 138, 54–70. 10.1111/jnc.13588. PubMed DOI

Vránová H. P.; Hényková E.; Kaiserová M.; Menšíková K.; Vaštík M.; Mareš J.; Hluštík P.; Zapletalová J.; Strnad M.; Stejskal D.; Kaňovský P. Tau Protein, Beta-amyloid(1-42) and Clusterin CSF Levels in the Differential Diagnosis of Parkinsonian Syndrome with Dementia. Journal of the Neurological Sciences 2014, 343 (1–2), 120–124. 10.1016/j.jns.2014.05.052. PubMed DOI

Prikrylova Vranová H.; Hényková E.; Mareš J.; Kaiserová M.; Menšíková K.; Vaštík M.; Hluštík P.; Zapletalová J.; Strnad M.; Stejskal D.; Kaňovský P. Clusterin CSF Levels in Differential Diagnosis of Neurodegenerative Disorders. J. Neurol. Sci. 2016, 361, 117–121. 10.1016/j.jns.2015.12.023. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace