Vitamin C-Sources, Physiological Role, Kinetics, Deficiency, Use, Toxicity, and Determination
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
2020-1-CZ01-KA203-078218
Erasmus+ Programme
CZ.02.1.01/0.0/0.0/16_019/0000841
EFSA-CDN
00179906
MH-CZ-DRO
PubMed
33668681
PubMed Central
PMC7918462
DOI
10.3390/nu13020615
PII: nu13020615
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant, ascorbic acid, epigenetic, oxalate, prooxidant, scurvy,
- MeSH
- antioxidancia fyziologie MeSH
- kinetika MeSH
- kyselina askorbová fyziologie MeSH
- lidé MeSH
- nedostatek vitaminu C patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- antioxidancia MeSH
- kyselina askorbová MeSH
Vitamin C (L-ascorbic acid) has been known as an antioxidant for most people. However, its physiological role is much larger and encompasses very different processes ranging from facilitation of iron absorption through involvement in hormones and carnitine synthesis for important roles in epigenetic processes. Contrarily, high doses act as a pro-oxidant than an anti-oxidant. This may also be the reason why plasma levels are meticulously regulated on the level of absorption and excretion in the kidney. Interestingly, most cells contain vitamin C in millimolar concentrations, which is much higher than its plasma concentrations, and compared to other vitamins. The role of vitamin C is well demonstrated by miscellaneous symptoms of its absence-scurvy. The only clinically well-documented indication for vitamin C is scurvy. The effects of vitamin C administration on cancer, cardiovascular diseases, and infections are rather minor or even debatable in the general population. Vitamin C is relatively safe, but caution should be given to the administration of high doses, which can cause overt side effects in some susceptible patients (e.g., oxalate renal stones). Lastly, analytical methods for its determination with advantages and pitfalls are also discussed in this review.
Zobrazit více v PubMed
Linster C.L., Van Schaftingen E. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J. 2007;274:1–22. doi: 10.1111/j.1742-4658.2006.05607.x. PubMed DOI
Granger M., Eck P. Dietary vitamin C in human health. Adv. Food Nutr. Res. 2018;83:281–310. doi: 10.1016/bs.afnr.2017.11.006. PubMed DOI
World Health Organization . Scurvy and its Prevention and Control in Major Emergencies/Prepared by Zita Weise Prinzo. World Health Organization; Geneva, Switzerland: 1999.
Englard S., Seifter S. The biochemical functions of ascorbic acid. Annu. Rev. Nutr. 1986;6:365–406. doi: 10.1146/annurev.nu.06.070186.002053. PubMed DOI
Levine M., Rumsey S., Daruwala R., Park J., Wang Y. Criteria and recommendations for vitamin C intake. JAMA. 1999;281:1415–1423. doi: 10.1001/jama.281.15.1415. PubMed DOI
Padayatty S.J., Levine M. Vitamin C: The known and the unknown and Goldilocks. Oral. Dis. 2016;22:463–493. doi: 10.1111/odi.12446. PubMed DOI PMC
Sauberlich H.E., Tamura T., Craig C.B., Freeberg L.E., Liu T. Effects of erythorbic acid on vitamin C metabolism in young women. Am. J. Clin. Nutr. 1996;64:336–346. doi: 10.1093/ajcn/64.3.336. PubMed DOI
Hornig D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann. N. Y. Acad. Sci. 1975;258:103–118. doi: 10.1111/j.1749-6632.1975.tb29271.x. PubMed DOI
Robertson W.B. D-Ascorbic acid and collagen synthesis. Biochim. Biophys. Acta. 1963;74:137–139. doi: 10.1016/0006-3002(63)91341-6. PubMed DOI
Zilva S.S. The behaviour of l-ascorbic acid and chemically related compounds in the animal body. The influence of generalised ether anaesthesia on their urinary excretion. Biochem. J. 1935;29:2366–2368. doi: 10.1042/bj0292366. PubMed DOI PMC
Davey M.W., Montagu M.V., Inzé D., Sanmartin M., Kanellis A., Smirnoff N., Benzie I.J.J., Strain J.J., Favell D., Fletcher J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agr. 2000;80:825–860. doi: 10.1002/(SICI)1097-0010(20000515)80:7<825::AID-JSFA598>3.0.CO;2-6. DOI
EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific opinion on dietary reference values for vitamin C. EFSA J. 2013;11:3418. doi: 10.2903/j.efsa.2013.3418. DOI
Fediuk K., Hidiroglou N., Madère R., Kuhnlein H.V. Vitamin C in Inuit traditional food and women’s diets. J. Food Compos. Anal. 2002;15:221–235. doi: 10.1006/jfca.2002.1053. DOI
Barros L., Ferreira M.-J., Queirós B., Ferreira I.C.F.R., Baptista P. Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chem. 2007;103:413–419. doi: 10.1016/j.foodchem.2006.07.038. DOI
Ferreira I., Barros L., Abreu R. Antioxidants in wild mushrooms. Curr. Med. Chem. 2009;16:1543–1560. doi: 10.2174/092986709787909587. PubMed DOI
Mattila P., Könkö K., Eurola M., Pihlava J.M., Astola J., Vahteristo L., Hietaniemi V., Kumpulainen J., Valtonen M., Piironen V. Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms. J. Agric. Food Chem. 2001;49:2343–2348. doi: 10.1021/jf001525d. PubMed DOI
Williams D.J., Edwards D., Pun S., Chaliha M., Burren B., Tinggi U., Sultanbawa Y. Organic acids in Kakadu plum (Terminalia ferdinandiana): The good (ellagic), the bad (oxalic) and the uncertain (ascorbic) Food Res. Int. 2016;89:237–244. doi: 10.1016/j.foodres.2016.08.004. PubMed DOI
Rodrigues R.B., De Menezes H.C., Cabral L.M.C., Dornier M., Reynes M. An Amazonian fruit with a high potential as a natural source of vitamin C: The camu-camu (Myrciaria dubia) Fruits. 2001;56:345–354. doi: 10.1051/fruits:2001135. DOI
Mezadri T., Villaño D., Fernández-Pachón M.S., García-Parrilla M.C., Troncoso A.M. Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. J. Food Compos. Anal. 2008;21:282–290. doi: 10.1016/j.jfca.2008.02.002. DOI
Gutzeit D., Baleanu G., Winterhalter P., Jerz G. Vitamin C content in sea buckthorn berries (Hippophaë rhamnoides L. ssp. rhamnoides) and related products: A kinetic study on storage stability and the determination of processing effects. J. Food Sci. 2008;73:615–620. doi: 10.1111/j.1750-3841.2008.00957.x. PubMed DOI
Roman I., Stănilă A., Stănilă S. Bioactive compounds and antioxidant activity of Rosa canina L. biotypes from spontaneous flora of Transylvania. Chem. Cent. J. 2013;7:73. doi: 10.1186/1752-153X-7-73. PubMed DOI PMC
Ariharan V.N., Kalirajan K., Devi V.N., Prasad P. An exotic fruit which forms the new natural source for vitamin-C. Rasayan J. Chem. 2012;5:356.
Gull J., Sultana B., Anwar F., Naseer R., Ashraf M., Ashrafuzzaman M. Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Molecules. 2012;17:3165–3180. doi: 10.3390/molecules17033165. PubMed DOI PMC
Vagiri M., Ekholm A., Öberg E., Johansson E., Andersson S.C., Rumpunen K. Phenols and ascorbic acid in black currants (Ribes nigrum L.): Variation due to genotype, location, and year. J. Agric. Food Chem. 2013;61:9298–9306. doi: 10.1021/jf402891s. PubMed DOI
Ellong E., Billard C., Adenet S., Rochefort K. Polyphenols, carotenoids, vitamin C content in tropical fruits and vegetables and impact of processing methods. Food Sci. Nutr. 2015;6:299–313. doi: 10.4236/fns.2015.63030. DOI
Domínguez-Perles R., Mena P., García-Viguera C., Moreno D.A. Brassica foods as a dietary source of vitamin C: A review. Crit. Rev. Food Sci. Nutr. 2014;54:1076–1091. doi: 10.1080/10408398.2011.626873. PubMed DOI
Martínez S., López M., González-Raurich M., Bernardo Alvarez A. The effects of ripening stage and processing systems on vitamin C content in sweet peppers (Capsicum annuum L.) Int. J. Food Sci. Nutr. 2005;56:45–51. doi: 10.1080/09637480500081936. PubMed DOI
Peñas E., Frias J., Sidro B., Vidal-Valverde C. Chemical evaluation and sensory quality of sauerkrauts obtained by natural and induced fermentations at different NaCl levels from Brassica oleracea Var. capitata Cv. Bronco grown in Eastern Spain. Effect of storage. J. Agric. Food Chem. 2010;58:3549–3557. doi: 10.1021/jf903739a. PubMed DOI
Külen O., Stushnoff C., Holm D.G. Effect of cold storage on total phenolics content, antioxidant activity and vitamin C level of selected potato clones. J. Sci. Food Agric. 2013;93:2437–2444. doi: 10.1002/jsfa.6053. PubMed DOI
Santos J., Herrero M., Mendiola J., Oliva-Teles M.T., Ibáñez E., Delerue-Matos C., Oliveira M. Fresh-cut aromatic herbs: Nutritional quality stability during shelf-life. LWT. 2014;59:101–107. doi: 10.1016/j.lwt.2014.05.019. DOI
Chakraborty S., Santra S. Biochemical composition of eight benthic alge collected from Sunderban. Indian J. Mar. Sci. 2008;37:329–332.
Zheng J., Yang B., Tuomasjukka S., Ou S., Kallio H. Effects of latitude and weather conditions on contents of sugars, fruit acids, and ascorbic acid in black currant (Ribes nigrum L.) juice. J. Agric. Food Chem. 2009;57:2977–2987. doi: 10.1021/jf8034513. PubMed DOI
Kallio H., Yang B., Peippo P. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophaë rhamnoides) berries. J. Agric. Food Chem. 2002;50:6136–6142. doi: 10.1021/jf020421v. PubMed DOI
Cardoso P.C., Tomazini A.P.B., Stringheta P.C., Ribeiro S.M.R., Pinheiro-Sant’Ana H.M. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 2011;126:411–416. doi: 10.1016/j.foodchem.2010.10.109. DOI
Raghu V., Platel K., Srinivasan K. Comparison of ascorbic acid content of Emblica officinalis fruits determined by different analytical methods. J. Food Compos. Anal. 2007;20:529–533. doi: 10.1016/j.jfca.2007.02.006. DOI
Lešková E., Kubíková J., Kováčiková E., Košická M., Porubská J., Holčíková K. Vitamin losses: Retention during heat treatment and continual changes expressed by mathematical models. J. Food Compos. Anal. 2006;19:252–276. doi: 10.1016/j.jfca.2005.04.014. DOI
Wang J., Law C.L., Mujumdar A.S. The degradation mechanisms and kinetics of vitamin C in fruits and vegetables during thermal processing. In: Nema P.K., Kaur B.P., Mujumdar A.S., editors. Drying Technologies in Foods. CRC Press; Boca Raton, FL, USA: 2018. pp. 275–301.
Phillips K.M., Tarragó-Trani M.T., Gebhardt S.E., Exler J., Patterson K.Y., Haytowitz D.B., Pehrsson P.R., Holden J.M. Stability of vitamin C in frozen raw fruit and vegetable homogenates. J. Food Compos. Anal. 2010;23:253–259. doi: 10.1016/j.jfca.2009.08.018. DOI
Vandamme E.J., Revuelta J.L. Industrial Biotechnology of Vitamins, Biopigments, and Antioxidants. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2016. Industrial fermentation of vitamin C; pp. 161–192.
Carr A.C., Vissers M.C. Synthetic or food-derived vitamin C—Are they equally bioavailable? Nutrients. 2013;5:4284–4304. doi: 10.3390/nu5114284. PubMed DOI PMC
Konczak I., Maillot F., Dalar A. Phytochemical divergence in 45 accessions of Terminalia ferdinandiana (Kakadu plum) Food Chem. 2014;151:248–256. doi: 10.1016/j.foodchem.2013.11.049. PubMed DOI
Justi K.C., Visentainer J.V., Evelázio de Souza N., Matsushita M. Nutritional composition and vitamin C stability in stored camu-camu (Myrciaria dubia) pulp. Arch. Latinoam. Nutr. 2000;50:405–408. PubMed
McCook-Russell K.P., Nair M.G., Facey P.C., Bowen-Forbes C.S. Nutritional and nutraceutical comparison of Jamaican Psidium cattleianum (strawberry guava) and Psidium guajava (common guava) fruits. Food Chem. 2012;134:1069–1073. doi: 10.1016/j.foodchem.2012.03.018. PubMed DOI
Najwa R., Azlan A. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 2017;24:726–733.
Njoku P.C., Ayuk A.A., Okoye C.V. Temperature effects on vitamin C content in citrus fruits. Pak. J. Nutr. 2011;10:1168–1169. doi: 10.3923/pjn.2011.1168.1169. DOI
Kevers C., Pincemail J., Tabart J., Defraigne J.O., Dommes J. Influence of cultivar, harvest time, storage conditions, and peeling on the antioxidant capacity and phenolic and ascorbic acid contents of apples and pears. J. Agric. Food Chem. 2011;59:6165–6171. doi: 10.1021/jf201013k. PubMed DOI
Roberts P., Jones D.L., Edwards-Jones G. Yield and vitamin C content of tomatoes grown in vermicomposted wastes. J. Sci. Food Agric. 2007;87:1957–1963. doi: 10.1002/jsfa.2950. DOI
Georgé S., Tourniaire F., Gautier H., Goupy P., Rock E., Caris-Veyrat C. Changes in the contents of carotenoids, phenolic compounds and vitamin C during technical processing and lyophilisation of red and yellow tomatoes. Food Chem. 2011;124:1603–1611. doi: 10.1016/j.foodchem.2010.08.024. DOI
Turkben C., Uylaser V., Incedayi B., Çelikkol I. Effects of different maturity periods and processes on nutritional components of rose hip (Rosa canina L.) J. Food Agric. Environ. 2010;8:26–30.
Singh G., Kawatra A., Sehgal S. Nutritional composition of selected green leafy vegetables, herbs and carrots. Plant. Foods Hum. Nutr. 2001;56:359–364. doi: 10.1023/A:1011873119620. PubMed DOI
Daruwala R., Song J., Koh W.S., Rumsey S.C., Levine M. Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett. 1999;460:480–484. doi: 10.1016/S0014-5793(99)01393-9. PubMed DOI
Lykkesfeldt J., Tveden-Nyborg P. The pharmacokinetics of vitamin C. Nutrients. 2019;11:2412. doi: 10.3390/nu11102412. PubMed DOI PMC
Burzle M., Suzuki Y., Ackermann D., Miyazaki H., Maeda N., Clemencon B., Burrier R., Hediger M.A. The sodium-dependent ascorbic acid transporter family SLC23. Mol. Aspects Med. 2013;34:436–454. doi: 10.1016/j.mam.2012.12.002. PubMed DOI
Liang W.J., Johnson D., Jarvis S.M. Vitamin C transport systems of mammalian cells. Mol. Membr. Biol. 2001;18:87–95. doi: 10.1080/09687680110033774. PubMed DOI
Levine M., Conry-Cantilena C., Yh W., Welch R., Washko P., Dhariwal K., Park J., Lazarev A., Graumlich J., King J., et al. Vitamin C pharmacokinetics in healthy volunteers: Evidence for a recommended dietary allowance. Proc. Natl. Acad. Sci. USA. 1996;93:3704–3709. doi: 10.1073/pnas.93.8.3704. PubMed DOI PMC
Hornig D., Vuilleumier J.P., Hartmann D. Absorption of large, single, oral intakes of ascorbic acid. Int. J. Vitam. Nutr. Res. 1980;50:309–314. PubMed
Graumlich J.F., Ludden T.M., Conry-Cantilena C., Cantilena L.R., Jr., Wang Y., Levine M. Pharmacokinetic model of ascorbic acid in healthy male volunteers during depletion and repletion. Pharm. Res. 1997;14:1133–1139. doi: 10.1023/A:1012186203165. PubMed DOI
Kim Y., Kim M.-G. HPLC-UV method for the simultaneous determinations of ascorbic acid and dehydroascorbic acid in human plasma. Transl. Clin. Pharmacol. 2016;24:37–42. doi: 10.12793/tcp.2016.24.1.37. DOI
Huijskens M.J., Wodzig W.K., Walczak M., Germeraad W.T., Bos G.M. Ascorbic acid serum levels are reduced in patients with hematological malignancies. Results Immunol. 2016;6:8–10. doi: 10.1016/j.rinim.2016.01.001. PubMed DOI PMC
Riemersma R.A., Carruthers K.F., Elton R.A., Fox K.A. Vitamin C and the risk of acute myocardial infarction. Am. J. Clin. Nutr. 2000;71:1181–1186. doi: 10.1093/ajcn/71.5.1181. PubMed DOI
Schleicher R.L., Carroll M.D., Ford E.S., Lacher D.A. Serum vitamin C and the prevalence of vitamin C deficiency in the United States: 2003-2004 National Health and Nutrition Examination Survey (NHANES) Am. J. Clin. Nutr. 2009;90:1252–1263. doi: 10.3945/ajcn.2008.27016. PubMed DOI
Dhariwal K.R., Hartzell W.O., Levine M. Ascorbic acid and dehydroascorbic acid measurements in human plasma and serum. Am. J. Clin. Nutr. 1991;54:712–716. doi: 10.1093/ajcn/54.4.712. PubMed DOI
Motoyama T., Kawano H., Kugiyama K., Hirashima O., Ohgushi M., Yoshimura M., Ogawa H., Yasue H. Endothelium-dependent vasodilation in the brachial artery is impaired in smokers: Effect of vitamin C. Am. J. Physiol. 1997;273:1644–1650. doi: 10.1152/ajpheart.1997.273.4.H1644. PubMed DOI
Padayatty S.J., Sun H., Wang Y., Riordan H.D., Hewitt S.M., Katz A., Wesley R.A., Levine M. Vitamin C pharmacokinetics: Implications for oral and intravenous use. Ann. Intern. Med. 2004;140:533–537. doi: 10.7326/0003-4819-140-7-200404060-00010. PubMed DOI
Levine M., Padayatty S.J., Espey M.G. Vitamin C: A concentration-function approach yields pharmacology and therapeutic discoveries. Adv. Nutr. 2011;2:78–88. doi: 10.3945/an.110.000109. PubMed DOI PMC
Levine M., Wang Y., Padayatty S.J., Morrow J. A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. USA. 2001;98:9842–9846. doi: 10.1073/pnas.171318198. PubMed DOI PMC
Chen Q., Espey M.G., Sun A.Y., Lee J.H., Krishna M.C., Shacter E., Choyke P.L., Pooput C., Kirk K.L., Buettner G.R., et al. Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo. Proc. Natl. Acad. Sci. USA. 2007;104:8749–8754. doi: 10.1073/pnas.0702854104. PubMed DOI PMC
May J.M., Harrison F.E. Role of vitamin C in the function of the vascular endothelium. Antioxid. Redox Sign. 2013;19:2068–2083. doi: 10.1089/ars.2013.5205. PubMed DOI PMC
Harrison F.E., Dawes S.M., Meredith M.E., Babaev V.R., Li L., May J.M. Low vitamin C and increased oxidative stress and cell death in mice that lack the sodium-dependent vitamin C transporter SVCT2. Free Radic. Biol. Med. 2010;49:821–829. doi: 10.1016/j.freeradbiomed.2010.06.008. PubMed DOI PMC
Sotiriou S., Gispert S., Cheng J., Wang Y., Chen A., Hoogstraten-Miller S., Miller G.F., Kwon O., Levine M., Guttentag S.H., et al. Ascorbic-acid transporter Slc23a1 is essential for vitamin C transport into the brain and for perinatal survival. Nat. Med. 2002;8:514–517. doi: 10.1038/0502-514. PubMed DOI
May J.M., Qu Z.C. Transport and intracellular accumulation of vitamin C in endothelial cells: Relevance to collagen synthesis. Arch. Biochem. Biophys. 2005;434:178–186. doi: 10.1016/j.abb.2004.10.023. PubMed DOI
Prigge S.T., Mains R.E., Eipper B.A., Amzel L.M. New insights into copper monooxygenases and peptide amidation: Structure, mechanism and function. Cell. Mol. Life Sci. 2000;57:1236–1259. doi: 10.1007/PL00000763. PubMed DOI PMC
May J.M. Vitamin C transport and its role in the central nervous system. Subcell. Biochem. 2012;56:85–103. doi: 10.1007/978-94-007-2199-9_6. PubMed DOI PMC
Corpe C., Lee J.-H., Kwon O., Eck P., Narayanan J., Kirk K., Levine M. 6-Bromo-6-deoxy-L-ascorbic acid: An ascorbate analog specific for Na +-dependent vitamin C transporter but not glucose transporter pathways. J. Biol. Chem. 2005;280:5211–5220. doi: 10.1074/jbc.M412925200. PubMed DOI
Tolbert B.M., Ward J.B. Dehydroascorbic acid. In: Seib P.A., Tolbert B.M., editors. Ascorbic Acid: Chemistry, Metabolism, and Uses. American Chemical Society; Washington, DC, USA: 1982. pp. 101–123.
Banhegyi G., Braun L., Csala M., Puskas F., Mandl J. Ascorbate metabolism and its regulation in animals. Free Radic. Biol. Med. 1997;23:793–803. doi: 10.1016/S0891-5849(97)00062-2. PubMed DOI
Huang J., Agus D.B., Winfree C.J., Kiss S., Mack W.J., McTaggart R.A., Choudhri T.F., Kim L.J., Mocco J., Pinsky D.J., et al. Dehydroascorbic acid, a blood-brain barrier transportable form of vitamin C, mediates potent cerebroprotection in experimental stroke. Proc. Natl. Acad. Sci. USA. 2001;98:11720–11724. doi: 10.1073/pnas.171325998. PubMed DOI PMC
Schjoldager J.G., Paidi M.D., Lindblad M.M., Birck M.M., Kjærgaard A.B., Dantzer V., Lykkesfeldt J., Tveden-Nyborg P. Maternal vitamin C deficiency during pregnancy results in transient fetal and placental growth retardation in guinea pigs. Eur. J. Nutr. 2015;54:667–676. doi: 10.1007/s00394-014-0809-6. PubMed DOI
Hellman L., Burns J.J. Metabolism of L-ascorbic acid-1-C14 in man. J. Biol. Chem. 1958;230:923–930. doi: 10.1016/S0021-9258(18)70515-2. PubMed DOI
Corpe C.P., Tu H., Eck P., Wang J., Faulhaber-Walter R., Schnermann J., Margolis S., Padayatty S., Sun H., Wang Y., et al. Vitamin C transporter Slc23a1 links renal reabsorption, vitamin C tissue accumulation, and perinatal survival in mice. J. Clin. Investig. 2010;120:1069–1083. doi: 10.1172/JCI39191. PubMed DOI PMC
Tsukaguchi H., Tokui T., Mackenzie B., Berger U.V., Chen X.Z., Wang Y., Brubaker R.F., Hediger M.A. A family of mammalian Na+-dependent L-ascorbic acid transporters. Nature. 1999;399:70–75. doi: 10.1038/19986. PubMed DOI
Timpson N.J., Forouhi N.G., Brion M.J., Harbord R.M., Cook D.G., Johnson P., McConnachie A., Morris R.W., Rodriguez S., Luan J., et al. Genetic variation at the SLC23A1 locus is associated with circulating concentrations of L-ascorbic acid (vitamin C): Evidence from 5 independent studies with >15,000 participants. Am. J. Clin. Nutr. 2010;92:375–382. doi: 10.3945/ajcn.2010.29438. PubMed DOI PMC
Michels A.J., Hagen T.M., Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function. Annu. Rev. Nutr. 2013;33:45–70. doi: 10.1146/annurev-nutr-071812-161246. PubMed DOI PMC
Erichsen H.C., Engel S.A., Eck P.K., Welch R., Yeager M., Levine M., Siega-Riz A.M., Olshan A.F., Chanock S.J. Genetic variation in the sodium-dependent vitamin C transporters, SLC23A1, and SLC23A2 and risk for preterm delivery. Am. J. Epidemiol. 2006;163:245–254. doi: 10.1093/aje/kwj035. PubMed DOI
Duell E.J., Lujan-Barroso L., Llivina C., Munoz X., Jenab M., Boutron-Ruault M.C., Clavel-Chapelon F., Racine A., Boeing H., Buijsse B., et al. Vitamin C transporter gene (SLC23A1 and SLC23A2) polymorphisms, plasma vitamin C levels, and gastric cancer risk in the EPIC cohort. Genes Nutr. 2013;8:549–560. doi: 10.1007/s12263-013-0346-6. PubMed DOI PMC
Amir Shaghaghi M., Bernstein C.N., Serrano Leon A., El-Gabalawy H., Eck P. Polymorphisms in the sodium-dependent ascorbate transporter gene SLC23A1 are associated with susceptibility to Crohn disease. Am. J. Clin. Nutr. 2014;99:378–383. doi: 10.3945/ajcn.113.068015. PubMed DOI
Skibola C.F., Bracci P.M., Halperin E., Nieters A., Hubbard A., Paynter R.A., Skibola D.R., Agana L., Becker N., Tressler P., et al. Polymorphisms in the estrogen receptor 1 and vitamin C and matrix metalloproteinase gene families are associated with susceptibility to lymphoma. PLoS ONE. 2008;3:e2816. doi: 10.1371/journal.pone.0002816. PubMed DOI PMC
De Jong T.M., Jochens A., Jockel-Schneider Y., Harks I., Dommisch H., Graetz C., Flachsbart F., Staufenbiel I., Eberhard J., Folwaczny M., et al. SLC23A1 polymorphism rs6596473 in the vitamin C transporter SVCT1 is associated with aggressive periodontitis. J. Clin. Periodontol. 2014;41:531–540. doi: 10.1111/jcpe.12253. PubMed DOI
Wade K.H., Forouhi N.G., Cook D.G., Johnson P., McConnachie A., Morris R.W., Rodriguez S., Ye Z., Ebrahim S., Padmanabhan S., et al. Variation in the SLC23A1 gene does not influence cardiometabolic outcomes to the extent expected given its association with L-ascorbic acid. Am. J. Clin. Nutr. 2015;101:202–209. doi: 10.3945/ajcn.114.092981. PubMed DOI PMC
Wright M.E., Andreotti G., Lissowska J., Yeager M., Zatonski W., Chanock S.J., Chow W.H., Hou L. Genetic variation in sodium-dependent ascorbic acid transporters and risk of gastric cancer in Poland. Eur. J. Cancer. 2009;45:1824–1830. doi: 10.1016/j.ejca.2009.01.027. PubMed DOI PMC
Erichsen H.C., Peters U., Eck P., Welch R., Schoen R.E., Yeager M., Levine M., Hayes R.B., Chanock S. Genetic variation in sodium-dependent vitamin C transporters SLC23A1 and SLC23A2 and risk of advanced colorectal adenoma. Nutr. Cancer. 2008;60:652–659. doi: 10.1080/01635580802033110. PubMed DOI PMC
Chen A.A., Marsit C.J., Christensen B.C., Houseman E.A., McClean M.D., Smith J.F., Bryan J.T., Posner M.R., Nelson H.H., Kelsey K.T. Genetic variation in the vitamin C transporter, SLC23A2, modifies the risk of HPV16-associated head and neck cancer. Carcinogenesis. 2009;30:977–981. doi: 10.1093/carcin/bgp076. PubMed DOI PMC
Andrew A.S., Gui J., Sanderson A.C., Mason R.A., Morlock E.V., Schned A.R., Kelsey K.T., Marsit C.J., Moore J.H., Karagas M.R. Bladder cancer SNP panel predicts susceptibility and survival. Hum. Genet. 2009;125:527–539. doi: 10.1007/s00439-009-0645-6. PubMed DOI PMC
Casabonne D., Gracia E., Espinosa A., Bustamante M., Benavente Y., Robles C., Costas L., Alonso E., Gonzalez-Barca E., Tardon A., et al. Fruit and vegetable intake and vitamin C transporter gene (SLC23A2) polymorphisms in chronic lymphocytic leukaemia. Eur. J. Nutr. 2017;56:1123–1133. doi: 10.1007/s00394-016-1162-8. PubMed DOI
Zanon-Moreno V., Ciancotti-Olivares L., Asencio J., Sanz P., Ortega-Azorin C., Pinazo-Duran M.D., Corella D. Association between a SLC23A2 gene variation, plasma vitamin C levels, and risk of glaucoma in a Mediterranean population. Mol. Vis. 2011;17:2997–3004. PubMed PMC
Dalgard C., Christiansen L., Vogel U., Dethlefsen C., Tjonneland A., Overvad K. Variation in the sodium-dependent vitamin C transporter 2 gene is associated with risk of acute coronary syndrome among women. PLoS ONE. 2013;8:e70421. doi: 10.1371/journal.pone.0070421. PubMed DOI PMC
McDonough M., Loenarz C., Chowdhury R., Clifton I., Schofield C. Structural studies on human 2-oxoglutarate dependent oxygenases. Curr. Opin. Struct. Biol. 2010;20:659–672. doi: 10.1016/j.sbi.2010.08.006. PubMed DOI
Kuiper C., Vissers M.C. Ascorbate as a co-factor for fe- and 2-oxoglutarate dependent dioxygenases: Physiological activity in tumor growth and progression. Front. Oncol. 2014;4:359. doi: 10.3389/fonc.2014.00359. PubMed DOI PMC
Loenarz C., Schofield C.J. Physiological and biochemical aspects of hydroxylations and demethylations catalyzed by human 2-oxoglutarate oxygenases. Trends Biochem. Sci. 2011;36:7–18. doi: 10.1016/j.tibs.2010.07.002. PubMed DOI
Myllyla R., Kuutti-Savolainen E.R., Kivirikko K.I. The role of ascorbate in the prolyl hydroxylase reaction. Biochem. Biophys. Res. Commun. 1978;83:441–448. doi: 10.1016/0006-291X(78)91010-0. PubMed DOI
Islam M.S., Leissing T., Chowdhury R., Hopkinson R., Schofield C. 2-Oxoglutarate-dependent oxygenases. Annu. Rev. Biochem. 2018;87 doi: 10.1146/annurev-biochem-061516-044724. PubMed DOI
Young J.I., Zuchner S., Wang G. Regulation of the epigenome by vitamin C. Annu. Rev. Nutr. 2015;35:545–564. doi: 10.1146/annurev-nutr-071714-034228. PubMed DOI PMC
Cimmino L., Neel B.G., Aifantis I. Vitamin C in stem cell reprogramming and cancer. Trends Cell Biol. 2018;28:698–708. doi: 10.1016/j.tcb.2018.04.001. PubMed DOI PMC
Vasta J.D., Raines R.T. Collagen prolyl 4-hydroxylase as a therapeutic target. J. Med. Chem. 2018;61:10403–10411. doi: 10.1021/acs.jmedchem.8b00822. PubMed DOI PMC
Amer J., Zelig O., Fibach E. Oxidative status of red blood cells, neutrophils, and platelets in paroxysmal nocturnal hemoglobinuria. Exp. Hematol. 2008;36:369–377. doi: 10.1016/j.exphem.2007.12.003. PubMed DOI
Furusawa H., Sato Y., Tanaka Y., Inai Y., Amano A., Iwama M., Kondo Y., Handa S., Murata A., Nishikimi M., et al. Vitamin C is not essential for carnitine biosynthesis in vivo: Verification in vitamin C-depleted senescence marker protein-30/gluconolactonase knockout mice. Biol. Pharm. Bull. 2008;31:1673–1679. doi: 10.1248/bpb.31.1673. PubMed DOI
Monfort A., Wutz A. Breathing-in epigenetic change with vitamin C. EMBO Rep. 2013;14:337–346. doi: 10.1038/embor.2013.29. PubMed DOI PMC
Das A.B., Smith-Diaz C.C., Vissers M.C.M. Emerging epigenetic therapeutics for myeloid leukemia: Modulating demethylase activity with ascorbate. Haematologica. 2020;106 doi: 10.3324/haematol.2020.259283. PubMed DOI PMC
Lee Chong T., Ahearn E.L., Cimmino L. Reprogramming the epigenome with vitamin C. Front. Cell Dev. Biol. 2019;7:128. doi: 10.3389/fcell.2019.00128. PubMed DOI PMC
Ozer A., Bruick R.K. Non-heme dioxygenases: Cellular sensors and regulators jelly rolled into one? Nat. Chem. Biol. 2007;3:144–153. doi: 10.1038/nchembio863. PubMed DOI
Kuiper C., Dachs G.U., Currie M.J., Vissers M.C. Intracellular ascorbate enhances hypoxia-inducible factor (HIF)-hydroxylase activity and preferentially suppresses the HIF-1 transcriptional response. Free Radic. Biol. Med. 2014;69:308–317. doi: 10.1016/j.freeradbiomed.2014.01.033. PubMed DOI
Wang T., Chen K., Zeng X., Yang J., Wu Y., Shi X., Qin B., Zeng L., Esteban M.A., Pan G., et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem. Cell. 2011;9:575–587. doi: 10.1016/j.stem.2011.10.005. PubMed DOI
Zhang T., Huang K., Zhu Y., Wang T., Shan Y., Long B., Li Y., Chen Q., Wang P., Zhao S., et al. Vitamin C-dependent lysine demethylase 6 (KDM6)-mediated demethylation promotes a chromatin state that supports the endothelial-to-hematopoietic transition. J. Biol. Chem. 2019;294:13657–13670. doi: 10.1074/jbc.RA119.009757. PubMed DOI PMC
D’Oto A., Tian Q.W., Davidoff A.M., Yang J. Histone demethylases and their roles in cancer epigenetics. J. Med. Oncol. Ther. 2016;1:34–40. doi: 10.35841/medical-oncology.1.2.34-40. PubMed DOI PMC
Ge W., Wolf A., Feng T., Ho C.H., Sekirnik R., Zayer A., Granatino N., Cockman M.E., Loenarz C., Loik N.D., et al. Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat. Chem. Biol. 2012;8:960–962. doi: 10.1038/nchembio.1093. PubMed DOI PMC
Chowdhury R., Sekirnik R., Brissett N.C., Krojer T., Ho C.H., Ng S.S., Clifton I.J., Ge W., Kershaw N.J., Fox G.C., et al. Ribosomal oxygenases are structurally conserved from prokaryotes to humans. Nature. 2014;510:422–426. doi: 10.1038/nature13263. PubMed DOI PMC
Blaschke K., Ebata K.T., Karimi M.M., Zepeda-Martinez J.A., Goyal P., Mahapatra S., Tam A., Laird D.J., Hirst M., Rao A., et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Nature. 2013;500:222–226. doi: 10.1038/nature12362. PubMed DOI PMC
Chen J., Guo L., Zhang L., Wu H., Yang J., Liu H., Wang X., Hu X., Gu T., Zhou Z., et al. Vitamin C modulates TET1 function during somatic cell reprogramming. Nat. Genet. 2013;45:1504–1509. doi: 10.1038/ng.2807. PubMed DOI
Minor E.A., Court B.L., Young J.I., Wang G. Ascorbate induces ten-eleven translocation (Tet) methylcytosine dioxygenase-mediated generation of 5-hydroxymethylcytosine. J. Biol Chem. 2013;288:13669–13674. doi: 10.1074/jbc.C113.464800. PubMed DOI PMC
Rasmussen K.D., Helin K. Role of TET enzymes in DNA methylation, development, and cancer. Genes Dev. 2016;30:733–750. doi: 10.1101/gad.276568.115. PubMed DOI PMC
Zheng G., Dahl J.A., Niu Y., Fu Y., Klungland A., Yang Y.G., He C. Sprouts of RNA epigenetics: The discovery of mammalian RNA demethylases. RNA Biol. 2013;10:915–918. doi: 10.4161/rna.24711. PubMed DOI PMC
Gerken T., Girard C.A., Tung Y.C., Webby C.J., Saudek V., Hewitson K.S., Yeo G.S., McDonough M.A., Cunliffe S., McNeill L.A., et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science. 2007;318:1469–1472. doi: 10.1126/science.1151710. PubMed DOI PMC
Aas P.A., Otterlei M., Falnes P.O., Vagbo C.B., Skorpen F., Akbari M., Sundheim O., Bjoras M., Slupphaug G., Seeberg E., et al. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. Nature. 2003;421:859–863. doi: 10.1038/nature01363. PubMed DOI
Ougland R., Rognes T., Klungland A., Larsen E. Non-homologous functions of the AlkB homologs. J. Mol. Cell Biol. 2015;7:494–504. doi: 10.1093/jmcb/mjv029. PubMed DOI
Ueda Y., Ooshio I., Fusamae Y., Kitae K., Kawaguchi M., Jingushi K., Hase H., Harada K., Hirata K., Tsujikawa K. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells. Sci. Rep. 2017;7:42271. doi: 10.1038/srep42271. PubMed DOI PMC
Zou S., Toh J.D., Wong K.H., Gao Y.G., Hong W., Woon E.C. N(6)-Methyladenosine: A conformational marker that regulates the substrate specificity of human demethylases FTO and ALKBH5. Sci. Rep. 2016;6:25677. doi: 10.1038/srep25677. PubMed DOI PMC
Hudson D.M., Eyre D.R. Collagen prolyl 3-hydroxylation: A major role for a minor post-translational modification? Connect. Tissue Res. 2013;54:245–251. doi: 10.3109/03008207.2013.800867. PubMed DOI PMC
Trackman P.C. Enzymatic and non-enzymatic functions of the lysyl oxidase family in bone. Matrix Biol. 2016;52–54:7–18. doi: 10.1016/j.matbio.2016.01.001. PubMed DOI PMC
Qi Y., Xu R. Roles of PLODs in Collagen Synthesis and Cancer Progression. Front. Cell Dev. Biol. 2018;6 doi: 10.3389/fcell.2018.00066. PubMed DOI PMC
Hirota K., Semenza G.L. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem. Biophys. Res. Commun. 2005;338:610–616. doi: 10.1016/j.bbrc.2005.08.193. PubMed DOI
Strowitzki M.J., Cummins E.P., Taylor C.T. Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: Unique or ubiquitous? Cells. 2019;8:384. doi: 10.3390/cells8050384. PubMed DOI PMC
Keith B., Simon M.C. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007;129:465–472. doi: 10.1016/j.cell.2007.04.019. PubMed DOI PMC
Lando D., Peet D.J., Gorman J.J., Whelan D.A., Whitelaw M.L., Bruick R.K. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev. 2002;16:1466–1471. doi: 10.1101/gad.991402. PubMed DOI PMC
Feng T., Yamamoto A., Wilkins S.E., Sokolova E., Yates L.A., Münzel M., Singh P., Hopkinson R.J., Fischer R., Cockman M.E., et al. Optimal translational termination requires C4 lysyl hydroxylation of eRF1. Mol. Cell. 2014;53:645–654. doi: 10.1016/j.molcel.2013.12.028. PubMed DOI PMC
Plch J., Hrabeta J., Eckschlager T. KDM5 demethylases and their role in cancer cell chemoresistance. Int. J. Cancer. 2019;144:221–231. doi: 10.1002/ijc.31881. PubMed DOI
Lan F., Bayliss P.E., Rinn J.L., Whetstine J.R., Wang J.K., Chen S., Iwase S., Alpatov R., Issaeva I., Canaani E., et al. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–694. doi: 10.1038/nature06192. PubMed DOI
Schulz W.A., Lang A., Koch J., Greife A. The histone demethylase UTX/KDM6A in cancer: Progress and puzzles. Int. J. Cancer. 2019;145:614–620. doi: 10.1002/ijc.32116. PubMed DOI
Chaturvedi S.S., Ramanan R., Lehnert N., Schofield C.J., Karabencheva-Christova T.G., Christov C.Z. Catalysis by the non-heme iron(II) histone demethylase PHF8 involves iron center rearrangement and conformational modulation of substrate orientation. ACS Catal. 2020;10:1195–1209. doi: 10.1021/acscatal.9b04907. PubMed DOI PMC
Wang C., Zhang Q., Hang T., Tao Y., Ma X., Wu M., Zhang X., Zang J. Structure of the JmjC domain-containing protein NO66 complexed with ribosomal protein Rpl8. Acta Crystallogr. D Biol. Crystallogr. 2015;71:1955–1964. doi: 10.1107/S1399004715012948. PubMed DOI PMC
Pandey D., Mohammad F., Weissmann S., Hallenborg P., Blagoev B., Helin K. P11.36 Ribosome hydroxylase Mina53 is required for Glioblastoma and is involved in regulation of translation rateand fidelity by regulating ribosomal biogenesis. Neuro-Oncology. 2019;21:iii51. doi: 10.1093/neuonc/noz126.182. DOI
Rebouche C.J. Kinetics, pharmacokinetics, and regulation of L-carnitine and acetyl-L-carnitine metabolism. Ann. N. Y. Acad. Sci. 2004;1033:30–41. doi: 10.1196/annals.1320.003. PubMed DOI
Tars K., Rumnieks J., Zeltins A., Kazaks A., Kotelovica S., Leonciks A., Sharipo J., Viksna A., Kuka J., Liepinsh E., et al. Crystal structure of human gamma-butyrobetaine hydroxylase. Biochem. Biophys. Res. Commun. 2010;398:634–639. doi: 10.1016/j.bbrc.2010.06.121. PubMed DOI
Wang Y., Reddy Y.V., Al Temimi A.H.K., Venselaar H., Nelissen F.H.T., Lenstra D.C., Mecinović J. Investigating the active site of human trimethyllysine hydroxylase. Biochem. J. 2019;476:1109–1119. doi: 10.1042/BCJ20180857. PubMed DOI
Moran G.R. 4-Hydroxyphenylpyruvate dioxygenase. Arch. Biochem. Biophys. 2005;433:117–128. doi: 10.1016/j.abb.2004.08.015. PubMed DOI
Vendelboe T.V., Harris P., Zhao Y., Walter T.S., Harlos K., El Omari K., Christensen H.E.M. The crystal structure of human dopamine β-hydroxylase at 2.9 Å resolution. Sci. Adv. 2016;2:e1500980. doi: 10.1126/sciadv.1500980. PubMed DOI PMC
Goldstein M., Fuxe K., Hokfelt T. Characterization and tissue localization of catecholamine synthesizing enzymes. Pharmacol. Rev. 1972;24:293–309. PubMed
Eipper B.A., Milgram S.L., Husten E.J., Yun H.Y., Mains R.E. Peptidylglycine alpha-amidating monooxygenase: A multifunctional protein with catalytic, processing, and routing domains. Protein Sci. 1993;2:489–497. doi: 10.1002/pro.5560020401. PubMed DOI PMC
Kolhekar A.S., Mains R.E., Eipper B.A. Peptidylglycine alpha-amidating monooxygenase: An ascorbate-requiring enzyme. Methods Enzymol. 1997;279:35–43. doi: 10.1016/s0076-6879(97)79007-4. PubMed DOI
Bousquet-Moore D., Mains R.E., Eipper B.A. Peptidylgycine α-amidating monooxygenase and copper: A gene-nutrient interaction critical to nervous system function. J. Neurosci. Res. 2010;88:2535–2545. doi: 10.1002/jnr.22404. PubMed DOI PMC
Martínez A., Montuenga L., Springall D., Treston A., Cuttitta F., Polak J. Immunocytochemical localization of peptidylglycine alpha-amidating monooxygenase enzymes (PAM) in human endocrine pancreas. J. Histochem. Cytochem. 1993;41:375–380. doi: 10.1177/41.3.8094086. PubMed DOI
Braas K.M., Harakall S.A., Ouafik L., Eipper B.A., May V. Expression of peptidylglycine alpha-amidating monooxygenase: An in situ hybridization and immunocytochemical study. Endocrinology. 1992;130:2778–2788. doi: 10.1210/endo.130.5.1572293. PubMed DOI
Morris K.M., Cao F., Onagi H., Altamore T.M., Gamble A.B., Easton C.J. Prohormone-substrate peptide sequence recognition by peptidylglycine α-amidating monooxygenase and its reflection in increased glycolate inhibitor potency. Bioorg. Med. Chem. Lett. 2012;22:7015–7018. doi: 10.1016/j.bmcl.2012.10.004. PubMed DOI
Jeng A.Y., Fujimoto R.A., Chou M., Tan J., Erion M.D. Suppression of substance P biosynthesis in sensory neurons of dorsal root ganglion by prodrug esters of potent peptidylglycine alpha-amidating monooxygenase inhibitors. J. Biol. Chem. 1997;272:14666–14671. doi: 10.1074/jbc.272.23.14666. PubMed DOI
Padayatty S.J., Katz A., Wang Y., Eck P., Kwon O., Lee J.H., Chen S., Corpe C., Dutta A., Dutta S.K., et al. Vitamin C as an antioxidant: Evaluation of its role in disease prevention. J. Am. Coll. Nutr. 2003;22:18–35. doi: 10.1080/07315724.2003.10719272. PubMed DOI
Gaut J.P., Belaaouaj A., Byun J., Roberts L.J., 2nd, Maeda N., Frei B., Heinecke J.W. Vitamin C fails to protect amino acids and lipids from oxidation during acute inflammation. Free Radic. Biol. Med. 2006;40:1494–1501. doi: 10.1016/j.freeradbiomed.2005.12.013. PubMed DOI
Johnston C.S., Cox S.K. Plasma-Saturating intakes of vitamin C confer maximal antioxidant protection to plasma. J. Am. Coll. Nutr. 2001;20:623–627. doi: 10.1080/07315724.2001.10719159. PubMed DOI
Carr A.C., Maggini S. Vitamin C and immune function. Nutrients. 2017;9:1211. doi: 10.3390/nu9111211. PubMed DOI PMC
Mortensen A., Lykkesfeldt J. Does vitamin C enhance nitric oxide bioavailability in a tetrahydrobiopterin-dependent manner? In vitro, in vivo and clinical studies. Nitric Oxide. 2014;36:51–57. doi: 10.1016/j.niox.2013.12.001. PubMed DOI
Oudemans-van Straaten H.M., Spoelstra-de Man A.M., de Waard M.C. Vitamin C revisited. Crit. Care. 2014;18:460. doi: 10.1186/s13054-014-0460-x. PubMed DOI PMC
Förstermann U., Sessa W.C. Nitric oxide synthases: Regulation and function. Eur. Heart J. 2012;33:829–837d. doi: 10.1093/eurheartj/ehr304. PubMed DOI PMC
Kim H.-L., Park Y. Maintenance of cellular tetrahydrobiopterin homeostasis. BMB Rep. 2010;43:584–592. doi: 10.5483/BMBRep.2010.43.9.584. PubMed DOI
Vasquez-Vivar J., Whitsett J., Martasek P., Hogg N., Kalyanaraman B. Reaction of tetrahydrobiopterin with superoxide: EPR-kinetic analysis and characterization of the pteridine radical. Free Radic. Biol. Med. 2001;31:975–985. doi: 10.1016/S0891-5849(01)00680-3. PubMed DOI
Wu F., Tyml K., Wilson J.X. Ascorbate inhibits iNOS expression in endotoxin- and IFN gamma-stimulated rat skeletal muscle endothelial cells. FEBS Lett. 2002;520:122–126. doi: 10.1016/S0014-5793(02)02804-1. PubMed DOI
Gokce N., Keaney J.F., Jr., Frei B., Holbrook M., Olesiak M., Zachariah B.J., Leeuwenburgh C., Heinecke J.W., Vita J.A. Long-term ascorbic acid administration reverses endothelial vasomotor dysfunction in patients with coronary artery disease. Circulation. 1999;99:3234–3240. doi: 10.1161/01.CIR.99.25.3234. PubMed DOI
Bassenge E., Fink N., Skatchkov M., Fink B. Dietary supplement with vitamin C prevents nitrate tolerance. J. Clin. Investig. 1998;102:67–71. doi: 10.1172/JCI977. PubMed DOI PMC
Seo M.Y., Lee S.M. Protective effect of low dose of ascorbic acid on hepatobiliary function in hepatic ischemia/reperfusion in rats. J. Hepatol. 2002;36:72–77. doi: 10.1016/S0168-8278(01)00236-7. PubMed DOI
Jackson T.S., Xu A., Vita J.A., Keaney J.F., Jr. Ascorbate prevents the interaction of superoxide and nitric oxide only at very high physiological concentrations. Circ. Res. 1998;83:916–922. doi: 10.1161/01.RES.83.9.916. PubMed DOI
Podmore I.D., Griffiths H.R., Herbert K.E., Mistry N., Mistry P., Lunec J. Vitamin C exhibits pro-oxidant properties. Nature. 1998;392:559. doi: 10.1038/33308. PubMed DOI
Aronovitch J., Godinger D., Samuni A., Czapski G. Ascorbic acid oxidation and DNA scission catalyzed by iron and copper chelates. Free Radic. Res. Commun. 1987;2:241–258. doi: 10.3109/10715768709065289. PubMed DOI
Hodges R.E., Hood J., Canham J.E., Sauberlich H.E., Baker E.M. Clinical manifestations of ascorbic acid deficiency in man. Am. J. Clin. Nutr. 1971;24:432–443. doi: 10.1093/ajcn/24.4.432. PubMed DOI
Bird T.A., Schwartz N.B., Peterkofsky B. Mechanism for the decreased biosynthesis of cartilage proteoglycan in the scorbutic guinea pig. J. Biol. Chem. 1986;261:11166–11172. doi: 10.1016/S0021-9258(18)67363-6. PubMed DOI
Fukushima R., Yamazaki E. Vitamin C requirement in surgical patients. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:669–676. doi: 10.1097/MCO.0b013e32833e05bc. PubMed DOI
Long C.L., Maull K.I., Krishnan R.S., Laws H.L., Geiger J.W., Borghesi L., Franks W., Lawson T.C., Sauberlich H.E. Ascorbic acid dynamics in the seriously ill and injured. J. Surg. Res. 2003;109:144–148. doi: 10.1016/S0022-4804(02)00083-5. PubMed DOI
Padayatty S.J., Levine M. Vitamin C and myocardial infarction: The heart of the matter. Am. J. Clin. Nutr. 2000;71:1027–1028. doi: 10.1093/ajcn/71.5.1027. PubMed DOI
Mayland C.R., Bennett M.I., Allan K. Vitamin C deficiency in cancer patients. Palliat. Med. 2005;19:17–20. doi: 10.1191/0269216305pm970oa. PubMed DOI
Leveque N., Robin S., Muret P., Mac-Mary S., Makki S., Humbert P. High iron and low ascorbic acid concentrations in the dermis of atopic dermatitis patients. Dermatology. 2003;207:261–264. doi: 10.1159/000073087. PubMed DOI
Ngo B., Van Riper J.M., Cantley L.C., Yun J. Targeting cancer vulnerabilities with high-dose vitamin C. Nat. Rev. Cancer. 2019;19:271–282. doi: 10.1038/s41568-019-0135-7. PubMed DOI PMC
Creagan E.T., Moertel C.G., O’Fallon J.R., Schutt A.J., O’Connell M.J., Rubin J., Frytak S. Failure of high-dose vitamin C (ascorbic acid) therapy to benefit patients with advanced cancer. A controlled trial. N. Engl. J. Med. 1979;301:687–690. doi: 10.1056/NEJM197909273011303. PubMed DOI
Moertel C.G., Fleming T.R., Creagan E.T., Rubin J., O’Connell M.J., Ames M.M. High-dose vitamin C versus placebo in the treatment of patients with advanced cancer who have had no prior chemotherapy. A randomized double-blind comparison. N. Engl. J. Med. 1985;312:137–141. doi: 10.1056/NEJM198501173120301. PubMed DOI
Chen Q., Espey M.G., Krishna M.C., Mitchell J.B., Corpe C.P., Buettner G.R., Shacter E., Levine M. Pharmacologic ascorbic acid concentrations selectively kill cancer cells: Action as a pro-drug to deliver hydrogen peroxide to tissues. Proc. Natl. Acad. Sci. USA. 2005;102:13604–13609. doi: 10.1073/pnas.0506390102. PubMed DOI PMC
Chen Q., Espey M.G., Sun A.Y., Pooput C., Kirk K.L., Krishna M.C., Khosh D.B., Drisko J., Levine M. Pharmacologic doses of ascorbate act as a prooxidant and decrease growth of aggressive tumor xenografts in mice. Proc. Natl. Acad. Sci. USA. 2008;105:11105–11109. doi: 10.1073/pnas.0804226105. PubMed DOI PMC
Fritz H., Flower G., Weeks L., Cooley K., Callachan M., McGowan J., Skidmore B., Kirchner L., Seely D. Intravenous vitamin C and cancer: A systematic review. Integr. Cancer Ther. 2014;13:280–300. doi: 10.1177/1534735414534463. PubMed DOI
Nauman G., Gray J.C., Parkinson R., Levine M., Paller C.J. Systematic review of intravenous ascorbate in cancer clinical trials. Antioxidants. 2018;7:89. doi: 10.3390/antiox7070089. PubMed DOI PMC
Klimant E., Wright H., Rubin D., Seely D., Markman M. Intravenous vitamin C in the supportive care of cancer patients: A review and rational approach. Curr. Oncol. 2018;25:139–148. doi: 10.3747/co.25.3790. PubMed DOI PMC
Perrone G., Hideshima T., Ikeda H., Okawa Y., Calabrese E., Gorgun G., Santo L., Cirstea D., Raje N., Chauhan D., et al. Ascorbic acid inhibits antitumor activity of bortezomib in vivo. Leukemia. 2009;23:1679–1686. doi: 10.1038/leu.2009.83. PubMed DOI
Luo J., Shen L., Zheng D. Association between vitamin C intake and lung cancer: A dose-response meta-analysis. Sci. Rep. 2014;4:6161. doi: 10.1038/srep06161. PubMed DOI PMC
Xu X., Yu E., Liu L., Zhang W., Wei X., Gao X., Song N., Fu C. Dietary intake of vitamins A, C, and E and the risk of colorectal adenoma: A meta-analysis of observational studies. Eur. J. Cancer Prev. 2013;22:529–539. doi: 10.1097/CEJ.0b013e328364f1eb. PubMed DOI
Bandera E.V., Gifkins D.M., Moore D.F., McCullough M.L., Kushi L.H. Antioxidant vitamins and the risk of endometrial cancer: A dose-response meta-analysis. Cancer Causes Control. 2009;20:699–711. doi: 10.1007/s10552-008-9283-x. PubMed DOI PMC
Moser M.A., Chun O.K. Vitamin C and Heart Health: A review based on findings from epidemiologic studies. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17081328. PubMed DOI PMC
Ashor A.W., Brown R., Keenan P.D., Willis N.D., Siervo M., Mathers J.C. Limited evidence for a beneficial effect of vitamin C supplementation on biomarkers of cardiovascular diseases: An umbrella review of systematic reviews and meta-analyses. Nutr. Res. 2019;61:1–12. doi: 10.1016/j.nutres.2018.08.005. PubMed DOI
Hemila H. Vitamin C in clinical therapeutics. Clin. Ther. 2017;39:2110–2112. doi: 10.1016/j.clinthera.2017.08.005. PubMed DOI
Shi R., Li Z.H., Chen D., Wu Q.C., Zhou X.L., Tie H.T. Sole and combined vitamin C supplementation can prevent postoperative atrial fibrillation after cardiac surgery: A systematic review and meta-analysis of randomized controlled trials. Clin. Cardiol. 2018;41:871–878. doi: 10.1002/clc.22951. PubMed DOI PMC
Hemilä H., Suonsyrjä T. Vitamin C for preventing atrial fibrillation in high risk patients: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2017;17:49. doi: 10.1186/s12872-017-0478-5. PubMed DOI PMC
Putzu A., Daems A.M., Lopez-Delgado J.C., Giordano V.F., Landoni G. The Effect of vitamin C on clinical outcome in critically ill patients: A systematic review with meta-analysis of randomized controlled trials. Crit. Care Med. 2019;47:774–783. doi: 10.1097/CCM.0000000000003700. PubMed DOI
Hemila H. Vitamin C and infections. Nutrients. 2017;9:339. doi: 10.3390/nu9040339. PubMed DOI PMC
Hemila H., Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD000980.pub4. PubMed DOI PMC
Padhani Z.A., Moazzam Z., Ashraf A., Bilal H., Salam R.A., Das J.K., Bhutta Z.A. Vitamin C supplementation for prevention and treatment of pneumonia. Cochrane Database Syst. Rev. 2020;4 doi: 10.1002/14651858.CD013134.pub2. PubMed DOI PMC
Hemila H., Louhiala P. Vitamin C for preventing and treating pneumonia. Cochrane Database Syst. Rev. 2013 doi: 10.1002/14651858.CD005532.pub3. PubMed DOI
Fowler A.A., 3rd, Truwit J.D., Hite R.D., Morris P.E., DeWilde C., Priday A., Fisher B., Thacker L.R., 2nd, Natarajan R., Brophy D.F., et al. Effect of vitamin C infusion on organ failure and biomarkers of inflammation and vascular injury in patients with sepsis and severe acute respiratory failure: The CITRIS-ALI randomized clinical trial. JAMA. 2019;322:1261–1270. doi: 10.1001/jama.2019.11825. PubMed DOI PMC
Kuhn S.O., Meissner K., Mayes L.M., Bartels K. Vitamin C in sepsis. Curr. Opin. Anaesthesiol. 2018;31:55–60. doi: 10.1097/ACO.0000000000000549. PubMed DOI PMC
Jovic T.H., Ali S.R., Ibrahim N., Jessop Z.M., Tarassoli S.P., Dobbs T.D., Holford P., Thornton C.A., Whitaker I.S. Could vitamins help in the fight against COVID-19? Nutrients. 2020;12:2550. doi: 10.3390/nu12092550. PubMed DOI PMC
Carr A.C., Rowe S. The emerging role of vitamin C in the prevention and treatment of COVID-19. Nutrients. 2020;12:3286. doi: 10.3390/nu12113286. PubMed DOI PMC
Traxer O., Huet B., Poindexter J., Pak C.Y., Pearle M.S. Effect of ascorbic acid consumption on urinary stone risk factors. J. Urol. 2003;170:397–401. doi: 10.1097/01.ju.0000076001.21606.53. PubMed DOI
Hung K.C., Lin Y.T., Chen K.H., Wang L.K., Chen J.Y., Chang Y.J., Wu S.C., Chiang M.H., Sun C.K. The effect of perioperative vitamin C on postoperative analgesic consumption: A meta-analysis of randomized controlled trials. Nutrients. 2020;12:3109. doi: 10.3390/nu12103109. PubMed DOI PMC
Robitaille L., Mamer O.A., Miller W.H., Jr., Levine M., Assouline S., Melnychuk D., Rousseau C., Hoffer L.J. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism. 2009;58:263–269. doi: 10.1016/j.metabol.2008.09.023. PubMed DOI PMC
Padayatty S.J., Sun A.Y., Chen Q., Espey M.G., Drisko J., Levine M. Vitamin C: Intravenous use by complementary and alternative medicine practitioners and adverse effects. PLoS ONE. 2010;5:e11414. doi: 10.1371/journal.pone.0011414. PubMed DOI PMC
Baxmann A.C., Mendonça C.d.O.G., Heilberg I.P. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003;63:1066–1071. doi: 10.1046/j.1523-1755.2003.00815.x. PubMed DOI
Robertson W.G., Scurr D.S., Bridge C.M. Factors influencing the crystallisation of calcium oxalate in urine—Critique. J. Cryst. Growth. 1981;53:182–194. doi: 10.1016/0022-0248(81)90064-6. DOI
Taylor E.N., Stampfer M.J., Curhan G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004;15:3225–3232. doi: 10.1097/01.ASN.0000146012.44570.20. PubMed DOI
Iwamoto N., Kawaguchi T., Horikawa K., Nagakura S., Hidaka M., Kagimoto T., Takatsuki K., Nakakuma H. Haemolysis induced by ascorbic acid in paroxysmal nocturnal haemoglobinuria. Lancet. 1994;343:357. doi: 10.1016/S0140-6736(94)91195-9. PubMed DOI
Karlsen A., Blomhoff R., Gundersen T.E. High-throughput analysis of vitamin C in human plasma with the use of HPLC with monolithic column and UV-detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2005;824:132–138. doi: 10.1016/j.jchromb.2005.07.008. PubMed DOI
Ko D.H., Jeong T.D., Kim S., Chung H.J., Lee W., Chun S., Min W.K. Influence of vitamin C on urine dipstick test results. Ann. Clin. Lab. Sci. 2015;45:391–395. PubMed
Nováková L., Solichová D., Pavlovicová S., Solich P. Hydrophilic interaction liquid chromatography method for the determination of ascorbic acid. J. Sep. Sci. 2008;31:1634–1644. doi: 10.1002/jssc.200700570. PubMed DOI
Szőcs A., Vancea S., Kiss I., Donáth-Nagy G. Quantification of plasma and leukocyte vitamin C by high performance liquid chromatography with mass spectrometric detection. J. Anal. Chem. 2020;75:1168–1176. doi: 10.1134/S1061934820090038. DOI
Lykkesfeldt J. Ascorbate and dehydroascorbic acid as biomarkers of oxidative stress: Validity of clinical data depends on vacutainer system used. Nutr. Res. 2012;32:66–69. doi: 10.1016/j.nutres.2011.11.005. PubMed DOI
Pullar J.M., Bayer S., Carr A.C. Appropriate handling, processing and analysis of blood samples is essential to avoid oxidation of vitamin C to dehydroascorbic acid. Antioxidants. 2018;7:29. doi: 10.3390/antiox7020029. PubMed DOI PMC
Bernasconi L., Saxer C., Neyer P., Huber A., Steuer C. Suitable preanalytical conditions for vitamin C measurement in clinical routine. J. Food Sci. Technol. 2018;3:280–287. doi: 10.25177/JFST.3.2.3. DOI
Fatima Z., Jin X., Zou Y., Kaw H.Y., Quinto M., Li D. Recent trends in analytical methods for water-soluble vitamins. J. Chromatogr. A. 2019;1606:360245. doi: 10.1016/j.chroma.2019.05.025. PubMed DOI
Dos Santos V.B., da Silva E.K.N., de Oliveira L.M.A., Suarez W.T. Low cost in situ digital image method, based on spot testing and smartphone images, for determination of ascorbic acid in Brazilian Amazon native and exotic fruits. Food Chem. 2019;285:340–346. doi: 10.1016/j.foodchem.2019.01.167. PubMed DOI
Dhara K., Debiprosad R.M. Review on nanomaterials-enabled electrochemical sensors for ascorbic acid detection. Anal. Biochem. 2019;586:113415. doi: 10.1016/j.ab.2019.113415. PubMed DOI
Spínola V., Llorent-Martínez E.J., Castilho P.C. Determination of vitamin C in foods: Current state of method validation. J. Chromatogr. A. 2014;1369:2–17. doi: 10.1016/j.chroma.2014.09.087. PubMed DOI
Sempionatto J.R., Khorshed A.A., Ahmed A., De Loyola E.S.A.N., Barfidokht A., Yin L., Goud K.Y., Mohamed M.A., Bailey E., May J., et al. Epidermal enzymatic biosensors for sweat vitamin C: Toward personalized nutrition. ACS Sens. 2020;5:1804–1813. doi: 10.1021/acssensors.0c00604. PubMed DOI
Romeu-Nadal M., Morera-Pons S., Castellote A.I., López-Sabater M.C. Rapid high-performance liquid chromatographic method for Vitamin C determination in human milk versus an enzymatic method. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2006;830:41–46. doi: 10.1016/j.jchromb.2005.10.018. PubMed DOI
Wang X., Li L., Li Z., Wang J., Fu H., Chen Z. Determination of ascorbic acid in individual liver cancer cells by capillary electrophoresis with a platinum nanoparticles modified electrode. J. Electroanal. Chem. 2014;712:139–145. doi: 10.1016/j.jelechem.2013.11.010. DOI
Munday M.R., Rodricks R., Fitzpatrick M., Flood V.M., Gunton J.E. A pilot study examining vitamin C levels in periodontal patients. Nutrients. 2020;12:2255. doi: 10.3390/nu12082255. PubMed DOI PMC
Robitaille L., Hoffer L.J. A simple method for plasma total vitamin C analysis suitable for routine clinical laboratory use. Nutr. J. 2016;15:40. doi: 10.1186/s12937-016-0158-9. PubMed DOI PMC
Akbari A., Chamkouri N., Zadabdollah A. Determination trace levels of vitamin C and folic acid in urine sample by ultrasound-assisted dispersive liquid-liquid microextraction method coupled HPLC-UV. Orient. J. Chem. 2016;32 doi: 10.13005/ojc/320623. DOI
Gazdik Z., Zitka O., Petrlova J., Adam V., Zehnalek J., Horna A., Reznicek V., Beklova M., Kizek R. Determination of vitamin C (ascorbic acid) using high performance liquid chromatography coupled with electrochemical detection. Sensors. 2008;8:7097–7112. doi: 10.3390/s8117097. PubMed DOI PMC
Li H., Tu H., Wang Y., Levine M. Vitamin C in mouse and human red blood cells: An HPLC assay. Anal. Biochem. 2012;426:109–117. doi: 10.1016/j.ab.2012.04.014. PubMed DOI PMC
Vovk T., Bogataj M., Roskar R., Kmetec V., Mrhar A. Determination of main low molecular weight antioxidants in urinary bladder wall using HPLC with electrochemical detector. Int. J. Pharm. 2005;291:161–169. doi: 10.1016/j.ijpharm.2004.07.053. PubMed DOI
Haswell L.E., Papadopoulou E., Newland N., Shepperd C.J., Lowe F.J. A cross-sectional analysis of candidate biomarkers of biological effect in smokers, never-smokers and ex-smokers. Biomarkers. 2014;19:356–367. doi: 10.3109/1354750X.2014.912354. PubMed DOI
Wang X., Li K., Yao L., Wang C., Van Schepdael A. Recent advances in vitamins analysis by capillary electrophoresis. J. Pharm. Biomed. Anal. 2018;147:278–287. doi: 10.1016/j.jpba.2017.07.030. PubMed DOI
Sun X., Niu Y., Bi S., Zhang S. Determination of ascorbic acid in individual rat hepatocyte by capillary electrophoresis with electrochemical detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008;870:46–50. doi: 10.1016/j.jchromb.2008.05.035. PubMed DOI
Dong S., Zhang S., Cheng X., He P., Wang Q., Fang Y. Simultaneous determination of sugars and ascorbic acid by capillary zone electrophoresis with amperometric detection at a carbon paste electrode modified with polyethylene glycol and Cu(2)O. J. Chromatogr. A. 2007;1161:327–333. doi: 10.1016/j.chroma.2007.05.077. PubMed DOI
Zhao S., Huang Y., Liu Y.M. Microchip electrophoresis with chemiluminescence detection for assaying ascorbic acid and amino acids in single cells. J. Chromatogr. A. 2009;1216:6746–6751. doi: 10.1016/j.chroma.2009.08.008. PubMed DOI PMC
Sun X., Niu Y., Bi S., Zhang S. Determination of ascorbic acid in individual rat hepatocyte cells based on capillary electrophoresis with electrochemiluminescence detection. Electrophoresis. 2008;29:2918–2924. doi: 10.1002/elps.200700792. PubMed DOI
Olędzka I., Kaźmierska K., Plenis A., Kamińska B., Bączek T. Capillary electromigration techniques as tools for assessing the status of vitamins A, C and E in patients with cystic fibrosis. J. Pharm. Biomed. Anal. 2015;102:45–53. doi: 10.1016/j.jpba.2014.08.036. PubMed DOI
Georgakopoulos C.D., Lamari F.N., Karathanasopoulou I.N., Gartaganis V.S., Pharmakakis N.M., Karamanos N.K. Tear analysis of ascorbic acid, uric acid and malondialdehyde with capillary electrophoresis. Biomed. Chromatogr. 2010;24:852–857. doi: 10.1002/bmc.1376. PubMed DOI
Huang L., Tian S., Zhao W., Liu K., Guo J. Electrochemical vitamin sensors: A critical review. Talanta. 2021;222:121645. doi: 10.1016/j.talanta.2020.121645. PubMed DOI
Taleb M., Ivanov R., Bereznev S., Kazemi S.H., Hussainova I. Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Mikrochim. Acta. 2017;184:897–905. doi: 10.1007/s00604-017-2085-7. DOI
Hashemi S.A., Mousavi S.M., Bahrani S., Ramakrishna S., Babapoor A., Chiang W.H. Coupled graphene oxide with hybrid metallic nanoparticles as potential electrochemical biosensors for precise detection of ascorbic acid within blood. Anal. Chim. Acta. 2020;1107:183–192. doi: 10.1016/j.aca.2020.02.018. PubMed DOI
Zhao Y., Qin J., Xu H., Gao S., Jiang T., Zhang S., Jin J. Gold nanorods decorated with graphene oxide and multi-walled carbon nanotubes for trace level voltammetric determination of ascorbic acid. Mikrochim. Acta. 2018;186:17. doi: 10.1007/s00604-018-3138-2. PubMed DOI
Liu L., Zhai J., Zhu C., Han L., Ren W., Dong S. One-step synthesis of functional pNR/rGO composite as a building block for enhanced ascorbic acid biosensing. Anal. Chim. Acta. 2017;981:34–40. doi: 10.1016/j.aca.2017.05.023. PubMed DOI
Prasad B.B., Tiwari K., Singh M., Sharma P.S., Patel A.K., Srivastava S. Molecularly imprinted polymer-based solid-phase microextraction fiber coupled with molecularly imprinted polymer-based sensor for ultratrace analysis of ascorbic acid. J. Chromatogr. A. 2008;1198–1199:59–66. doi: 10.1016/j.chroma.2008.05.059. PubMed DOI
Karimi-Maleh H., Arotiba O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci. 2020;560:208–212. doi: 10.1016/j.jcis.2019.10.007. PubMed DOI
Asif M., Aziz A., Wang H., Wang Z., Wang W., Ajmal M., Xiao F., Chen X., Liu H. Superlattice stacking by hybridizing layered double hydroxide nanosheets with layers of reduced graphene oxide for electrochemical simultaneous determination of dopamine, uric acid and ascorbic acid. Mikrochim. Acta. 2019;186:61. doi: 10.1007/s00604-018-3158-y. PubMed DOI
Mehdi Motaghi M., Beitollahi H., Tajik S., Hosseinzadeh R. Nanostructure electrochemical sensor for voltammetric determination of vitamin C in the presence of vitamin B6: Application to real sample analysis. Int. J. Electrochem. Sci. 2016;11:7849–7860. doi: 10.20964/2016.09.60. DOI
Eagle Biosciences Vitamin C HPLC Assay. [(accessed on 23 November 2020)]; Available online: https://eaglebio.com/wp-content/uploads/data-pdf/vic31-h100.pdf-package-insert.pdf.
Chromsystems Vitamin C in Plasma/Serum—Automated HPLC. [(accessed on 24 November 2020)]; Available online: https://chromsystems.com/en/vitamin-c-in-plasma-serum-automated-hplc-65765-f.html.
LeVatte M.A., Lipfert M., Zheng J., Wishart D.S. A fast, sensitive, single-step colorimetric dipstick assay for quantifying ascorbic acid in urine. Anal. Biochem. 2019;580:1–13. doi: 10.1016/j.ab.2019.05.015. PubMed DOI
Sigma-Aldrich Ascorbic Acid Assay Kit II. [(accessed on 23 November 2020)]; Available online: https://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma/Bulletin/1/mak075bul.pdf.
Biovision Ascorbic acid colorimetric assay kit II (FRASC) [(accessed on 23 November 2020)]; Available online: https://www.biovision.com/documentation/datasheets/K671.pdf.
Vislisel J.M., Schafer F.Q., Buettner G.R. A simple and sensitive assay for ascorbate using a plate reader. Anal. Biochem. 2007;365:31–39. doi: 10.1016/j.ab.2007.03.002. PubMed DOI PMC
MyBiosource Human vitamin C (VC) Elisa Kit (Competitive ELISA) [(accessed on 23 November 2020)]; Available online: https://cdn.mybiosource.com/tds/protocol_manuals/000000-799999/MBS726748.pdf.
Cloud-Clone Corp Elisa Kit for Vitamin C (VC) [(accessed on 23 November 2020)]; Available online: http://www.cloud-clone.com/manual/ELISA-Kit-for-Vitamin-C--VC--CEA913Ge.pdf.
Nováková L., Solich P., Solichová D. HPLC methods for simultaneous determination of ascorbic and dehydroascorbic acids. Trends Analyt. Chem. 2008;27:942–958. doi: 10.1016/j.trac.2008.08.006. DOI
Tessier F., Birlouez-Aragon I., Tjani C., Guilland J.C. Validation of a micromethod for determining oxidized and reduced vitamin C in plasma by HPLC-fluorescence. Int. J. Vitam. Nutr. Res. 1996;66:166–170. PubMed
Gao X., Zhou X., Ma Y., Qian T., Wang C., Chu F. Facile and cost-effective preparation of carbon quantum dots for Fe3+ ion and ascorbic acid detection in living cells based on the “on-off-on” fluorescence principle. Appl. Surf. Sci. 2019;469:911–916. doi: 10.1016/j.apsusc.2018.11.095. DOI