The potential of exosomes in regenerative medicine and in the diagnosis and therapies of neurodegenerative diseases and cancer
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40182844
PubMed Central
PMC11966052
DOI
10.3389/fmed.2025.1539714
Knihovny.cz E-zdroje
- Klíčová slova
- biomarker, cancer, exosomes, neurodegenerative diseases, regenerative medicine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Exosomes, nanosized extracellular vesicles released by various cell types, are intensively studied for the diagnosis and treatment of cancer and neurodegenerative diseases, and they also display high usability in regenerative medicine. Emphasizing their diagnostic potential, exosomes serve as carriers of disease-specific biomarkers, enabling non-invasive early detection and personalized medicine. The cargo loading of exosomes with therapeutic agents presents an innovative strategy for targeted drug delivery, minimizing off-target effects and optimizing therapeutic interventions. In regenerative medicine, exosomes play a crucial role in intercellular communication, facilitating tissue regeneration through the transmission of bioactive molecules. While acknowledging existing challenges in standardization and scalability, ongoing research efforts aim to refine methodologies and address regulatory considerations. In summary, this review underscores the transformative potential of exosomes in reshaping the landscape of medical interventions, with a particular emphasis on cancer, neurodegenerative diseases, and regenerative medicine.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czechia
Department of Analytical Chemistry University of Chemistry and Technology Prague Czechia
NEXARS Research and Development Center C2P s r o Chlumec nad Cidlinou Czechia
Zobrazit více v PubMed
Bayraktar HRME, Abd-Ellah KHGMF, Amero P, Chavez-Reyes A, Rodriguez-Aguayo C. Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci. (2017) 18:538. doi: 10.3390/ijms18030538, PMID: PubMed DOI PMC
Burtenshaw D, Regan B, Owen K, Collins D, McEneaney D, Megson IL, et al. . Exosomal composition, biogenesis and profiling using point-of-care diagnostics-implications for cardiovascular disease. Front Cell Dev Biol. (2022) 10:853451. doi: 10.3389/fcell.2022.853451, PMID: PubMed DOI PMC
Sheta M, Taha EA, Lu Y, Eguchi T. Extracellular vesicles: new classification and tumor immunosuppression. Biology. (2023) 12:110. doi: 10.3390/biology12010110, PMID: PubMed DOI PMC
Pan BT, Teng K, Wu C, Adam M, Johnstone RM. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. (1985) 101:942–8. doi: 10.1083/jcb.101.3.942, PMID: PubMed DOI PMC
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem. (1987) 262:9412–20. doi: 10.1016/S0021-9258(18)48095-7, PMID: PubMed DOI
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. (2020) 367:eaau6977. doi: 10.1126/science.aau6977, PMID: PubMed DOI PMC
Chen J, Li P, Zhang T, Xu Z, Huang X, Wang R, et al. . Review on strategies and Technologies for Exosome Isolation and Purification. Front Bioeng Biotechnol. (2021) 9:811971. doi: 10.3389/fbioe.2021.811971 PubMed DOI PMC
Yakubovich EI, Polischouk AG, Evtushenko VI. Principles and problems of exosome isolation from biological fluids. Biochem Suppl Ser A Membr Cell Biol. (2022) 16:115–26. doi: 10.1134/S1990747822030096, PMID: PubMed DOI PMC
Dilsiz N. A comprehensive review on recent advances in exosome isolation and characterization: toward clinical applications. Transl Oncol. (2024) 50:102121. doi: 10.1016/j.tranon.2024.102121, PMID: PubMed DOI PMC
Kumari S, Lausted C, Scherler K, Ng AHC, Lu Y, Lee I, et al. . Approaches and challenges in characterizing the molecular content of extracellular vesicles for biomarker discovery. Biomol Ther. (2024) 14:1599. doi: 10.3390/biom14121599, PMID: PubMed DOI PMC
Chen YF, Luh F, Ho YS, Yen Y. Exosomes: a review of biologic function, diagnostic and targeted therapy applications, and clinical trials. J Biomed Sci. (2024) 31:67. doi: 10.1186/s12929-024-01055-0, PMID: PubMed DOI PMC
Zhang X, Borg EGF, Liaci AM, Vos HR, Stoorvogel W. A novel three step protocol to isolate extracellular vesicles from plasma or cell culture medium with both high yield and purity. J Extracell Vesicles. (2020) 9:1791450. doi: 10.1080/20013078.2020.1791450, PMID: PubMed DOI PMC
Jafari N, Llevenes P, Denis GV. Exosomes as novel biomarkers in metabolic disease and obesity-related cancers. Nat Rev Endocrinol. (2022) 18:327–8. doi: 10.1038/s41574-022-00666-7, PMID: PubMed DOI PMC
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, et al. . Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int. (2024) 24:278. doi: 10.1186/s12935-024-03464-5, PMID: PubMed DOI PMC
Zhang Z, Zou Y, Song C, Cao K, Cai K, Chen S, et al. . Advances in the study of exosomes in cardiovascular diseases. J Adv Res. (2024) 66:133–53. doi: 10.1016/j.jare.2023.12.014, PMID: PubMed DOI PMC
Park C, Weerakkody JS, Schneider R, Miao S, Pitt D. CNS cell-derived exosome signatures as blood-based biomarkers of neurodegenerative diseases. Front Neurosci. (2024) 18:1426700. doi: 10.3389/fnins.2024.1426700, PMID: PubMed DOI PMC
Bano A, Vats R, Verma D, Yadav P, Kamboj M, Bhardwaj R. Exploring salivary exosomes as early predictors of oral cancer in susceptible tobacco consumers: noninvasive diagnostic and prognostic applications. J Cancer Res Clin Oncol. (2023) 149:15781–93. doi: 10.1007/s00432-023-05343-4, PMID: PubMed DOI PMC
Bozyk N, Tang KD, Zhang X, Batstone M, Kenny L, Vasani S, et al. . Salivary exosomes as biomarkers for early diagnosis of oral squamous cell carcinoma. Oral Oncol Rep. (2023) 6:100017. doi: 10.1016/j.oor.2023.100017 DOI
Nijakowski K, Surdacka A. Salivary biomarkers for diagnosis of inflammatory bowel diseases: a systematic review. Int J Mol Sci. (2020) 21:7477. doi: 10.3390/ijms21207477, PMID: PubMed DOI PMC
Sun IO, Lerman LO. Urinary extracellular vesicles as biomarkers of kidney disease: from diagnostics to therapeutics. Diagnostics. (2020) 10:311. doi: 10.3390/diagnostics10050311, PMID: PubMed DOI PMC
Lee N, Canagasingham A, Bajaj M, Shanmugasundaram R, Hutton A, Bucci J, et al. . Urine exosomes as biomarkers in bladder cancer diagnosis and prognosis: from functional roles to clinical significance. Front Oncol. (2022) 12:1019391. doi: 10.3389/fonc.2022.1019391, PMID: PubMed DOI PMC
Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefield XO, et al. . Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. (2009) 100:1603–7. doi: 10.1038/sj.bjc.6605058, PMID: PubMed DOI PMC
Zhou B, Xu K, Zheng X, Chen T, Wang J, Song Y, et al. . Application of exosomes as liquid biopsy in clinical diagnosis. Signal Transduct Target Ther. (2020) 5:144. doi: 10.1038/s41392-020-00258-9, PMID: PubMed DOI PMC
Mosquera-Heredia MI, Morales LC, Vidal OM, Barcelo E, Silvera-Redondo C, Velez JI, et al. . Exosomes: potential disease biomarkers and new therapeutic targets. Biomedicines. (2021) 9:1061. doi: 10.3390/biomedicines9081061, PMID: PubMed DOI PMC
Baranyai T, Herczeg K, Onodi Z, Voszka I, Modos K, Marton N, et al. . Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One. (2015) 10:e0145686. doi: 10.1371/journal.pone.0145686, PMID: PubMed DOI PMC
Chhoy P, Brown CW, Amante JJ, Mercurio AM. Protocol for the separation of extracellular vesicles by ultracentrifugation from in vitro cell culture models. STAR Protoc. (2021) 2:100303. doi: 10.1016/j.xpro.2021.100303, PMID: PubMed DOI PMC
Plaschke K, Brenner T, Fiedler MO, Holle T, von der Forst M, Wolf RC, et al. . Extracellular vesicles as possible plasma markers and mediators in patients with Sepsis-associated delirium-a pilot study. Int J Mol Sci. (2023) 24:15781. doi: 10.3390/ijms242115781, PMID: PubMed DOI PMC
Soares Martins T, Catita J, Martins Rosa I, Silva OAB, Henriques AG. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One. (2018) 13:e0198820. doi: 10.1371/journal.pone.0198820, PMID: PubMed DOI PMC
Tangwattanachuleeporn M, Muanwien P, Teethaisong Y, Somparn P. Optimizing concentration of Polyethelene glycol for exosome isolation from plasma for downstream application. Medicina (Kaunas). (2022) 58:1600. doi: 10.3390/medicina58111600, PMID: PubMed DOI PMC
Coughlan C, Bruce KD, Burgy O, Boyd TD, Michel CR, Garcia-Perez JE, et al. . Exosome isolation by ultracentrifugation and precipitation and techniques for downstream analyses. Curr Protoc Cell Biol. (2020) 88:e110. doi: 10.1002/cpcb.110, PMID: PubMed DOI PMC
Liu WZ, Ma ZJ, Kang XW. Current status and outlook of advances in exosome isolation. Anal Bioanal Chem. (2022) 414:7123–41. doi: 10.1007/s00216-022-04253-7, PMID: PubMed DOI PMC
Abdouh M, Hamam D, Gao ZH, Arena V, Arena M, Arena GO. Exosomes isolated from cancer patients' sera transfer malignant traits and confer the same phenotype of primary tumors to oncosuppressor-mutated cells. J Exp Clin Cancer Res. (2017) 36:113. doi: 10.1186/s13046-017-0587-0, PMID: PubMed DOI PMC
Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. . Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. (2015) 11:600–7.e1. doi: 10.1016/j.jalz.2014.06.008, PMID: PubMed DOI PMC
Jia L, Zhu M, Kong C, Pang Y, Zhang H, Qiu Q, et al. . Blood neuro-exosomal synaptic proteins predict Alzheimer's disease at the asymptomatic stage. Alzheimers Dement. (2021) 17:49–60. doi: 10.1002/alz.12166, PMID: PubMed DOI PMC
Agliardi C, Guerini FR, Zanzottera M, Bolognesi E, Picciolini S, Caputo D, et al. . Myelin basic protein in oligodendrocyte-derived extracellular vesicles as a diagnostic and prognostic biomarker in multiple sclerosis: a pilot study. Int J Mol Sci. (2023) 24:894. doi: 10.3390/ijms24010894, PMID: PubMed DOI PMC
Lee EE, Winston-Gray C, Barlow JW, Rissman RA, Jeste DV. Plasma levels of neuron- and astrocyte-derived Exosomal amyloid Beta1-42, amyloid Beta1-40, and phosphorylated tau levels in schizophrenia patients and non-psychiatric comparison subjects: relationships with cognitive functioning and psychopathology. Front Psych. (2020) 11:532624. doi: 10.3389/fpsyt.2020.532624 PubMed DOI PMC
Wang YT, Shi T, Srivastava S, Kagan J, Liu T, Rodland KD. Proteomic analysis of exosomes for discovery of protein biomarkers for prostate and bladder Cancer. Cancers (Basel). (2020) 12:2335. doi: 10.3390/cancers12092335, PMID: PubMed DOI PMC
Sun Y, Liu S, Qiao Z, Shang Z, Xia Z, Niu X, et al. . Systematic comparison of exosomal proteomes from human saliva and serum for the detection of lung cancer. Anal Chim Acta. (2017) 982:84–95. doi: 10.1016/j.aca.2017.06.005, PMID: PubMed DOI
Logozzi M, Di Raimo R, Mizzoni D, Fais S. Immunocapture-based ELISA to characterize and quantify exosomes in both cell culture supernatants and body fluids. Methods Enzymol. (2020) 645:155–80. doi: 10.1016/bs.mie.2020.06.011, PMID: PubMed DOI PMC
Elkommos-Zakhary M, Rajesh N, Beljanski V. Exosome RNA sequencing as a tool in the search for cancer biomarkers. Noncoding RNA. (2022) 8:75. doi: 10.3390/ncrna8060075, PMID: PubMed DOI PMC
Tang S, Cheng J, Yao Y, Lou C, Wang L, Huang X, et al. . Combination of four serum exosomal MiRNAs as novel diagnostic biomarkers for early-stage gastric cancer. Front Genet. (2020) 11:237. doi: 10.3389/fgene.2020.00237, PMID: PubMed DOI PMC
Gu Z, Yin H, Zhang H, Zhang H, Liu X, Zeng X, et al. . Optimization of a method for the clinical detection of serum exosomal miR-940 as a potential biomarker of breast cancer. Front Oncol. (2022) 12:956167. doi: 10.3389/fonc.2022.956167, PMID: PubMed DOI PMC
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer. (2017) 17:20–37. doi: 10.1038/nrc.2016.108, PMID: PubMed DOI PMC
Azzi S, Hebda JK, Gavard J. Vascular permeability and drug delivery in cancers. Front Oncol. (2013) 3:211. doi: 10.3389/fonc.2013.00211 PubMed DOI PMC
Abdelsalam M, Ahmed M, Osaid Z, Hamoudi R, Harati R. Insights into exosome transport through the blood-brain barrier and the potential therapeutical applications in brain diseases. Pharmaceuticals (Basel). (2023) 16:571. doi: 10.3390/ph16040571, PMID: PubMed DOI PMC
Fu S, Wang Y, Xia X, Zheng JC. Exosome engineering: current progress in cargo loading and targeted delivery. Nanoimpact. (2020) 20:100261. doi: 10.1016/j.impact.2020.100261 DOI
Cecchin R, Troyer Z, Witwer K, Morris KV. Extracellular vesicles: the next generation in gene therapy delivery. Mol Ther. (2023) 31:1225–30. doi: 10.1016/j.ymthe.2023.01.021, PMID: PubMed DOI PMC
Lee J. Trends in developing extracellular vesicle-based therapeutics. Brain Tumor Res Treat. (2024) 12:153–61. doi: 10.14791/btrt.2024.0027, PMID: PubMed DOI PMC
Zhang Z, Wang C, Li T, Liu Z, Li L. Comparison of ultracentrifugation and density gradient separation methods for isolating Tca8113 human tongue cancer cell line-derived exosomes. Oncol Lett. (2014) 8:1701–6. doi: 10.3892/ol.2014.2373, PMID: PubMed DOI PMC
Lobb RJ, Becker M, Wen SW, Wong CS, Wiegmans AP, Leimgruber A, et al. . Optimized exosome isolation protocol for cell culture supernatant and human plasma. J Extracell Vesicles. (2015) 4:27031. doi: 10.3402/jev.v4.27031, PMID: PubMed DOI PMC
Collino F, Pomatto M, Bruno S, Lindoso RS, Tapparo M, Sicheng W, et al. . Exosome and microvesicle-enriched fractions isolated from mesenchymal stem cells by gradient separation showed different molecular signatures and functions on renal tubular epithelial cells. Stem Cell Rev Rep. (2017) 13:226–43. doi: 10.1007/s12015-016-9713-1, PMID: PubMed DOI PMC
Busatto S, Vilanilam G, Ticer T, Lin WL, Dickson DW, Shapiro S, et al. . Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells. (2018) 7:273. doi: 10.3390/cells7120273, PMID: PubMed DOI PMC
Luo H, Zhang J, Yang A, Ouyang W, Long S, Lin X, et al. . Large-scale isolation of exosomes derived from NK cells for anti-tumor therapy. Bio Protoc. (2023) 13:e4693. doi: 10.3389/fimmu.2022.1087689, PMID: PubMed DOI PMC
Kim JY, Rhim WK, Seo HJ, Lee JY, Park CG, Han DK. Comparative analysis of MSC-derived exosomes depending on cell culture Media for Regenerative Bioactivity. Tissue Eng Regen Med. (2021) 18:355–67. doi: 10.1007/s13770-021-00352-1, PMID: PubMed DOI PMC
Kawai-Harada Y, Nimmagadda V, Harada M. Scalable isolation of surface-engineered extracellular vesicles and separation of free proteins via tangential flow filtration and size exclusion chromatography (TFF-SEC). BMC Methods. (2024) 1:9. doi: 10.1186/s44330-024-00009-0 DOI
Ahn SH, Ryu SW, Choi H, You S, Park J, Choi C. Manufacturing therapeutic exosomes: from bench to industry. Mol Cells. (2022) 45:284–90. doi: 10.14348/molcells.2022.2033, PMID: PubMed DOI PMC
Guerreiro EM, Vestad B, Steffensen LA, Aass HCD, Saeed M, Ovstebo R, et al. . Efficient extracellular vesicle isolation by combining cell media modifications, ultrafiltration, and size-exclusion chromatography. PLoS One. (2018) 13:e0204276. doi: 10.1371/journal.pone.0204276, PMID: PubMed DOI PMC
Nguyen VVT, Witwer KW, Verhaar MC, Strunk D, van Balkom BWM. Functional assays to assess the therapeutic potential of extracellular vesicles. J Extracell Vesicles. (2020) 10:e12033. doi: 10.1002/jev2.12033, PMID: PubMed DOI PMC
Thery C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. . Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. (2018) 7:1535750. doi: 10.1080/20013078.2018.1535750 PubMed DOI PMC
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. . Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. (2024) 13:e12404. doi: 10.1002/jev2.12404, PMID: PubMed DOI PMC
Kowal EJK, Ter-Ovanesyan D, Regev A, Church GM. Extracellular vesicle isolation and analysis by Western blotting. Methods Mol Biol. (2017) 1660:143–52. doi: 10.1007/978-1-4939-7253-1_12, PMID: PubMed DOI
Takizawa K, Nishimura T, Harita Y. Enzyme-linked immunosorbent assay to detect surface marker proteins of extracellular vesicles purified from human urine. STAR Protoc. (2023) 4:102415. doi: 10.1016/j.xpro.2023.102415, PMID: PubMed DOI PMC
Noble JM, Roberts LM, Vidavsky N, Chiou AE, Fischbach C, Paszek MJ, et al. . Direct comparison of optical and electron microscopy methods for structural characterization of extracellular vesicles. J Struct Biol. (2020) 210:107474. doi: 10.1016/j.jsb.2020.107474, PMID: PubMed DOI PMC
van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL, Harrison P, et al. . Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost. (2014) 12:1182–92. doi: 10.1111/jth.12602, PMID: PubMed DOI
Koritzinsky EH, Street JM, Star RA, Yuen PS. Quantification of exosomes. J Cell Physiol. (2017) 232:1587–90. doi: 10.1002/jcp.25387, PMID: PubMed DOI PMC
Rupert DLM, Claudio V, Lasser C, Bally M. Methods for the physical characterization and quantification of extracellular vesicles in biological samples. Biochim Biophys Acta Gen Subj. (1861) 2017:3164–79. doi: 10.1016/j.bbagen.2016.07.028 PubMed DOI
Fortunato D, Mladenovic D, Criscuoli M, Loria F, Veiman KL, Zocco D, et al. . Opportunities and pitfalls of fluorescent labeling methodologies for extracellular vesicle profiling on high-resolution single-particle platforms. Int J Mol Sci. (2021) 22:10510. doi: 10.3390/ijms221910510, PMID: PubMed DOI PMC
Dehghani M, Montange RK, Olszowy MW, Pollard D. An emerging fluorescence-based technique for quantification and protein profiling of extracellular vesicles. SLAS Technol. (2021) 26:189–99. doi: 10.1177/2472630320970458, PMID: PubMed DOI
Chung IM, Rajakumar G, Venkidasamy B, Subramanian U, Thiruvengadam M. Exosomes: current use and future applications. Clin Chim Acta. (2020) 500:226–32. doi: 10.1016/j.cca.2019.10.022, PMID: PubMed DOI
Mager E.L.A. S I., Breakefield X.O., and Wood M.J., Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov 12 (2013) 347–357. doi: 10.1038/nrd3978 PubMed DOI
Aheget H, Tristan-Manzano M, Mazini L, Cortijo-Gutierrez M, Galindo-Moreno P, Herrera C, et al. . Exosome: a new player in translational nanomedicine. J Clin Med. (2020) 9:2380. doi: 10.3390/jcm9082380, PMID: PubMed DOI PMC
Tienda-Vazquez MA, Hanel JM, Marquez-Arteaga EM, Salgado-Alvarez AP, Scheckhuber CQ, Alanis-Gomez JR, et al. . Exosomes: a promising strategy for repair, regeneration and treatment of skin disorders. Cells. (2023) 12:1625. doi: 10.3390/cells12121625, PMID: PubMed DOI PMC
Zhang K, Cheng K. Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng. (2023) 1:608–9. doi: 10.1038/s44222-023-00064-2, PMID: PubMed DOI PMC
Wang X. Exosome therapy and diagnostics: The path to becoming clinical giants. Washington, USA: CAS; (2022).
Nooshabadi VT, Khanmohamadi M, Valipour E, Mahdipour S, Salati A, Malekshahi ZV, et al. . Impact of exosome-loaded chitosan hydrogel in wound repair and layered dermal reconstitution in mice animal model. J Biomed Mater Res A. (2020) 108:2138–49. doi: 10.1002/jbm.a.36959, PMID: PubMed DOI
Tan F, Li X, Wang Z, Li J, Shahzad K, Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct Target Ther. (2024) 9:17. doi: 10.1038/s41392-023-01704-0, PMID: PubMed DOI PMC
Prasai A, Jay JW, Jupiter D, Wolf SE, El Ayadi A. Role of exosomes in dermal wound healing: a systematic review. J Invest Dermatol. (2022) 142:662–678.e8. doi: 10.1016/j.jid.2021.07.167, PMID: PubMed DOI PMC
Shi L, Song D, Meng C, Cheng Y, Wang B, Yang Z. Opportunities and challenges of engineered exosomes for diabetic wound healing. Giant. (2024) 18:100251. doi: 10.1016/j.giant.2024.100251 DOI
Fan MH, Pi JK, Zou CY, Jiang YL, Li QJ, Zhang XZ, et al. . Hydrogel-exosome system in tissue engineering: a promising therapeutic strategy. Bioact Mater. (2024) 38:1–30. doi: 10.1016/j.bioactmat.2024.04.007, PMID: PubMed DOI PMC
Xie Y, Guan Q, Guo J, Chen Y, Yin Y, Han X. Hydrogels for exosome delivery in biomedical applications. Gels. (2022) 8:328. doi: 10.3390/gels8060328, PMID: PubMed DOI PMC
Khayambashi P, Iyer J, Pillai S, Upadhyay A, Zhang Y, Tran SD. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering. Int J Mol Sci. (2021) 22:684. doi: 10.3390/ijms22020684, PMID: PubMed DOI PMC
Zhang K, Zhao X, Chen X, Wei Y, Du W, Wang Y, et al. . Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for Hindlimb ischemia treatment. ACS Appl Mater Interfaces. (2018) 10:30081–91. doi: 10.1021/acsami.8b08449, PMID: PubMed DOI
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical cord-derived mesenchymal stem cell-derived exosomes combined Pluronic F127 hydrogel promote chronic diabetic wound healing and complete skin regeneration. Int J Nanomedicine. (2020) 15:5911–26. doi: 10.2147/IJN.S249129, PMID: PubMed DOI PMC
Zhang Y, Zhang P, Gao X, Chang L, Chen Z, Mei X. Preparation of exosomes encapsulated nanohydrogel for accelerating wound healing of diabetic rats by promoting angiogenesis. Mater Sci Eng C. (2021) 120:111671. doi: 10.1016/j.msec.2020.111671, PMID: PubMed DOI
Wang C, Wang M, Xu T, Zhang X, Lin C, Gao W, et al. . Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration. Theranostics. (2019) 9:65–76. doi: 10.7150/thno.29766, PMID: PubMed DOI PMC
Li P, Lv S, Jiang W, Si L, Liao B, Zhao G, et al. . Exosomes derived from umbilical cord mesenchymal stem cells protect cartilage and regulate the polarization of macrophages in osteoarthritis. Ann Transl Med. (2022) 10:976. doi: 10.21037/atm-22-3912, PMID: PubMed DOI PMC
Cao H, Chen M, Cui X, Liu Y, Liu Y, Deng S, et al. . Cell-free osteoarthritis treatment with sustained-release of chondrocyte-targeting exosomes from umbilical cord-derived mesenchymal stem cells to rejuvenate aging chondrocytes. ACS Nano. (2023) 17:13358–76. doi: 10.1021/acsnano.3c01612, PMID: PubMed DOI
Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, et al. . Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics. (2019) 9:2439–59. doi: 10.7150/thno.31017, PMID: PubMed DOI PMC
Wu KY, Ahmad H, Lin G, Carbonneau M, Tran SD. Mesenchymal stem cell-derived exosomes in ophthalmology: a comprehensive review. Pharmaceutics. (2023) 15:1167. doi: 10.3390/pharmaceutics15041167, PMID: PubMed DOI PMC
Di G, Du X, Qi X, Zhao X, Duan H, Li S, et al. . Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch. Invest Ophthalmol Vis Sci. (2017) 58:4344–54. doi: 10.1167/iovs.17-21506, PMID: PubMed DOI
Samaeekia R, Rabiee B, Putra I, Shen X, Park YJ, Hematti P, et al. . Effect of human corneal mesenchymal stromal cell-derived exosomes on corneal epithelial wound healing. Invest Ophthalmol Vis Sci. (2018) 59:5194–200. doi: 10.1167/iovs.18-24803, PMID: PubMed DOI PMC
Mead B, Tomarev S. Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Transl Med. (2017) 6:1273–85. doi: 10.1002/sctm.16-0428, PMID: PubMed DOI PMC
Wang T, Zhou Y, Zhang W, Xue Y, Xiao Z, Zhou Y, et al. . Exosomes and exosome composite scaffolds in periodontal tissue engineering. Front Bioeng Biotechnol. (2023) 11:1287714. doi: 10.3389/fbioe.2023.1287714 PubMed DOI PMC
Lin H, Chen H, Zhao X, Ding T, Wang Y, Chen Z, et al. . Advances of exosomes in periodontitis treatment. J Transl Med. (2022) 20:279. doi: 10.1186/s12967-022-03487-4, PMID: PubMed DOI PMC
Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, et al. . In situ detection of plasma Exosomal MicroRNA-1246 for breast Cancer diagnostics by a au Nanoflare probe. ACS Appl Mater Interfaces. (2018) 10:39478–86. doi: 10.1021/acsami.8b12725, PMID: PubMed DOI
Sandfeld-Paulsen B, Jakobsen KR, Baek R, Folkersen BH, Rasmussen TR, Meldgaard P, et al. . Exosomal proteins as diagnostic biomarkers in lung Cancer. J Thorac Oncol. (2016) 11:1701–10. doi: 10.1016/j.jtho.2016.05.034, PMID: PubMed DOI
Akbar S, Raza A, Mohsin R, Kanbour A, Qadri S, Parray A, et al. . Circulating exosomal immuno-oncological checkpoints and cytokines are potential biomarkers to monitor tumor response to anti-PD-1/PD-L1 therapy in non-small cell lung cancer patients. Front Immunol. (2022) 13:1097117. doi: 10.3389/fimmu.2022.1097117 PubMed DOI PMC
Risha Y, Minic Z, Ghobadloo SM, Berezovski MV. The proteomic analysis of breast cell line exosomes reveals disease patterns and potential biomarkers. Sci Rep. (2020) 10:13572. doi: 10.1038/s41598-020-70393-4, PMID: PubMed DOI PMC
Hung Y, Wang Y-L, Lin Y-Z, Chiang S-F, Wu W-R, Wang S-C. The exosomal compartment protects epidermal growth factor receptor from small molecule inhibitors. Biochem Biophys Res Commun. (2019) 510:42–7. doi: 10.1016/j.bbrc.2018.12.187, PMID: PubMed DOI
Hannafon BN, Trigoso YD, Calloway CL, Zhao YD, Lum DH, Welm AL, et al. . Plasma exosome microRNAs are indicative of breast cancer. Breast Cancer Res. (2016) 18:90. doi: 10.1186/s13058-016-0753-x, PMID: PubMed DOI PMC
Gobbo J, Marcion G, Cordonnier M, Dias AMM, Pernet N, Hammann A, et al. . Restoring anticancer immune response by targeting tumor-derived exosomes with a HSP70 peptide Aptamer. JNCI J Natl Cancer Inst. (2015) 108:djv330. doi: 10.1093/jnci/djv330, PMID: PubMed DOI
Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. . Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature. (2015) 523:177–82. doi: 10.1038/nature14581, PMID: PubMed DOI PMC
Ueda H, Takahashi H, Kobayashi S, Kubo M, Sasaki K, Iwagami Y, et al. . miR-6855-5p enhances Radioresistance and promotes migration of pancreatic Cancer by inducing epithelial-mesenchymal transition via suppressing FOXA1: potential of plasma Exosomal miR-6855-5p as an indicator of radiosensitivity in patients with pancreatic cancer. Ann Surg Oncol. (2024) 32:720–35. doi: 10.1245/s10434-024-16115-w PubMed DOI
Dash S, Wu CC, Wu CC, Chiang SF, Lu YT, Yeh CY, et al. . Extracellular vesicle membrane protein profiling and targeted mass spectrometry unveil CD59 and Tetraspanin 9 as novel plasma biomarkers for detection of colorectal cancer. Cancers. (2022) 15:177. doi: 10.3390/cancers15010177, PMID: PubMed DOI PMC
Overbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Berge V, et al. . Identification of prostate cancer biomarkers in urinary exosomes. Oncotarget. (2015) 6:30357–76. doi: 10.18632/oncotarget.4851, PMID: PubMed DOI PMC
Jang JY, Lee JK, Jeon YK, Kim CW. Exosome derived from epigallocatechin gallate treated breast cancer cells suppresses tumor growth by inhibiting tumor-associated macrophage infiltration and M2 polarization. BMC Cancer. (2013) 13:421. doi: 10.1186/1471-2407-13-421, PMID: PubMed DOI PMC
Whiteside TL. Exosomes and tumor-mediated immune suppression. J Clin Invest. (2016) 126:1216–23. doi: 10.1172/JCI81136, PMID: PubMed DOI PMC
Hao Q, Wu Y, Wu Y, Wang P, Vadgama JV. Tumor-derived exosomes in tumor-induced immune suppression. Int J Mol Sci. (2022) 23:1416. doi: 10.3390/ijms23031461, PMID: PubMed DOI PMC
Saccani A, Schioppa T, Porta C, Biswas SK, Nebuloni M, Vago L, et al. . p50 nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. (2006) 66:11432–40. doi: 10.1158/0008-5472.CAN-06-1867, PMID: PubMed DOI
Mantovani A, Marchesi F, Porta C, Sica A, Allavena P. Inflammation and cancer: breast cancer as a prototype. Breast. (2007) 16:27–33. doi: 10.1016/j.breast.2007.07.013, PMID: PubMed DOI
Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers (Basel). (2014) 6:1670–90. doi: 10.3390/cancers6031670 PubMed DOI PMC
Sica A, Schioppa T, Mantovani A, Allavena P. Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer. (2006) 42:717–27. doi: 10.1016/j.ejca.2006.01.003, PMID: PubMed DOI
Ham S, Lima LG, Chai EPZ, Muller A, Lobb RJ, Krumeich S, et al. . Breast Cancer-derived exosomes Alter macrophage polarization via gp130/STAT3 signaling. Front Immunol. (2018) 9:871. doi: 10.3389/fimmu.2018.00871, PMID: PubMed DOI PMC
Piao YJ, Kim HS, Hwang EH, Woo J, Zhang M, Moon WK. Breast cancer cell-derived exosomes and macrophage polarization are associated with lymph node metastasis. Oncotarget. (2018) 9:7398–410. doi: 10.18632/oncotarget.23238, PMID: PubMed DOI PMC
Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. (2011) 27:347–76. doi: 10.1146/annurev-cellbio-092910-154036, PMID: PubMed DOI
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. (2009) 139:871–90. doi: 10.1016/j.cell.2009.11.007, PMID: PubMed DOI
Shen Y, TanTai J. Exosomes secreted by metastatic cancer cells promotes epithelial mesenchymal transition in small cell lung carcinoma: the key role of Src/TGF-beta1 axis. Gene. (2024) 892:147873. doi: 10.1016/j.gene.2023.147873, PMID: PubMed DOI
Franzen CA, Blackwell RH, Todorovic V, Greco KA, Foreman KE, Flanigan RC, et al. . Urothelial cells undergo epithelial-to-mesenchymal transition after exposure to muscle invasive bladder cancer exosomes. Oncogenesis. (2015) 4:e163. doi: 10.1038/oncsis.2015.21, PMID: PubMed DOI PMC
Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc Natl Acad Sci USA. (2013) 110:17380–5. doi: 10.1073/pnas.1304266110, PMID: PubMed DOI PMC
Liu D, Li C, Trojanowicz B, Li X, Shi D, Zhan C, et al. . CD97 promotion of gastric carcinoma lymphatic metastasis is exosome dependent. Gastric Cancer. (2016) 19:754–66. doi: 10.1007/s10120-015-0523-y, PMID: PubMed DOI PMC
Rahman MA, Barger JF, Lovat F, Gao M, Otterson GA, Nana-Sinkam P. Lung cancer exosomes as drivers of epithelial mesenchymal transition. Oncotarget. (2016) 7:54852–66. doi: 10.18632/oncotarget.10243, PMID: PubMed DOI PMC
Cao M, Seike M, Soeno C, Mizutani H, Kitamura K, Minegishi Y, et al. . MiR-23a regulates TGF-beta-induced epithelial-mesenchymal transition by targeting E-cadherin in lung cancer cells. Int J Oncol. (2012) 41:869–75. doi: 10.3892/ijo.2012.1535, PMID: PubMed DOI PMC
Kim J, Kim TY, Lee MS, Mun JY, Ihm C, Kim SA. Exosome cargo reflects TGF-beta1-mediated epithelial-to-mesenchymal transition (EMT) status in A549 human lung adenocarcinoma cells. Biochem Biophys Res Commun. (2016) 478:643–8. doi: 10.1016/j.bbrc.2016.07.124, PMID: PubMed DOI
Ohshima K, Inoue K, Fujiwara A, Hatakeyama K, Kanto K, Watanabe Y, et al. . Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS One. (2010) 5:e13247. doi: 10.1371/journal.pone.0013247, PMID: PubMed DOI PMC
Tanaka S, Hosokawa M, Ueda K, Iwakawa S. Effects of Decitabine on invasion and Exosomal expression of miR-200c and miR-141 in Oxaliplatin-resistant colorectal Cancer cells. Biol Pharm Bull. (2015) 38:1272–9. doi: 10.1248/bpb.b15-00129, PMID: PubMed DOI
Xiao D, Barry S, Kmetz D, Egger M, Pan J, Rai SN, et al. . Melanoma cell-derived exosomes promote epithelial-mesenchymal transition in primary melanocytes through paracrine/autocrine signaling in the tumor microenvironment. Cancer Lett. (2016) 376:318–27. doi: 10.1016/j.canlet.2016.03.050, PMID: PubMed DOI PMC
Zhou W, Fong MY, Min Y, Somlo G, Liu L, Palomares MR, et al. . Cancer-secreted miR-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell. (2014) 25:501–15. doi: 10.1016/j.ccr.2014.03.007, PMID: PubMed DOI PMC
Kumar S, Dhar R, Kumar L, Shivji GG, Jayaraj R, Devi A. Theranostic signature of tumor-derived exosomes in cancer. Med Oncol. (2023) 40:321. doi: 10.1007/s12032-023-02176-6, PMID: PubMed DOI
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. . GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. (2022) 74:229–63. doi: 10.3322/caac.21660 PubMed DOI
Shin H, Oh S, Hong S, Kang M, Kang D, Ji YG, et al. . Early-stage lung Cancer diagnosis by deep learning-based spectroscopic analysis of circulating exosomes. ACS Nano. (2020) 14:5435–44. doi: 10.1021/acsnano.9b09119, PMID: PubMed DOI
Hai J, Zhu CQ, Bandarchi B, Wang YH, Navab R, Shepherd FA, et al. . L1 cell adhesion molecule promotes tumorigenicity and metastatic potential in non-small cell lung cancer. Clin Cancer Res. (2012) 18:1914–24. doi: 10.1158/1078-0432.CCR-11-2893, PMID: PubMed DOI
Tischler V, Pfeifer M, Hausladen S, Schirmer U, Bonde AK, Kristiansen G, et al. . L1CAM protein expression is associated with poor prognosis in non-small cell lung cancer. Mol Cancer. (2011) 10:127. doi: 10.1186/1476-4598-10-127, PMID: PubMed DOI PMC
Liu Y, Ding W, Wang J, Ao X, Xue J. Non-coding RNAs in lung cancer: molecular mechanisms and clinical applications. Front Oncol. (2023) 13:1256537. doi: 10.3389/fonc.2023.1256537, PMID: PubMed DOI PMC
Makler A, Asghar W. Exosomal biomarkers for cancer diagnosis and patient monitoring. Expert Rev Mol Diagn. (2020) 20:387–400. doi: 10.1080/14737159.2020.1731308, PMID: PubMed DOI PMC
Lee CH, Im EJ, Moon PG, Baek MC. Discovery of a diagnostic biomarker for colon cancer through proteomic profiling of small extracellular vesicles. BMC Cancer. (2018) 18:1058. doi: 10.1186/s12885-018-4952-y, PMID: PubMed DOI PMC
Xu Y, Lou J, Yu M, Jiang Y, Xu H, Huang Y, et al. . Urinary exosomes diagnosis of urological tumors: a systematic review and meta-analysis. Front Oncol. (2021) 11:734587. doi: 10.3389/fonc.2021.734587, PMID: PubMed DOI PMC
Hiltbrunner S, Mints M, Eldh M, Rosenblatt R, Holmstrom B, Alamdari F, et al. . Urinary exosomes from bladder cancer patients show a residual cancer phenotype despite complete pathological downstaging. Sci Rep. (2020) 10:5960. doi: 10.1038/s41598-020-62753-x, PMID: PubMed DOI PMC
Shusharina N, Yukhnenko D, Botman S, Sapunov V, Savinov V, Kamyshov G, et al. . Modern methods of diagnostics and treatment of neurodegenerative diseases and depression. Diagnostics. (2023) 13:573. doi: 10.3390/diagnostics13030573, PMID: PubMed DOI PMC
Konickova D, Mensikova K, Tuckova L, Henykova E, Strnad M, Friedecky D, et al. . Biomarkers of neurodegenerative diseases: biology, taxonomy, clinical relevance, and current research status. Biomedicines. (2022) 10:1760. doi: 10.3390/biomedicines10071760, PMID: PubMed DOI PMC
Gao P, Li X, Du X, Liu S, Xu Y. Diagnostic and therapeutic potential of exosomes in neurodegenerative diseases. Front Aging Neurosci. (2021) 13:790863. doi: 10.3389/fnagi.2021.790863, PMID: PubMed DOI PMC
Rastogi S, Sharma V, Bharti PS, Rani K, Modi GP, Nikolajeff F, et al. . The evolving landscape of exosomes in neurodegenerative diseases: exosomes characteristics and a promising role in early diagnosis. Int J Mol Sci. (2021) 22:440. doi: 10.3390/ijms22010440, PMID: PubMed DOI PMC
Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol. (2012) 235:491–6. doi: 10.1016/j.expneurol.2011.11.026, PMID: PubMed DOI PMC
Manna I, De Benedittis S, Quattrone A, Maisano D, Iaccino E, Quattrone A. Exosomal miRNAs as potential diagnostic biomarkers in Alzheimer's disease. Pharmaceuticals. (2020) 13:243. doi: 10.3390/ph13090243, PMID: PubMed DOI PMC
Agarwal M, Khan S. Plasma lipids as biomarkers for Alzheimer's disease: a systematic review. Cureus. (2020) 12:e12008. doi: 10.7759/cureus.12008 PubMed DOI PMC
Jia L, Qiu Q, Zhang H, Chu L, Du Y, Zhang J, et al. . Concordance between the assessment of Abeta42, T-tau, and P-T181-tau in peripheral blood neuronal-derived exosomes and cerebrospinal fluid. Alzheimers Dement. (2019) 15:1071–80. doi: 10.1016/j.jalz.2019.05.002, PMID: PubMed DOI
Nila IS, Sumsuzzman DM, Khan ZA, Jung JH, Kazema AS, Kim SJ, et al. . Identification of exosomal biomarkers and its optimal isolation and detection method for the diagnosis of Parkinson's disease: a systematic review and meta-analysis. Ageing Res Rev. (2022) 82:101764. doi: 10.1016/j.arr.2022.101764, PMID: PubMed DOI
Barbo M, Ravnik-Glavac M. Extracellular vesicles as potential biomarkers in amyotrophic lateral sclerosis. Genes. (2023) 14:325. doi: 10.3390/genes14020325, PMID: PubMed DOI PMC
Zafar MN, Abuwatfa WH, Husseini GA. Acoustically-activated liposomal Nanocarriers to mitigate the side effects of conventional chemotherapy with a focus on emulsion-liposomes. Pharmaceutics. (2023) 15:421. doi: 10.3390/pharmaceutics15020421, PMID: PubMed DOI PMC
Srivastava A, Amreddy N, Razaq M, Towner R, Zhao YD, Ahmed RA, et al. . Exosomes as Theranostics for lung Cancer. Adv Cancer Res. (2018) 139:1–33. doi: 10.1016/bs.acr.2018.04.001, PMID: PubMed DOI PMC
Paskeh MDA, Entezari M, Mirzaei S, Zabolian A, Saleki H, Naghdi MJ, et al. . Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J Hematol Oncol. (2022) 15:83. doi: 10.1186/s13045-022-01305-4 PubMed DOI PMC
Maqsood Q, Sumrin A, Saleem Y, Wajid A, Mahnoor M. Exosomes in Cancer: diagnostic and therapeutic applications. Clin Med Insights Oncol. (2024) 18:11795549231215966. doi: 10.1177/11795549231215966, PMID: PubMed DOI PMC
Cao Y, Xu P, Shen Y, Wu W, Chen M, Wang F, et al. . Exosomes and cancer immunotherapy: a review of recent cancer research. Front Oncol. (2022) 12:1118101. doi: 10.3389/fonc.2022.1118101 PubMed DOI PMC
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, et al. . Exosomes as a Nano-Carrier for chemotherapeutics: a new era of oncology. Cells. (2023) 12:2411. doi: 10.3390/cells12172144, PMID: PubMed DOI PMC
Hadla M, Palazzolo S, Corona G, Caligiuri I, Canzonieri V, Toffoli G, et al. . Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine. (2016) 11:2431–41. doi: 10.2217/nnm-2016-0154, PMID: PubMed DOI
Srivastava A, Amreddy N, Babu A, Panneerselvam J, Mehta M, Muralidharan R, et al. . Nanosomes carrying doxorubicin exhibit potent anticancer activity against human lung cancer cells. Sci Rep. (2016) 6:38541. doi: 10.1038/srep38541, PMID: PubMed DOI PMC
Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, et al. . Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine. (2016) 12:655–64. doi: 10.1016/j.nano.2015.10.012, PMID: PubMed DOI PMC
Aspe JR, Diaz Osterman CJ, Jutzy JM, Deshields S, Whang S, Wall NR. Enhancement of gemcitabine sensitivity in pancreatic adenocarcinoma by novel exosome-mediated delivery of the Survivin-T34A mutant. J Extracell Vesicles. (2014) 3:1–9. doi: 10.3402/jev.v3.23244, PMID: PubMed DOI PMC
Geis-Asteggiante L, Belew AT, Clements VK, Edwards NJ, Ostrand-Rosenberg S, El-Sayed NM, et al. . Differential content of proteins, mRNAs, and miRNAs suggests that MDSC and their exosomes may mediate distinct immune suppressive functions. J Proteome Res. (2018) 17:486–98. doi: 10.1021/acs.jproteome.7b00646, PMID: PubMed DOI PMC
O'Brien KP, Khan S, Gilligan KE, Zafar H, Lalor P, Glynn C, et al. . Employing mesenchymal stem cells to support tumor-targeted delivery of extracellular vesicle (EV)-encapsulated microRNA-379. Oncogene. (2018) 37:2137–49. doi: 10.1038/s41388-017-0116-9, PMID: PubMed DOI
Ding Y, Cao F, Sun H, Wang Y, Liu S, Wu Y, et al. . Exosomes derived from human umbilical cord mesenchymal stromal cells deliver exogenous miR-145-5p to inhibit pancreatic ductal adenocarcinoma progression. Cancer Lett. (2019) 442:351–61. doi: 10.1016/j.canlet.2018.10.039, PMID: PubMed DOI
Song H, Liu B, Dong B, Xu J, Zhou H, Na S, et al. . Exosome-based delivery of natural products in Cancer therapy. Front Cell Dev Biol. (2021) 9:650426. doi: 10.3389/fcell.2021.650426, PMID: PubMed DOI PMC
Mansouri K, Rasoulpoor S, Daneshkhah A, Abolfathi S, Salari N, Mohammadi M, et al. . Clinical effects of curcumin in enhancing cancer therapy: a systematic review. BMC Cancer. (2020) 20:791. doi: 10.1186/s12885-020-07256-8, PMID: PubMed DOI PMC
Osterman CJ, Lynch JC, Leaf P, Gonda A, Ferguson Bennit HR, Griffiths D, et al. . Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function. PLoS One. (2015) 10:e0132845. doi: 10.1371/journal.pone.0132845, PMID: PubMed DOI PMC
Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, et al. . Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther. (2011) 19:1769–79. doi: 10.1038/mt.2011.164, PMID: PubMed DOI PMC
Shahraki K, Boroumand PG, Lotfi H, Radnia F, Shahriari H, Sargazi S, et al. . An update in the applications of exosomes in cancer theranostics: from research to clinical trials. J Cancer Res Clin Oncol. (2023) 149:8087–116. doi: 10.1007/s00432-023-04701-6, PMID: PubMed DOI PMC
Besse B, Charrier M, Lapierre V, Dansin E, Lantz O, Planchard D, et al. . Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. Onco Targets Ther. (2016) 5:e1071008. doi: 10.1080/2162402X.2015.1071008, PMID: PubMed DOI PMC
Zeissig MN, Ashwood LM, Kondrashova O, Sutherland KD. Next batter up! Targeting cancers with KRAS-G12D mutations. Trends Cancer. (2023) 9:955–67. doi: 10.1016/j.trecan.2023.07.010, PMID: PubMed DOI
Han Y, Liu D, Li L. PD-1/PD-L1 pathway: current researches in cancer. Am J Cancer Res. (2020) 10:727–42. PMID: PubMed PMC
Qiu Y, Yang Y, Yang R, Liu C, Hsu J-M, Jiang Z, et al. . Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene. (2021) 40:4992–5001. doi: 10.1038/s41388-021-01896-1, PMID: PubMed DOI PMC
Banks WA, Sharma P, Bullock KM, Hansen KM, Ludwig N, Whiteside TL. Transport of extracellular vesicles across the blood-brain barrier: brain pharmacokinetics and effects of inflammation. Int J Mol Sci. (2020) 21:4407. doi: 10.3390/ijms21124407, PMID: PubMed DOI PMC
Fayazi N, Sheykhhasan M, Soleimani Asl S, Najafi R. Stem cell-derived exosomes: a new strategy of neurodegenerative disease treatment. Mol Neurobiol. (2021) 58:3494–514. doi: 10.1007/s12035-021-02324-x, PMID: PubMed DOI PMC
Luarte A, Batiz LF, Wyneken U, Lafourcade C. Potential therapies by stem cell-derived exosomes in CNS diseases: focusing on the neurogenic niche. Stem Cells Int. (2016) 2016:5736059. doi: 10.1155/2016/5736059, PMID: PubMed DOI PMC
Mohamed AS, Abdel-Fattah DS, Abdel-Aleem GA, El-Sheikh TF, Elbatch MM. Biochemical study of the effect of mesenchymal stem cells-derived exosome versus L-Dopa in experimentally induced Parkinson's disease in rats. Mol Cell Biochem. (2023) 478:2795–811. doi: 10.1007/s11010-023-04700-8, PMID: PubMed DOI PMC
Wang X, Yang G. Bone marrow mesenchymal stem cells-derived exosomes reduce Abeta deposition and improve cognitive function recovery in mice with Alzheimer's disease by activating sphingosine kinase/sphingosine-1-phosphate signaling pathway. Cell Biol Int. (2021) 45:775–84. doi: 10.1002/cbin.11522, PMID: PubMed DOI
Elia CA, Tamborini M, Rasile M, Desiato G, Marchetti S, Swuec P, et al. . Intracerebral injection of extracellular vesicles from mesenchymal stem cells exerts reduced Abeta plaque burden in early stages of a preclinical model of Alzheimer's disease. Cells. (2019) 8:1059. doi: 10.3390/cells8091059, PMID: PubMed DOI PMC
Ma X, Huang M, Zheng M, Dai C, Song Q, Zhang Q, et al. . ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease. J Control Release. (2020) 327:688–702. doi: 10.1016/j.jconrel.2020.09.019, PMID: PubMed DOI
Chen YA, Lu CH, Ke CC, Chiu SJ, Jeng FS, Chang CW, et al. . Mesenchymal stem cell-derived exosomes ameliorate Alzheimer's disease pathology and improve cognitive deficits. Biomedicines. (2021) 9:594. doi: 10.3390/biomedicines9060594, PMID: PubMed DOI PMC
Zhai L, Shen H, Sheng Y, Guan Q. ADMSC Exo-MicroRNA-22 improve neurological function and neuroinflammation in mice with Alzheimer's disease. J Cell Mol Med. (2021) 25:7513–23. doi: 10.1111/jcmm.16787, PMID: PubMed DOI PMC
Cone AS, Yuan X, Sun L, Duke LC, Vreones MP, Carrier AN, et al. . Mesenchymal stem cell-derived extracellular vesicles ameliorate Alzheimer's disease-like phenotypes in a preclinical mouse model. Theranostics. (2021) 11:8129–42. doi: 10.7150/thno.62069, PMID: PubMed DOI PMC
Tsivion-Visbord H, Perets N, Sofer T, Bikovski L, Goldshmit Y, Ruban A, et al. . Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia. Transl Psychiatry. (2020) 10:305. doi: 10.1038/s41398-020-00988-y, PMID: PubMed DOI PMC
Xie X, Song Q, Dai C, Cui S, Tang R, Li S, et al. . Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer's disease: a phase I/II clinical trial. Gen Psychiatr. (2023) 36:e101143. doi: 10.1136/gpsych-2023-101143, PMID: PubMed DOI PMC
Zheng X, Sun K, Liu Y, Yin X, Zhu H, Yu F, et al. . Resveratrol-loaded macrophage exosomes alleviate multiple sclerosis through targeting microglia. J Control Release. (2023) 353:675–84. doi: 10.1016/j.jconrel.2022.12.026, PMID: PubMed DOI
Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, et al. . Extracellular vesicles containing IL-4 modulate neuroinflammation in a mouse model of multiple sclerosis. Mol Ther. (2018) 26:2107–18. doi: 10.1016/j.ymthe.2018.06.024, PMID: PubMed DOI PMC
Borghi C, Agabiti-Rosei E, Johnson RJ, Kielstein JT, Lurbe E, Mancia G, et al. . Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur J Intern Med. (2020) 80:1–11. doi: 10.1016/j.ejim.2020.07.006, PMID: PubMed DOI
Tedeschi A, Agostoni P, Pezzuto B, Corra U, Scrutinio D, La Gioia R, et al. . Role of comorbidities in heart failure prognosis part 2: chronic kidney disease, elevated serum uric acid. Eur J Prev Cardiol. (2020) 27:35–45. doi: 10.1177/2047487320957793, PMID: PubMed DOI PMC
Wang L, Liu J, Xu B, Liu YL, Liu Z. Reduced exosome miR-425 and miR-744 in the plasma represents the progression of fibrosis and heart failure. Kaohsiung J Med Sci. (2018) 34:626–33. doi: 10.1016/j.kjms.2018.05.008, PMID: PubMed DOI PMC
Bohatá J, Horváthová V, Pavlíková M, Stibůrková B. Circulating microRNA alternations in primary hyperuricemia and gout. Arthritis Res Ther. (2021) 23:186. doi: 10.1186/s13075-021-02569-w, PMID: PubMed DOI PMC
Chen Z, Shi J, Huang X, Yang Y, Cheng Y, Qu Y, et al. . Exosomal miRNAs in patients with chronic heart failure and hyperuricemia and the underlying mechanisms. Gene. (2025) 933:148920. doi: 10.1016/j.gene.2024.148920, PMID: PubMed DOI
Zhao Y, Xu J. Synovial fluid-derived exosomal lncRNA PCGEM1 as biomarker for the different stages of osteoarthritis. Int Orthop. (2018) 42:2865–72. doi: 10.1007/s00264-018-4093-6, PMID: PubMed DOI
Kolhe R, Hunter M, Liu S, Jadeja RN, Pundkar C, Mondal AK, et al. . Gender-specific differential expression of exosomal miRNA in synovial fluid of patients with osteoarthritis. Sci Rep. (2017) 7:2029. doi: 10.1038/s41598-017-01905-y, PMID: PubMed DOI PMC
Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al. . Predictive validity of biochemical biomarkers in knee osteoarthritis: data from the FNIH OA biomarkers consortium. Ann Rheum Dis. (2017) 76:186–95. doi: 10.1136/annrheumdis-2016-209252, PMID: PubMed DOI PMC
Cao Y, Liao S, Deng C, Qin H, Li Y. A pH-responsive phase-transition bi-affinity nanopolymer-assisted exosome metabolomics for early screening of osteoarthritis. Talanta. (2025) 283:127144. doi: 10.1016/j.talanta.2024.127144, PMID: PubMed DOI
Zou Z, Li H, Xu G, Hu Y, Zhang W, Tian K. Current knowledge and future perspectives of exosomes as Nanocarriers in diagnosis and treatment of diseases. Int J Nanomedicine. (2023) 18:4751–78. doi: 10.2147/IJN.S417422, PMID: PubMed DOI PMC
Wang Q, Cheng S, Qin F, Fu A, Fu C. Application progress of RVG peptides to facilitate the delivery of therapeutic agents into the central nervous system. RSC Adv. (2021) 11:8505–15. doi: 10.1039/D1RA00550B, PMID: PubMed DOI PMC
Cui GH, Guo HD, Li H, Zhai Y, Gong ZB, Wu J, et al. . RVG-modified exosomes derived from mesenchymal stem cells rescue memory deficits by regulating inflammatory responses in a mouse model of Alzheimer's disease. Immun Ageing. (2019) 16:10. doi: 10.1186/s12979-019-0150-2, PMID: PubMed DOI PMC
Liang Y, Duan L, Lu J, Xia J. Engineering exosomes for targeted drug delivery. Theranostics. (2021) 11:3183–95. doi: 10.7150/thno.52570, PMID: PubMed DOI PMC
Liu L, Li Y, Peng H, Liu R, Ji W, Shi Z, et al. . Targeted exosome coating gene-chem nanocomplex as "nanoscavenger" for clearing α-synuclein and immune activation of Parkinson's disease. Sci Adv. (2020) 6:eaba3967. doi: 10.1126/sciadv.aba3967, PMID: PubMed DOI PMC
Gomes ER, Souza FR, Cassali GD, Sabino AP, Barros ALB, Oliveira MC. Investigation of the antitumor activity and toxicity of tumor-derived exosomes fused with Long-circulating and pH-sensitive liposomes containing doxorubicin. Pharmaceutics. (2022) 14:2256. doi: 10.3390/pharmaceutics14112256, PMID: PubMed DOI PMC
Li L, He D, Guo Q, Zhang Z, Ru D, Wang L, et al. . Exosome-liposome hybrid nanoparticle codelivery of TP and miR497 conspicuously overcomes chemoresistant ovarian cancer. J Nanobiotechnol. (2022) 20:50. doi: 10.1186/s12951-022-01264-5, PMID: PubMed DOI PMC
Wang X, Li D, Li G, Chen J, Yang Y, Bian L, et al. . Enhanced therapeutic potential of hybrid exosomes loaded with paclitaxel for Cancer therapy. Int J Mol Sci. (2024) 25:3645. doi: 10.3390/ijms25073645, PMID: PubMed DOI PMC
Lv Q, Cheng L, Lu Y, Zhang X, Wang Y, Deng J, et al. . Thermosensitive exosome-liposome hybrid nanoparticle-mediated chemoimmunotherapy for improved treatment of metastatic peritoneal cancer. Adv Sci. (2020) 7:2000515. doi: 10.1002/advs.202000515, PMID: PubMed DOI PMC
Rayamajhi S, Nguyen TDT, Marasini R, Aryal S. Macrophage-derived exosome-mimetic hybrid vesicles for tumor targeted drug delivery. Acta Biomater. (2019) 94:482–94. doi: 10.1016/j.actbio.2019.05.054, PMID: PubMed DOI
Zhou X, Zhuang Y, Liu X, Gu Y, Wang J, Shi Y, et al. . Study on tumour cell-derived hybrid exosomes as dasatinib nanocarriers for pancreatic cancer therapy. Artif Cells Nanomed Biotechnol. (2023) 51:532–46. doi: 10.1080/21691401.2023.2264358, PMID: PubMed DOI
Zhang W, Song Q, Bi X, Cui W, Fang C, Gao J, et al. . Preparation of Pueraria lobata root-derived exosome-like Nanovesicles and evaluation of their effects on mitigating alcoholic intoxication and promoting alcohol metabolism in mice. Int J Nanomedicine. (2024) 19:4907–21. doi: 10.2147/IJN.S462602, PMID: PubMed DOI PMC
Wang D, Zhang H, Liao X, Li J, Zeng J, Wang Y, et al. . Oral administration of Robinia pseudoacacia L. flower exosome-like nanoparticles attenuates gastric and small intestinal mucosal ferroptosis caused by hypoxia through inhibiting HIF-1α- and HIF-2α-mediated lipid peroxidation. J Nanobiotechnol. (2024) 22:479. doi: 10.1186/s12951-024-02663-6, PMID: PubMed DOI PMC
Brogyanyi T, Kejík Z, Veselá K, Dytrych P, Hoskovec D, Masařik M, et al. . Iron chelators as mitophagy agents: potential and limitations. Biomed Pharmacother. (2024) 179:117407. doi: 10.1016/j.biopha.2024.117407, PMID: PubMed DOI
Li J, Cao F, Yin H, Huang Z, Lin Z, Mao N, et al. . Ferroptosis: past, present and future. Cell Death Dis. (2020) 11:88. doi: 10.1038/s41419-020-2298-2, PMID: PubMed DOI PMC
Ahima RS, Lazar MA. The health risk of obesity—better metrics imperative. Science. (2013) 341:856–8. doi: 10.1126/science.1241244, PMID: PubMed DOI
Matarese G. The link between obesity and autoimmunity. Science. (2023) 379:1298–300. doi: 10.1126/science.ade0113, PMID: PubMed DOI
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. (2019) 15:288–98. doi: 10.1038/s41574-019-0176-8 PubMed DOI
Wang J, Zhang T, Gu R, Ke Y, Zhang S, Su X, et al. . Development and evaluation of reconstructed Nanovesicles from turmeric for multifaceted obesity intervention. ACS Nano. (2024) 18:23117–35. doi: 10.1021/acsnano.4c05309, PMID: PubMed DOI
Zheng M, Chavda VP, Vaghela DA, Bezbaruah R, Gogoi NR, Patel K, et al. . Plant-derived exosomes in therapeutic nanomedicine, paving the path toward precision medicine. Phytomedicine. (2024) 135:156087. doi: 10.1016/j.phymed.2024.156087, PMID: PubMed DOI
Hazas MCLDL, Tome-Carneiro J, Del Pozo-Acebo L, Del Saz-Lara A, Chapado LA, Balaguer L, et al. . Therapeutic potential of plant-derived extracellular vesicles as nanocarriers for exogenous miRNAs. Pharmacol Res. (2023) 198:106999. doi: 10.1016/j.phrs.2023.106999 PubMed DOI
Gao C, Zhou Y, Chen Z, Li H, Xiao Y, Hao W, et al. . Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics. (2022) 12:5596–614. doi: 10.7150/thno.73650, PMID: PubMed DOI PMC
Zipkin M. Big pharma buys into exosomes for drug delivery. Nat Biotechnol. (2020) 38:1226–8. doi: 10.1038/s41587-020-0725-7, PMID: PubMed DOI
Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol. (2015) 1295:179–209. doi: 10.1007/978-1-4939-2550-6_15, PMID: PubMed DOI
Onodi Z, Pelyhe C, Terezia Nagy C, Brenner GB, Almasi L, Kittel A, et al. . Isolation of high-purity extracellular vesicles by the combination of Iodixanol density gradient ultracentrifugation and bind-elute chromatography from blood plasma. Front Physiol. (2018) 9:1479. doi: 10.3389/fphys.2018.01479, PMID: PubMed DOI PMC
Shu S, Allen CL, Benjamin-Davalos S, Koroleva M, MacFarland D, Minderman H, et al. . A rapid exosome isolation using ultrafiltration and size exclusion chromatography (REIUS) method for exosome isolation from melanoma cell lines. Methods Mol Biol. (2021) 2265:289–304. doi: 10.1007/978-1-0716-1205-7_22, PMID: PubMed DOI PMC
Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, et al. . Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol. (2007) 292:F1657–61. doi: 10.1152/ajprenal.00434.2006, PMID: PubMed DOI PMC
Nordin JZ, Lee Y, Vader P, Mager I, Johansson HJ, Heusermann W, et al. . Ultrafiltration with size-exclusion liquid chromatography for high yield isolation of extracellular vesicles preserving intact biophysical and functional properties. Nanomedicine. (2015) 11:879–83. doi: 10.1016/j.nano.2015.01.003, PMID: PubMed DOI
Ansari FJ, Tafti HA, Amanzadeh A, Rabbani S, Shokrgozar MA, Heidari R, et al. . Comparison of the efficiency of ultrafiltration, precipitation, and ultracentrifugation methods for exosome isolation. Biochem Biophys Rep. (2024) 38:101668. doi: 10.1016/j.bbrep.2024.101668, PMID: PubMed DOI PMC
Contreras H, Alarcón-Zapata P, Nova-Lamperti E, Ormazabal V, Varas-Godoy M, Salomon C, et al. . Comparative study of size exclusion chromatography for isolation of small extracellular vesicle from cell-conditioned media, plasma, urine, and saliva. Front Nanotechnol. (2023) 5:1146772. doi: 10.3389/fnano.2023.1146772 DOI
Navajas R, Corrales FJ, Paradela A. Serum exosome isolation by size-exclusion chromatography for the discovery and validation of preeclampsia-associated biomarkers. Methods Mol Biol. (2019) 1959:39–50. doi: 10.1007/978-1-4939-9164-8_3 PubMed DOI
Jiao R, Sun S, Gao X, Cui R, Cao G, Wei H, et al. . A polyethylene glycol-based method for enrichment of extracellular vesicles from culture supernatant of human ovarian Cancer cell line A2780 and body fluids of high-grade serous carcinoma patients. Cancer Manag Res. (2020) 12:6291–301. doi: 10.2147/CMAR.S228288, PMID: PubMed DOI PMC
Rider MA, Hurwitz SN, Meckes DG, Jr. ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci Rep. (2016) 6:23978. doi: 10.1038/srep23978, PMID: PubMed DOI PMC
Sharma P, Ludwig S, Muller L, Hong CS, Kirkwood JM, Ferrone S, et al. . Immunoaffinity-based isolation of melanoma cell-derived exosomes from plasma of patients with melanoma. J Extracell Vesicles. (2018) 7:1435138. doi: 10.1080/20013078.2018.1435138, PMID: PubMed DOI PMC