Drivers of Collembola assemblages along an altitudinal gradient in northeast China

. 2022 Feb ; 12 (2) : e8559. [epub] 20220212

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35169449

Altitudinal changes in the diversity of plants and animals have been well documented; however, soil animals received little attention in this context and it is unclear whether their diversity follows general altitudinal distribution patterns. Changbai Mountain is one of few well-conserved mountain regions comprising natural ecosystems on the Eurasian continent. Here, we present a comprehensive analysis of the diversity and community composition of Collembola along ten altitudinal sites representing five vegetation types from forest to alpine tundra. Among 7834 Collembola individuals, 84 morphospecies were identified. Species richness varied marginally significant with altitude and generally followed a unimodal relationship with altitude. By contrast, the density of Collembola did not change in a consistent way with altitude. Collembola communities changed gradually with altitude, with local habitat-related factors (soil and litter carbon-to-nitrogen ratio, litter carbon content, and soil pH) and climatic variables (precipitation seasonality) identified as major drivers of changes in Collembola community composition. Notably, local habitat-related factors explained more variation in Collembola assemblages than climatic variables. The results suggest that local habitat-related factors including precipitation and temperature are the main drivers of changes in Collembola communities with altitude. Specifically, soil and litter carbon-to-nitrogen ratio correlated positively with Collembola communities at high altitudes, whereas soil pH correlated positively at low altitudes. This documents that altitudinal gradients provide unique opportunities for identifying factors driving the community composition of not only above- but also belowground invertebrates.

Zobrazit více v PubMed

Antonelli, A. , Kissling, W. D. , Flantua, S. G. A. , Bermúdez, M. A. , Mulch, A. , Muellner‐Riehl, A. N. , Kreft, H. , Linder, H. P. , Badgley, C. , Fjeldså, J. , Fritz, S. A. , Rahbek, C. , Herman, F. , Hooghiemstra, H. , & Hoorn, C. (2018). Geological and climatic influences on mountain biodiversity. Nature Geoscience, 11, 718–725. 10.1038/s41561-018-0236-z DOI

Babenko, A. (2002). Springtails of western putorana plateau (Middle Siberia): Fauna and altitude differentiation of assemblages. Entomological Review, 82, 901–919.

Bai, F. , Sang, W. , & Axmacher, J. C. (2011). Forest vegetation responses to climate and environmental change: A case study from Changbai Mountain, NE China. Forest Ecology and Management, 262, 2052–2060. 10.1016/j.foreco.2011.08.046 DOI

Berg, M. P. , & Bengtsson, J. (2007). Temporal and spatial variability in soil food web structure. Oikos, 116, 1789–1804. 10.1111/j.2007.0030-1299.15748.x DOI

Bokhorst, S. , (Ciska) Veen, G. F. , Sundqvist, M. , De Long, J. R. , Kardol, P. , & Wardle, D. A. (2018). Contrasting responses of springtails and mites to elevation and vegetation type in the sub‐Arctic. Pedobiologia, 67, 57–64. 10.1016/j.pedobi.2018.02.004 DOI

Borcard, D. , Legendre, P. , & Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology, 73, 1045–1055. 10.2307/1940179 DOI

Brehm, G. , Homeier, J. , & Fiedler, K. (2003). Beta diversity of geometrid moths (Lepidoptera: Geometridae) in an Andean montane rainforest. Diversity and Distributions, 9, 351–366. 10.1046/j.1472-4642.2003.00023.x DOI

Brehm, G. , Strutzenberger, P. , & Fiedler, K. (2013). Phylogenetic diversity of geometrid moths decreases with elevation in the tropical Andes. Ecography, 36, 1247–1253. 10.1111/j.1600-0587.2013.00030.x DOI

Brian, G. P. , & Peter, C. (2020). Performance analytics: Econometric tools for performance and risk analysis. R package version 2.0.4. https://CRAN.R‐project.org/package=PerformanceAnalytics

Chagnon, M. , Paré, D. , Hébert, C. , & Camiré, C. (2001). Effects of experimental liming on collembolan communities and soil microbial biomass in a southern Quebec sugar maple (Acer saccharum marsh.) stand. Applied Soil Ecology, 17, 81–90. 10.1016/S0929-1393(00)00134-7 DOI

Christiansen, K. , & Bellinger, P. (1998). The collembola of North America, North of the Rio Grande. A taxonomic analysis (2nd edn, pp. 1520). Grinnell College.

Deharveng, L. (2004). Recent advances in Collembola systematics. Pedobiologia, 48, 415–433. 10.1016/j.pedobi.2004.08.001 DOI

Dormann, C. F. , Elith, J. , Bacher, S. , Buchmann, C. , Carl, G. , Carré, G. , Marquéz, J. R. G. , Gruber, B. , Lafourcade, B. , Leitão, P. J. , Münkemüller, T. , Mcclean, C. , Osborne, P. E. , Reineking, B. , Schröder, B. , Skidmore, A. K. , Zurell, D. , & Lautenbach, S. (2013). Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography, 36, 27–46. 10.1111/j.1600-0587.2012.07348.x DOI

Eisenhauer, N. , Sabais, A. C. W. , & Scheu, S. (2011). Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biology and Biochemistry, 43, 1697–1704. 10.1016/j.soilbio.2011.04.015 DOI

Ferguson, S. H. , & Joly, D. O. (2002). Dynamics of springtail and mite populations: The role of density dependence, predation, and weather. Ecological Entomology, 27, 565–573. 10.1046/j.1365-2311.2002.00441.x DOI

Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302–4315. 10.1002/joc.5086 DOI

García‐Gómez, A. , Castaño‐Meneses, G. , & Palacios‐Vargas, J. G. (2009). Diversity of springtails (Hexapoda) according to a altitudinal gradient. Pesquisa Agropecuária Brasileira, 44, 911–916. 10.1590/S0100-204X2009000800016 DOI

Gisin, H. (1943). Ökologie und Lebensgemeinschaften der Collembolen im schweizerischen Exkursionsgebiet Basels. Retrieved from http://scholar.google.com/scholar?cluster=1494446119907250369&hl=en&oi=scholarr

Grytnes, J. A. , & McCain, C. M. (2007). Elevational trends in biodiversity. Encyclopedia of Biodiversity, 1–8, 10.1016/b978-012226865-6/00503-1 DOI

Guo, Q. , Kelt, D. A. , Sun, Z. , Liu, H. , Hu, L. , Ren, H. , & Wen, J. (2013). Global variation in elevational diversity patterns. Scientific Reports, 3, 3007. 10.1038/srep03007 PubMed DOI PMC

Hasegawa, M. , & Takeda, H. (1995). Changes in feeding attributes of four collembolan populations during the decomposition process of pine needles. Pedobiologia, 39, 155–169.

He, H. S. , Hao, Z. , Mladenoff, D. J. , Shao, G. , Hu, Y. , & Chang, Y. (2005). Simulating forest ecosystem response to climate warming incorporating spatial effects in north‐eastern China. Journal of Biogeography, 32, 2043–2056. 10.1111/j.1365-2699.2005.01353.x DOI

Heiniger, C. , Barot, S. , Ponge, J. F. , Salmon, S. , Meriguet, J. , Carmignac, D. , Suillerot, M. , & Dubs, F. (2015). Collembolan preferences for soil and microclimate in forest and pasture communities. Soil Biology and Biochemistry, 86, 181–192. 10.1016/j.soilbio.2015.04.003 DOI

Hodkinson, I. D. (2005). Terrestrial insects along elevation gradients: species and community responses to altitude. Biological Reviews of the Cambridge Philosophical Society, 80(3), 489–513. 10.1017/S1464793105006767 PubMed DOI

Hoiss, B. , Krauss, J. , Potts, S. G. , Roberts, S. , & Steffan‐Dewenter, I. (2012). Altitude acts as an environmental filter on phylogenetic composition, traits and diversity in bee communities. Proceedings of the Royal Society B: Biological Sciences, 279, 4447–4456. 10.1098/rspb.2012.1581 PubMed DOI PMC

Hopkin, S. P. (1997). Biology of the springtails (Insecta, Collembola). Oxford University Press.

Hsieh, T. C. , Ma, K. H. , & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. 10.1111/2041-210X.12613/FORMAT/PDF DOI

Illig, J. , Norton, R. A. , Scheu, S. , & Maraun, M. (2010). Density and community structure of soil‐ and bark‐dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Experimental and Applied Acarology, 52, 49–62. 10.1007/s10493-010-9348-x PubMed DOI PMC

Irmler, U. (2006). Climatic and litter fall effects on collembolan and oribatid mite species and communities in a beech wood based on a 7 years investigation. European Journal of Soil Biology, 42, 51–62. 10.1016/j.ejsobi.2005.09.016 DOI

Jiang, Y. , Yin, X. , & Wang, F. (2015). Composition and spatial distribution of soil mesofauna along an elevation gradient on the north slope of the Changbai Mountains, China. Pedosphere, 25, 811–824. 10.1016/S1002-0160(15)30062-X DOI

Johnson, D. , Krsek, M. , Wellington, E. M. H. , Stott, A. W. , Cole, L. , Bardgett, R. D. , Read, D. J. , & Leake, J. R. (2005). Soil invertebrates disrupt carbon flow through fungal networks. Science, 309, 1047. 10.1126/science.1114769 PubMed DOI

Kessler, M. (2001). Patterns of diversity and range size of selected plant groups along an elevational transect in the Bolivian Andes. Biodiversity and Conservation, 10, 1897–1921. 10.1023/A:1013130902993 DOI

Krashevska, V. , Bonkowski, M. , Maraun, M. , & Scheu, S. (2007). Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia, 51, 319–331. 10.1016/j.pedobi.2007.05.005 DOI

Li, J. , Li, Q. , Wu, Y. , Ye, L. , Liu, H. , Wei, J. , & Huang, X. (2021). Mountains act as museums and cradles for hemipteran insects in China: Evidence from patterns of richness and phylogenetic structure. Global Ecology and Biogeography, 30, 1070–1085. 10.1111/geb.13276 DOI

Li, X. , Chen, X. , Zhu, H. , Ren, Z. , Jiao, J. , Hu, F. , & Liu, M. (2020). Effects of historical legacies on soil nematode communities are mediated by contemporary environmental conditions. Ecology and Evolution, 10(13), 6732–6740. 10.1002/ece3.6406 PubMed DOI PMC

Liu, M. , Sui, X. , Hu, Y. , & Feng, F. (2019). Microbial community structure and the relationship with soil carbon and nitrogen in an original Korean pine forest of Changbai Mountain, China. BMC Microbiology, 19, 218. 10.1186/s12866-019-1584-6 PubMed DOI PMC

Lomolino, M. V. (2001). Elevation gradients of species‐density: Historical and prospective views. Global Ecology and Biogeography, 10, 3–13. 10.1046/j.1466-822x.2001.00229.x DOI

Loranger, G. , Bandyopadhyaya, I. , Razaka, B. , & Ponge, J. F. (2001). Does soil acidity explain altitudinal sequences in collembolan communities? Soil Biology and Biochemistry, 33, 381–393. 10.1016/S0038-0717(00)00153-X DOI

Ma, C. , Yin, X. , Xu, H. , & Tao, Y. (2020). Responses of soil Collembolans to vegetation restoration in temperate coniferous and broad‐leaved mixed forests. Journal of Forestry Research, 31, 2333–2345. 10.1007/s11676-019-01005-9 DOI

Malhi, Y. , Silman, M. , Salinas, N. , Bush, M. , Meir, P. , & Saatchi, S. (2010). Introduction: Elevation gradients in the tropics: Laboratories for ecosystem ecology and global change research. Global Change Biology, 16(12), 3171–3175. 10.1111/j.1365-2486.2010.02323.x DOI

Marian, F. , Sandmann, D. , Krashevska, V. , Maraun, M. , & Scheu, S. (2018). Altitude and decomposition stage rather than litter origin structure soil microarthropod communities in tropical montane rainforests. Soil Biology and Biochemistry, 125, 263–274. 10.1016/j.soilbio.2018.07.017 DOI

Maunsell, S. C. , Kitching, R. L. , Greenslade, P. , Nakamura, A. , & Burwell, C. J. (2013). Springtail (Collembola) assemblages along an elevational gradient in Australian subtropical rainforest. Australian Journal of Entomology, 52, 114–124. 10.1111/aen.12012 DOI

Mayvan, M. M. , Shayanmehr, M. , & Scheu, S. (2015). Depth distribution and inter‐annual fluctuations in density and diversity of Collembola in an Iranian Hyrcanian forest. Soil Organisms, 87, 239–247.

McCain, C. M. , & Grytnes, J. A. (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences (pp. 1–10). John Wiley & Sons, Ltd. 10.1002/9780470015902.a0022548 DOI

Mertens, J. , Coessens, R. , & Blancquaert, J. P. (1983). Reproduction and development of Hypogastrura viatica in relation to temperature and submerged condition. Revue D’ecologie Et De Biologie Du Sol, 20, 567–577.

Oksanen, J. , Blanchet, F. G. , Friendly, M. , Kindt, R. , Legendre, P. , McGlinn, D. , Minchin, P. R. , O’Hara, R. B. , Simpson, G. L. , Solymos, P. , Stevens, M. H. H. , Szoecs, E. , & Wagner, H. (2019). vegan: Community Ecology Package. R package version 2.5‐2. Cran R 1, 2. https://cran.r‐project.org/package=vegan

Ová, V. U. Č. , Miklisová, D. , & Ková, Ľ. Č. (2014). Forest disturbance enhanced the activity of epedaphic collembola in windthrown stands of the high tatra mountains. Journal of Mountain Science, 11, 449–463. 10.1007/s11629-013-2736-z DOI

Parisi, V. , Menta, C. , Gardi, C. , Jacomini, C. , & Mozzanica, E. (2005). Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agriculture, Ecosystems and Environment, 105, 323–333. 10.1016/j.agee.2004.02.002 DOI

Pauli, H. , Gottfried, M. , Dullinger, S. , Abdaladze, O. , Akhalkatsi, M. , Alonso, J. L. B. , Coldea, G. , Dick, J. , Erschbamer, B. , Calzado, R. F. , Ghosn, D. , Holten, J. I. , Kanka, R. , Kazakis, G. , Kollár, J. , Larsson, P. , Moiseev, P. , Moiseev, D. , Molau, U. , … Grabherr, G. (2012). Recent plant diversity changes on Europe’s mountain summits. Science, 336(6079), 353–355. 10.1126/science.1219033 PubMed DOI

Peng, Y. , Holmstrup, M. , Schmidt, I. K. , De Schrijve, A. , Schelfhout, S. , Heděnec, P. , Zheng, H. , Bachega, L. R. , Yue, K. , & Vesterdal, L. (2022). Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community. Geoderma, 407, 115570. 10.1016/j.geoderma.2021.115570 DOI

Petersen, H. (1994). A review of collembolan ecology in ecosystem context. Acta Zoologica Fennica, 195, 111–118.

Ponge, J. F. (2000). Vertical distribution of Collembola (Hexapoda) and their food resources in organic horizons of beech forests. Biology and Fertility of Soils, 32(6), 508–522. 10.1007/s003740000285 DOI

Potapov, M. (2001). Synopses on Palaearctic Collembola vol. 3: Isotomidae. Abhandlungen und Berichte des Naturkundemuseums Görlitz, 73, 1–603.

Potapov, M. , Xie, Z. , Kuprin, A. , & Sun, X. (2020). The genus Semicerura (Collembola; Isotomidae) in Asia. Zootaxa, 4751(1), 105–118. 10.11646/zootaxa.4751.1.5 PubMed DOI

Qian, H. , Hao, Z. , & Zhang, J. (2014). Phylogenetic structure and phylogenetic diversity of angiosperm assemblages in forests along an elevational gradient in Changbaishan, China. Journal of Plant Ecology, 7, 154–165. 10.1093/jpe/rtt072 DOI

R Core Team . (2021). R: A language and environment for statistical computing. R Core Team.

Rahbek, C. (2005). The role of spatial scale and the perception of large‐scale species‐richness patterns. Ecology Letters, 8, 224–239. 10.1111/j.1461-0248.2004.00701.x DOI

Robert, J. H. (2021). raster: Geographic Data Analysis and Modeling. R package version 3.4‐10. https://CRAN.R‐project.org/package=raster

Russell, L. (2020). Emmeans: Estimated Marginal Means, aka Least‐Squares Means. R Package version 1.4.4. https://CRAN.R‐project.org/package=emmeans

Sabais, A. C. W. , Eisenhauer, N. , König, S. , Renker, C. , Buscot, F. , & Scheu, S. (2012). Soil organisms shape the competition between grassland plant species. Oecologia, 170, 1021–1032. 10.1007/s00442-012-2375-z PubMed DOI

Sabais, A. C. W. , Scheu, S. , & Eisenhauer, N. (2011). Plant species richness drives the density and diversity of Collembola in temperate grassland. Acta Oecologica, 37, 195–202. 10.1016/j.actao.2011.02.002 DOI

Salamon, J. A. , Scheu, S. , & Schaefer, M. (2008). The Collembola community of pure and mixed stands of beech (Fagus sylvatica) and spruce (Picea abies) of different age. Pedobiologia, 51, 385–396. 10.1016/j.pedobi.2007.10.002 DOI

Sang, W. , & Bai, F. (2009). Vascular diversity patterns of forest ecosystem before and after a 43‐year interval under changing climate conditions in the Changbaishan Nature Reserve, northeastern China. Forest Ecology: Recent Advances in Plant Ecology, 210, 115–130, 10.1007/978-90-481-2795-5_10 DOI

Scheu, S. , Illig, J. , Eissfeller, K. V. , Sandmann, D. , & Maraun, M. (2008). The soil fauna of a tropical mountain rainforest in southern Ecuador: Structure and functioning. In: Tropical mountain forest: Patterns and processes in a biodiversity hotspot, Biodiversity and Ecology Series Vol. 2, (pp. 79–96).

Shen, C. , Liang, W. , Shi, Y. , Lin, X. , Zhang, H. , Wu, X. , Xie, G. , Chain, P. , Grogan, P. , & Chu, H. (2014). Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology, 95, 3190–3202. 10.1890/14-0310.1 DOI

Shen, C. , Xiong, J. , Zhang, H. , Feng, Y. , Lin, X. , Li, X. , Liang, W. , & Chu, H. (2013). Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 57, 204–211. 10.1016/j.soilbio.2012.07.013 DOI

Snider, R. J. , & Butcher, J. W. (1972). Response of Onychiurus justi (Denis) (Collembola: Onychiuridae) to constant temperatures and variable relative humidity. In Proceedings of the First Soil Microcommunities Conference, USAEC, Syracuse, New York, pp. 176–184.

Stange, E. E. , & Ayres, M. P. (2010). Climate Change Impacts: Insects. Encyclopedia of Life Sciences, 1–7, 10.1002/9780470015902.a0022555 DOI

Stebaeva, S. (2003). Collembolan communities of the Ubsu‐Nur Basin and adjacent mountains (Russia, Tuva). Pedobiologia, 47, 341–356. 10.1078/0031-4056-00198 DOI

Stone, R. (2006). A threatened nature reserve breaks down Asian borders. Science, 313(5792), 1379–1380. 10.1126/science.313.5792.1379 PubMed DOI

Sun, X. , Deharveng, L. , Bedos, A. , Chang, L. , Scheu, S. , & Wu, D. (2020). Changes in diversity and body size of Onychiurinae (Collembola: Onychiuridae) along an altitudinal gradient in Changbai Mountain, China. Soil Ecology Letters, 2, 230–239. 10.1007/s42832-020-0040-8 DOI

Traunspurger, W. , Reiff, N. , Krashevska, V. , Majdi, N. , & Scheu, S. (2017). Diversity and distribution of soil micro‐invertebrates across an altitudinal gradient in a tropical montane rainforest of Ecuador, with focus on free‐living nematodes. Pedobiologia, 62, 28–35. 10.1016/j.pedobi.2017.04.003 DOI

van Straalen, N. M. (1994). Adaptive significance of temperature responses in Collembola. Acta Zoologica Fennica, 195, 135–142.

Visser, S. (1985). Role of the soil invertebrates in determining the composition of soil microbial communities. In Fitter A. H. & Atkinson D. (Eds.), Biological interactions in soil (pp. 297–317). Blackwell Scientific Publishers.

Wang, L. , Wang, W. J. , Wu, Z. , Du, H. , Zong, S. , & Ma, S. (2019). Potential distribution shifts of plant species under climate change in Changbai Mountains, China. Forests, 10, 1–15. 10.3390/f10060498 DOI

Wardle, D. A. , Bardgett, R. D. , Klironomos, J. N. , Setälä, H. , Van Der Putten, W. H. , & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304(5677), 1629–1633. 10.1126/science.1094875 PubMed DOI

Widenfalk, L. A. , Bengtsson, J. , Berggren, Å. , Zwiggelaar, K. , Spijkman, E. , Huyer‐Brugman, F. , & Berg, M. P. (2015). Spatially structured environmental filtering of collembolan traits in late successional salt marsh vegetation. Oecologia, 179, 537–549. 10.1007/s00442-015-3345-z PubMed DOI PMC

Wu, Y. , & Lei, F. (2013). Species richness patterns and mechanism along the elevational gradients. Chinese Journal of Zoology, 48(5), 797–807. 10.13859/j.cjz.2013.05.022 DOI

Xie, Z. , Potapov, M. , & Sun, X. (2019). Two new species of the genus Tetracanthella (Collembola: Isotomidae) from China. Zootaxa, 4585, 573–580. 10.11646/zootaxa.4585.3.11 PubMed DOI

Xie, Z. J. , Chen, T. W. , Potapov, M. , Zhang, F. , Wu, D. H. , Scheu, S. , & Sun, X. (2022). Ecological and evolutionary processes shape below ground springtail communities along an elevational gradient. Journal of Biogeography, 49(1). 10.1111/jbi.14317 DOI

Xu, G. , Lin, Y. , Zhang, S. , Zhang, Y. , Li, G. , & Ma, K. (2017). Shifting mechanisms of elevational diversity and biomass patterns in soil invertebrates at treeline. Soil Biology and Biochemistry, 113, 80–88. 10.1016/j.soilbio.2017.05.012 DOI

Xu, G. , Zhang, S. , Lin, Y. , & Ma, K. (2015). Context dependency of the density‐body mass relationship in litter invertebrates along an elevational gradient. Soil Biology and Biochemistry, 88, 323–332. 10.1016/j.soilbio.2015.06.010 DOI

Xu, W. D. , He, X. Y. , Chen, W. , & Liu, C. F. (2004). Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology, 23, 162–174.

Xue, D. , & Tisdell, C. (2001). Valuing ecological functions of biodiversity in Changbaishan Mountain Biosphere Reserve in Northeast China. Biodiversity and Conservation, 10(3), 467–481. 10.1023/A:1016630825913 DOI

Yang, X. , & Xu, M. (2003). Biodiversity conservation in Changbai Mountain Biosphere Reserve, northeastern China: Status, problem, and strategy. Biodiversity and Conservation, 12(5), 883–903. 10.1023/A:1022841107685 DOI

Zou, Y. , Sang, W. , Bai, F. , & Axmacher, J. C. (2013). Relationships between plant diversity and the abundance and α‐diversity of predatory ground beetles (coleoptera: Carabidae) in a mature Asian temperate forest ecosystem. PLoS One, 8(12), e82792. 10.1371/journal.pone.0082792 PubMed DOI PMC

Zou, Y. , Sang, W. , Zhou, H. , Huang, L. , & Axmacher, J. C. (2014). Altitudinal diversity patterns of ground beetles (Coleoptera: Carabidae) in the forests of Changbai Mountain, Northeast China. Insect Conservation and Diversity, 7(2), 161–171. 10.1111/icad.12039 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Global fine-resolution data on springtail abundance and community structure

. 2024 Jan 03 ; 11 (1) : 22. [epub] 20240103

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace