Collembola at three alpine subarctic sites resistant to twenty years of experimental warming
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26670681
PubMed Central
PMC4680968
DOI
10.1038/srep18161
PII: srep18161
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- členovci * MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- rostliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Švédsko MeSH
This study examined the effects of micro-scale, site and 19 and 21 years of experimental warming on Collembola in three contrasting alpine subarctic plant communities (poor heath, rich meadow, wet meadow). Unexpectedly, experimental long-term warming had no significant effect on species richness, effective number of species, total abundance or abundance of any Collembola species. There were micro-scale effects on species richness, total abundance, and abundance of 10 of 35 species identified. Site had significant effect on effective number of species, and abundance of six species, with abundance patterns differing between sites. Site and long-term warming gave non-significant trends in species richness. The highest species richness was observed in poor heath, but mean species richness tended to be highest in rich meadow and lowest in wet meadow. Warming showed a tendency for a negative impact on species richness. This long-term warming experiment across three contrasting sites revealed that Collembola is capable of high resistance to climate change. We demonstrated that micro-scale and site effects are the main controlling factors for Collembola abundance in high alpine subarctic environments. Thus local heterogeneity is likely important for soil fauna composition and may play a crucial role in buffering Collembola against future climate change.
Zobrazit více v PubMed
Post E. et al. Ecological Dynamics Across the Arctic Associated with Recent Climate Change. Science 325, 1355–1358 (2009). PubMed
Turner J. et al. Antarctic climate change and the environment. (Scientific Committee on Antarctic Research, 2009).
Groom Q. J. Some poleward movement of British native vascular plants is occurring, but the fingerprint of climate change is not evident. PeerJ 1, e77 (2013). PubMed PMC
Chapin F. I., Shaver G., Giblin A., Nadelhoffer K. & Laundre J. Responses of arctic tundra to experimental and observed changes in climate. Ecology 76, 694–711 (1995).
Molau U. Long-term impacts of observed and induced climate change on tussock tundra near its southern limit in northern Sweden. Plant Ecol. Divers. 3, 29–34 (2010).
Myers-Smith I. H. et al. Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities. Environ. Res. Lett. 6, 045509 (2011).
Callaghan T. et al. Ecosystem change and stability over multiple decades in the Swedish subarctic: complex processes and multiple drivers. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120488 (2013). PubMed PMC
Alatalo J. M., Little C. J., Jägerbrand A. K. & Molau U. Dominance hierarchies, diversity and species richness of vascular plants in an alpine meadow: contrasting short and medium term responses to simulated global change. PeerJ 2, e406 (2014). PubMed PMC
Alatalo J. M., Jägerbrand A. K. & Molau U. Climate change and climatic events: community-, functional- and species-level responses of bryophytes and lichens to constant, stepwise, and pulse experimental warming in an alpine tundra. Alp. Bot. 124, 81–91 (2014).
Nielsen U. N. & Wall D. H. The future of soil invertebrate communities in polar regions: different climate change responses in the Arctic and Antarctic ? Ecol. Lett. 16, 409–419 (2013). PubMed
Eisenhauer N., Sabais A. C. W. & Scheu S. Collembola species composition and diversity effects on ecosystem functioning vary with plant functional group identity. Soil Biol. Biochem. 43, 1697–1704 (2011).
Nielsen U. N., Ayres E., Wall D. H. & Bardgett R. D. Soil biodiversity and carbon cycling: a review and synthesis of studies examining diversity–function relationships. Eur. J. Soil Sci. 62, 105–116 (2011).
Andrew N. R. et al. Assessing insect responses to climate change: What are we testing for ? Where should we be heading ? PeerJ 1, e11 (2013). PubMed PMC
Convey P. Overwintering strategies of terrestrial invertebrates in Antarctica-the significance of flexibility in extremely seasonal environments. Eur. J. Entomol. 93, 489–506 (1996).
Bergstrom D. M. & Chown S. L. Life at the front: history, ecology and change on southern ocean islands. Trends Ecol. Evol. 14, 472–477 (1999). PubMed
Wardle D. A. Communities and Ecosystems: Linking the Aboveground and Belowground Components. (Princeton University Press, 2002).
Coulson S. J. et al. Effects of experimental temperature elevation on high-arctic soil microarthropod populations. Polar Biol. 16, 147–153 (1996).
Sjursen H., Michelsen A. & Jonasson S. Effects of long-term soil warming and fertilisation on microarthropod abundances in three sub-arctic ecosystems. Appl. Soil Ecol. 30, 148–161 (2005).
Dollery R., Hodkinson I. D. & Jónsdóttir I. S. Impact of warming and timing of snow melt on soil microarthropod assemblages associated with Dryas-dominated plant communities on Svalbard. Ecography 29, 111–119 (2006).
Bokhorst S., Huiskes A., Convey P., van Bodegom P. M. & Aerts R. Climate change effects on soil arthropod communities from the Falkland Islands and the Maritime Antarctic. Soil Biol. Biochem. 40, 1547–1556 (2008).
Day T. A. et al. Response of plants and the dominant microarthropod, Cryptopygus antarcticus , to warming and contrasting precipitation regimes in Antarctic tundra. Glob. Change Biol. 15, 1640–1651 (2009).
Hågvar S. & Klanderud K. Effect of simulated environmental change on alpine soil arthropods. Glob. Change Biol. 15, 2972–2980 (2009).
Makkonen M. et al. Traits explain the responses of a sub-arctic Collembola community to climate manipulation. Soil Biol. Biochem. 43, 377–384 (2011).
Kardol P., Reynolds W. N., Norby R. J. & Classen A. T. Climate change effects on soil microarthropod abundance and community structure. Appl. Soil Ecol. 47, 37–44 (2011).
Richardson S. J., Press M. C., Parsons A. N. & Hartley S. E. How do nutrients and warming impact on plant communities and their insect herbivores ? A 9-year study from a sub-Arctic heath. J. Ecol. 90, 544–556 (2002).
Bokhorst S., Huiskes A., Convey P. & Aerts R. The effect of environmental change on vascular plant and cryptogam communities from the Falkland Islands and the Maritime Antarctic. BMC Ecol. 7, 15 (2007). PubMed PMC
Harte J., Rawa A. & Price V. Effects of manipulated soil microclimate on mesofaunal biomass and diversity. Soil Biol. Biochem. 28, 313–322 (1996).
Coulson S. J., Hodkinson I. D. & Webb N. R. Microscale distribution patterns in high Arctic soil microarthropod communities: the influence of plant species within the vegetation mosaic. Ecography 26, 801–809 (2003).
Eisenhauer N. et al. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment. Proc. Natl. Acad. Sci. 110, 6889–6894 (2013). PubMed PMC
Hodkinson I. D. et al. Global change and Arctic ecosystems: conclusions and predictions from experiments with terrestrial invertebrates on Spitsbergen. Arct. Alp. Res. 30, 306–313 (1998).
Yan X., Ni Z., Chang L., Wang K. & Wu D. Soil Warming Elevates the Abundance of Collembola in the Songnen Plain of China. Sustainability 7, 1161–1171 (2015).
Björk R. G. et al. Linkages between N turnover and plant community structure in a tundra landscape. Plant Soil 294, 247–261 (2007).
Coulson S. J., Hodkinson I. D., Webb N. R. & Harrison J. A. Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Funct. Ecol. 16, 353–356 (2002).
Coulson S. J., Moe B., Monson F. & Gabrielsen G. W. The invertebrate fauna of High Arctic seabird nests: the microarthropod community inhabiting nests on Spitsbergen, Svalbard. Polar Biol. 32, 1041–1046 (2009).
Hawes T. c., Worland M. r., Convey P. & Bale J. s. Aerial dispersal of springtails on the Antarctic Peninsula: implications for local distribution and demography. Antarct. Sci. 19, 3–10 (2007).
Swift M. J., Heal O. W. & Anderson J. M. Decomposition in Terrestrial Ecosystems. (University of California Press, 1979).
Molau U. & Alatalo J. M. Responses of Subarctic-Alpine Plant Communities to Simulated Environmental Change: Biodiversity of Bryophytes, Lichens, and Vascular Plants. Ambio 27, 322–329 (1998).
Bokhorst S. et al. Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth. Glob. Change Biol. 19, 64–74 (2013). PubMed
Molau U. Tundra plant responses to experimental and natural temperature changes. Mem. Natl. Inst. Polar Res. Spec. Issue 54, 445–466 (2001).
Crossley D. A. & Blair J. M. A high-efficiency, ‘low-technology’ Tullgren-type extractor for soil microarthropods. Agric. Ecosyst. Environ. 34, 187–192 (1991).
Bretfeld G. In Abhandlungen und Berichte des Naturkundemuseums (ed. Dunger W. ) 2, (Staatlicjes Museum für Naturkunde, 1999).
Fjellberg A. In Fauna Entomologica Scandinavica (eds. Kristensen N. P. & Michelsen V. ) 42, (Brill, 2007).
Fjellberg A. In Fauna Entomologica Scandinavica (eds. Kristensen N. P. & Michelsen V. ) 35, (Brill, 1998).
Thibaud J.-M., Schulz H.-J. & da Gama Assalino M. M. In Abhandlungen und Berichte des Naturkundemuseums (ed. Dunger W. ) 4, (Staatlicjes Museum für Naturkunde, 2004).
Potapov M. B. In Abhandlungen und Berichte des Naturkundemuseums (ed. Dunger W. ) 3, (Staatlicjes Museum für Naturkunde, 2001).
Zimdars B. & Dunger W. In Abhandlungen und Berichte des Naturkundemuseums (ed. Dunger W. ) 1, (Staatlicjes Museum für Naturkunde, 1994).
Janssens F. & Christiansen K. A. Class Collembola Lubbock, 1870. In Zhang Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness—zt03148p194.pdf. Zootaxa 3148, 192–194 (2011).
Jost L. Entropy and diversity. Oikos 113, 363–375 (2006).
Ter Braak C. & Šmilauer P. CANOCO Reference Manual and Cano Draw for Windows User’s Guide: Software for Canonical Community Ordination. (Microcomputer Power, 2002).