Genetic structure and ecological niche space of lentil's closest wild relative, Lens orientalis (Boiss.) Schmalh
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
EVOLVES
Genome Canada
2210
USDAS Hatch funds to the University of Vermont
Grant Agency of the Czech Republic
US-CZ Fulbright Fellowship
IGA2023-001
Palacký University Grant Agency
IGA2022-02
Palacký University Grant Agency
IGA2020-003
Palacký University Grant Agency
5348-21000-017-00D
USDA-ARS CRIS Project
PubMed
38230798
DOI
10.1111/plb.13615
Knihovny.cz E-zdroje
- Klíčová slova
- Crop wild relatives, genetic diversity, legumes, lentil, macroecological patterns,
- MeSH
- čočka * genetika MeSH
- genetická variace * MeSH
- genetické struktury MeSH
- genotyp MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
Crops arose from wild ancestors and to understand their domestication it is essential to compare the cultivated species with their crop wild relatives. These represent an important source of further crop improvement, in particular in relation to climate change. Although there are about 58,000 Lens accessions held in genebanks, only 1% are wild. We examined the geographic distribution and genetic diversity of the lentil's immediate progenitor L. orientalis. We used Genotyping by Sequencing (GBS) to identify and characterize differentiation among accessions held at germplasm collections. We then determined whether genetically distinct clusters of accessions had been collected from climatically distinct locations. Of the 195 genotyped accessions, 124 were genuine L. orientalis with four identified genetic groups. Although an environmental distance matrix was significantly correlated with geographic distance in a Mantel test, the four identified genetic clusters were not found to occupy significantly different environmental space. Maxent modelling gave a distinct predicted distribution pattern centred in the Fertile Crescent, with intermediate probabilities of occurrence in parts of Turkey, Greece, Cyprus, Morocco, and the south of the Iberian Peninsula with NW Africa. Future projections did not show any dramatic alterations in the distribution according to the climate change scenarios tested. We have found considerable diversity in L. orientalis, some of which track climatic variability. The results of the study showed the genetic diversity of wild lentil and indicate the importance of ongoing collections and in situ conservation for our future capacity to harness the genetic variation of the lentil progenitor.
Agriculture Research Ltd Troubsko Czech Republic
Botanical Garden Rethymnon Greece
CSIRO Plant Industry Wembley WA Australia
Department of Biology University of Crete Heraklion Greece
Department of Botany Palacký University Olomouc Czech Republic
Department of Geoinformatics Palacký University Olomouc Czech Republic
Department of Plant Sciences University of Saskatchewan Saskatoon Canada
Instituto Nacional de Tecnología Agropecuaria Buenos Aires Argentina
International Center for Agricultural Research in the Dry Areas Rabat Morocco
International Crop Research Institute for the semi Arid Tropics Patancheru Hyderabad India
Murdoch University Murdoch WA Australia
Western Regional Plant Introduction Station USDA ARS Pullman WA USA
Zobrazit více v PubMed
Abbo S., Gopher A. (2020) Plant domestication in the Neolithic Near East: the humans-plants liaison. Quaternary Science Reviews, 242, 106412.
Alexander D.H., Novembre J., Lange K. (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Research, 19, 1655-1664.
Allaby R.G., Stevens C.J., Kistler L., Fuller D.Q. (2022) Emerging evidence of plant domestication as a landscape-level process. Trends in Ecology & Evolution, 37, 268-279.
Alo F., Furman B.J., Akhunov E., Dvorak J., Gepts P. (2011) Leveraging genomic resources of model species for the assessment of diversity and phylogeny in wild and domesticated lentil. The Journal of Heredity, 102, 315-329.
Asghar M.J., Hameed A., Khan M.R., Shahid M., Atif R.M. (2021) Lentil wild genetic resource: a potential source of genetic improvement for biotic and abiotic stress tolerance, Wild germplasm for genetic improvement in crop plants. Academic Press, London, UK.
Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics, 23, 2633-2635.
Burgarella C., Chantret N., Gay L., Prosperi J.-M., Bonhomme M., Tiffin P., Young N.D., Ronfort J. (2016) Adaptation to climate through flowering phenology: a case study in Medicago truncatula. Molecular Ecology, 25, 3397-3415.
Coyne C.J., Kumar S., Wettberg E.J.B., Marques E., Berger J.D., Redden R.J., Ellis T.H.N., Brus J., Zablatzká L., Smýkal P. (2020) Potential and limits of exploitation of crop wild relatives for pea, lentil, and chickpea improvement. Legume Science, 2, e36.
Cubero J.I. (1981) Origin, taxonomy and domestication [lentils]. In: Webb C., Hawtin G. (Eds), Lentils. CABI, London, UK, pp 15-38.
Danecek P., Auton A., Abecasis G., Albers C.A., Banks E., DePristo M.A., Handsaker R.E., Lunter G., Marth G.T., Sherry S.T., McVean G., Durbin R. (2011) The variant call format and VCFtools. Bioinformatics, 27, 2156-2158.
Dempewolf H., Baute G., Anderson J., Kilian B., Smith C., Guarino L. (2017) Past and future use of wild relatives in crop breeding. Crop Science, 57, 1070-1082.
Dikshit H.K., Singh A., Singh D., Aski M.S., Prakash P., Jain N., Meena S., Kumar S., Sarker A. (2015) Genetic diversity in lens species revealed by EST and genomic simple sequence repeat analysis. PLoS One, 10, e0138101.
Dissanayake R., Braich S., Cogan N.O.I., Smith K., Kaur S. (2020) Characterization of genetic and allelic diversity amongst cultivated and wild lentil accessions for germplasm enhancement. Frontiers in Genetics, 11, 546.
Dixon P. (2003) VEGAN, a package of R functions for community ecology. Journal of vegetation science: official organ of the International Association for Vegetation Science, 14, 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
Elith J., Graham C.H., Anderson R.P., Dudík M., Ferrier S., Guisan A., Hijmans R.J., Huettmann F., Leathwick J.R., Lehmann A., Li J., Lohmann L.G., Loiselle B.A., Manion G., Moritz C., Nakamura M., Nakazawa Y., Overton J.M.C.M., Townsend Peterson A., Phillips S.J., Richardson K., Scachetti-Pereira R., Schapire R.E., Soberón J., Williams S., Wisz M.S., Zimmermann N.E. (2006) Novel methods improve prediction of species' distributions from occurrence data. Ecography, 29, 129-151.
Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One, 6, e19379.
Euro+Med (2006) Euro+Med PlantBase - the information resource for Euro-Mediterranean plant diversity. https://europlusmed.org/
FAO (2010)FAOSTAT. Food and Agriculture Organization of the United Nations. https://www.fao.org/faostat [19th September 2022].
Ferguson M., Erskine W. (2001) Lentils (Lens L.). In: Maxted N., Bennett S.J. (Eds), Plant genetic resources of legumes in the Mediterranean. Springer, Dordrecht, pp 125-133.
Ferguson M.E., Ford-Lloyd B.V., Robertson L.D., Maxted N., Newbury H.J. (1998a) Mapping the geographical distribution of genetic variation in the genus lens for the enhanced conservation of plant genetic diversity. Molecular Ecology, 7, 1743-1755.
Ferguson M.E., Robertson L.D., Ford-Lloyd B.V., Newbury H.J., Maxted N. (1998b) Contrasting genetic variation amongst lentil landraces from different geographical origins. Euphytica, 102, 265-273.
Fick S.E., Hijmans R.J. (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315.
Gela T.S., Adobor S., Khazaei H., Vandenberg A. (2021) An advanced lentil backcross population developed from a cross between Lens culinaris × L. ervoides for future disease resistance and genomic studies. Plant Genetic Resources: Characterization and Utilization, 19, 167-173.
Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R. (2017) Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.
Goudet J. (2005) Hierfstat, a package for r to compute and test hierarchical F-statistics. Molecular Ecology Notes, 5, 184-186.
Guerra-Garcia A., Haile T., Ogutcen E., Bett K.E., von Wettberg E.J. (2022) An evolutionary look into the history of lentil reveals unexpected diversity. Evolutionary Applications, 15, 1313-1325.
Gutierrez-Gonzalez J.J., García P., Polanco C., González A.I., Vaquero F., Vences F.J., Pérez de la Vega M., Sáenz de Miera L.E. (2022) Multi-species transcriptome assemblies of cultivated and wild lentils (Lens sp.) provide a first glimpse at the lentil pangenome. Agronomy, 12, 1619.
Hajjar R., Hodgkin T. (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica, 156, 1-13.
Harlan J.R. (1976) Genetic resources in wild relatives of crops. Crop Science, 16, 329-333.
Hellwig T., Abbo S., Ophir R. (2022) Drivers of genetic differentiation and recent evolutionary history of an Eurasian wild pea. Journal of Biogeography, 49, 794-808.
Hellwig T., Abbo S., Sherman A., Coyne C.J., Saranga Y., Lev-Yadun S., Main D., Zheng P., Ophir R. (2020) Limited divergent adaptation despite a substantial environmental cline in wild pea. Molecular Ecology, 29, 4322-4336.
Hellwig T., Abbo S., Sherman A., Ophir R. (2021) Prospects for the natural distribution of crop wild-relatives with limited adaptability: the case of the wild pea Pisum fulvum. Plant Science, 310, 110957.
Hernandez P.A., Graham C.H., Master L.L., Albert D.L. (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773-785.
Herten K., Hestand M.S., Vermeesch J.R., Van Houdt J.K.J. (2015) GBSX: a toolkit for experimental design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics, 16, 73.
Hijmans R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. (2005) Very high resolution interpolated climate surfaces for global land areas. International Journal of Limatology, 25, 1965-1978. https://doi.org/10.1002/joc.1276
Hübner S., Kantar M.B. (2021) Tapping diversity from the wild: from sampling to implementation. Frontiers in Plant Science, 12, 626565.
Kahraman A., Kusmenoglu I., Aydin N., Aydogan A., Erskine W., Muehlbauer F.J. (2004) QTL mapping of winter hardiness genes in lentil. Crop Science, 44, 13-22.
Kaisers W., Schaal H., Schwender H. (2015) Rbamtools: an R interface to samtools enabling fast accumulative tabulation of splicing events over multiple RNA-seq samples. Bioinformatics, 31, 1663-1664.
Khazaei H., Caron C.T., Fedoruk M., Diapari M., Vandenberg A., Coyne C.J., McGee R., Bett K.E. (2016) Genetic diversity of cultivated lentil (Lens culinaris Medik.) and its relation to the World's agro-ecological zones. Frontiers in Plant Science, 7, 1093.
Khazaei H., Street K., Bari A., Mackay M., Stoddard F.L. (2013) The FIGS (focused identification of germplasm strategy) approach identifies traits related to drought adaptation in Vicia faba genetic resources. PLoS One, 8, e63107.
Koul P.M., Sharma V., Rana M., Chahota R.K., Kumar S., Sharma T.R. (2017) Analysis of genetic structure and interrelationships in lentil species using morphological and SSR markers. 3 Biotech, 7, 83.
Ladizinsky G. (1979) The origin of lentil and its wild genepool. Euphytica, 28, 179-187.
Ladizinsky G., Abbo S. (2015) The Lens genus. In: Ladizinsky G., Abbo S. (Eds), The search for wild relatives of cool season legumes. Springer International, Cham, Switzerland, pp 1-28.
Larson G., Piperno D.R., Allaby R.G., Purugganan M.D., Andersson L., Arroyo-Kalin M., Barton L., Vigueira C.C., Denham T., Dobney K., Doust A.N., Gepts P., Gilbert M.T.P., Gremillion K.J., Lucas L., Lukens L., Marshall F.B., Olsen K.M., Pires J.C., Richerson P.J., de Casas R.R., Sanjur O.I., Thomas M.G., Fuller D.Q. (2014) Current perspectives and the future of domestication studies. Proceedings of the National Academy of Sciences of the United States of America, 111, 6139-6146.
Lawrence D., Palmisano A., de Gruchy M.W. (2021) Collapse and continuity: a multi-proxy reconstruction of settlement organization and population trajectories in the Northern Fertile Crescent during the 4.2kya rapid climate change event. PLoS One, 16, e0244871. https://doi.org/10.1371/journal.pone.0244871
Leamy L.J., Lee C.-R., Song Q., Mujacic I., Luo Y., Chen C.Y., Li C., Kjemtrup S., Song B.-H. (2016) Environmental versus geographical effects on genomic variation in wild soybean (Glycine soja) across its native range in Northeast Asia. Ecology and Evolution, 6, 6332-6344.
Leigh F.J., Wright T.I.C., Horsnell R.A., Dyer S., Bentley A.R. (2022) Progenitor species hold untapped diversity for potential climate-responsive traits for use in wheat breeding and crop improvement. Heredity, 128, 291-303.
Liber M., Duarte I., Maia A.T., Oliveira H.R. (2021) The history of lentil (Lens culinaris subsp. culinaris) domestication and spread as revealed by genotyping-by-sequencing of wild and landrace accessions. Frontiers in Plant Science, 12, 628439.
Mohar S., Kumar S., Basandrai A.K., Basandrai D., Malhotra N., Saxena D.R., Gupta D., Sarker A., Singh K. (2020) Evaluation and identification of wild lentil accessions for enhancing genetic gains of cultivated varieties. PLoS One, 15, e0229554. https://doi.org/10.1371/journal.pone.0229554
Ogutcen E., Ramsay L., von Wettberg E.B., Bett K.E. (2018) Capturing variation in lens (Fabaceae): development and utility of an exome capture array for lentil. Applications in Plant Sciences, 6, e01165. https://doi.org/10.1002/aps3.1165
van Oss R., Abbo S., Eshed R., Sherman A., Coyne C.J., Vandemark G.J., Zhang H.-B., Peleg Z. (2015) Genetic relationship in Cicer Sp. expose evidence for geneflow between the cultigen and its wild progenitor. PLoS One, 10, e0139789.
Peakall R., Smouse P.E. (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288-295.
Phillips S.J., Anderson R.P., Dudík M., Schapire R.E., Blair M.E. (2017) Opening the black box: an open-source release of Maxent. Ecography, 40, 887-893.
Phillips S.J., Anderson R.P., Schapire R.E. (2006) Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231-259.
Pokharia A.K., Srivastava C. (2013) Current status of archaeobotanical studies in Harappan civilization: an archaeological perspective. Heritage: Journal of Multidisciplinary Studies in Archaeology, 1, 118-137.
Price M.N., Dehal P.S., Arkin A.P. (2009) FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Molecular Biology and Evolution, 26, 1641-1650.
Ramsay L., Koh C.S., Kagale S., Gao D., Kaur S., Haile T., Gela T.S., Chen L.-A., Cao Z., Konkin D.J., Toegelová H., Doležel J., Rosen B.D., Stonehouse R., Humann J.L., Main D., Coyne C.J., McGee R.J., Cook D.R., Varma Penmetsa R., Vandenberg A., Chan C., Banniza S., Edwards D., Bayer P.E., Batley J., Udupa S.M., Bett K.E. (2021) Genomic rearrangements have consequences for introgression breeding as revealed by genome assemblies of wild and cultivated lentil species. bioRxiv. 2021.07.23.453237. https://doi.org/10.1101/2021.07.23.453237.
Renzi J.P., Duchoslav M., Brus J., Hradilová I., Pechanec V., Václavek T., Machalová J., Hron K., Verdier J., Smýkal P. (2020) Dormancy release in Medicago truncatula seeds is related to environmental variations. Plants, 9, 503.
Rodriguez M., Rau D., Bitocchi E., Bellucci E., Biagetti E., Carboni A., Gepts P., Nanni L., Papa R., Attene G. (2016) Landscape genetics, adaptive diversity and population structure in Phaseolus vulgaris. New Phytologist, 209, 1781-1794.
Roskov Y.R., Bisby F.A., Zarucchi J.L., Schrire B.D., White R.J. (Eds) (2010) ILDIS world database of legumes: draft checklist, version 10. ILDIS, Reading, UK.
Sedivy E.J., Wu F., Hanzawa Y. (2017) Soybean domestication: the origin, genetic architecture and molecular bases. New Phytologist, 214, 539-553.
Sedlazeck F.J., Rescheneder P., von Haeseler A. (2013) NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics, 29, 2790-2791.
Singh M., Sharma S.K., Singh B., Malhotra N., Chandora R., Sarker A., Singh K., Gupta D. (2018) Widening the genetic base of cultivated gene pool following introgression from wild lens taxa. Plant Breeding, 137, 470-485.
Smouse P.E., Long J.C., Sokal R.R. (1986) Multiple regression and correlation extensions of the mantel test of matrix correspondence. Systematic Zoology, 35, 627-632.
Smýkal P., Coyne C.J., Ambrose M.J., Maxted N., Schaefer H., Blair M.W., Berger J., Greene S.L., Nelson M.N., Besharat N., Vymyslický T., Toker C., Saxena R.K., Roorkiwal M., Pandey M.K., Hu J., Li Y.H., Wang L.X., Guo Y., Qiu L.J., Redden R.J., Varshney R.K. (2015) Legume crops phylogeny and genetic diversity for science and breeding. Critical Reviews in Plant Sciences, 34, 43-104.
Smýkal P., Hradilová I., Trněný O., Brus J., Rathore A., Bariotakis M., Das R.R., Bhattacharyya D., Richards C., Coyne C.J., Pirintsos S. (2017) Genomic diversity and macroecology of the crop wild relatives of domesticated pea. Scientific Reports, 7, 17384.
Sonnante G., Hammer K., Pignone D. (2009) From the cradle of agriculture a handful of lentils: history of domestication. Rendiconti Lincei, 20, 21-37.
Thormann I., Reeves P., Reilley A., Engels J.M.M., Lohwasser U., Börner A., Pillen K., Richards C.M. (2016) Geography of genetic structure in barley wild relative Hordeum vulgare subsp. spontaneum in Jordan. PLoS One, 11, e0160745.
Toker C., Berger J., Eker T., Sari D., Sari H., Gokturk R.S., Kahraman A., Aydin B., von Wettberg E.J. (2021) Cicer turcicum: a new Cicer species and its potential to improve chickpea. Frontiers in Plant Science, 12, 662891.
Tullu A., Buchwaldt L., Lulsdorf M., Banniza S., Barlow B., Slinkard A.E., Sarker A., Tar'an B., Warkentin T., Vandenberg A. (2006) Sources of resistance to anthracnose (Colletotrichum truncatum) in wild lens species. Genetic Resources and Crop Evolution, 53, 111-119.
Vavilov N. (1926) Studies on the origin of cultivated plants. Bulletin of Applied Botany and Plant Breeding, Leningrad, Russia.
van Vuuren D.P., Stehfest E., den Elzen M.G.J., Kram T., van Vliet J., Deetman S., Isaac M., Klein G.K., Hof A., Mendoza B.A., Oostenrijk R., van Ruijven B. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2°C. Climatic Change, 109, 95-116.
Warschefsky E., Penmetsa R.V., Cook D.R., von Wettberg E.J.B. (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. American Journal of Botany, 101, 1791-1800.
von Wettberg E.J.B., Chang P.L., Başdemir F., Carrasquila-Garcia N., Korbu L.B., Moenga S.M., Bedada G., Greenlon A., Moriuchi K.S., Singh V., Cordeiro M.A., Noujdina N.V., Dinegde K.N., Shah Sani S.G.A., Getahun T., Vance L., Bergmann E., Lindsay D., Mamo B.E., Warschefsky E.J., Dacosta-Calheiros E., Marques E., Yilmaz M.A., Cakmak A., Rose J., Migneault A., Krieg C.P., Saylak S., Temel H., Friesen M.L., Siler E., Akhmetov Z., Ozcelik H., Kholova J., Can C., Gaur P., Yildirim M., Sharma H., Vadez V., Tesfaye K., Woldemedhin A.F., Tar'an B., Aydogan A., Bukun B., Penmetsa R.V., Berger J., Kahraman A., Nuzhdin S.V., Cook D.R. (2018) Ecology and genomics of an important crop wild relative as a prelude to agricultural innovation. Nature Communications, 9, 649.
Wong M.M.L., Gujaria-Verma N., Ramsay L., Yuan H.Y., Caron C., Diapari M., Vandenberg A., Bett K.E. (2015) Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS). PLoS One, 10, e0122025.
Zheng X., Levine D., Shen J., Gogarten S.M., Laurie C., Weir B.S. (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28, 3326-3328.
Zohary D., Hopf M. (1973) Domestication of pulses in the Old World: legumes were companions of wheat and barley when agriculture began in the near east. Science, 182, 887-894.