Aethionema arabicum dimorphic seed trait resetting during transition to seedlings
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
I 3979
Austrian Science Fund FWF - Austria
PubMed
38525145
PubMed Central
PMC10957558
DOI
10.3389/fpls.2024.1358312
Knihovny.cz E-zdroje
- Klíčová slova
- bet-hedging strategy, diaspore dimorphism, fruit and seed heteromorphism, pericarp-imposed dormancy, pre-emergence growth, seed seedling transition, seedling stress resilience, transcriptome resetting,
- Publikační typ
- časopisecké články MeSH
The transition from germinating seeds to emerging seedlings is one of the most vulnerable plant life cycle stages. Heteromorphic diaspores (seed and fruit dispersal units) are an adaptive bet-hedging strategy to cope with spatiotemporally variable environments. While the roles and mechanisms of seedling traits have been studied in monomorphic species, which produce one type of diaspore, very little is known about seedlings in heteromorphic species. Using the dimorphic diaspore model Aethionema arabicum (Brassicaceae), we identified contrasting mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained from IND fruits by pericarp (fruit coat) removal. What follows the completion of germination is the pre-emergence seedling growth phase, which we investigated by comparative growth assays of early seedlings derived from the M+ seeds, bare M- seeds, and IND fruits. The dimorphic seedlings derived from M+ and M- seeds did not differ in their responses to ambient temperature and water potential. The phenotype of seedlings derived from IND fruits differed in that they had bent hypocotyls and their shoot and root growth was slower, but the biomechanical hypocotyl properties of 15-day-old seedlings did not differ between seedlings derived from germinated M+ seeds, M- seeds, or IND fruits. Comparison of the transcriptomes of the natural dimorphic diaspores, M+ seeds and IND fruits, identified 2,682 differentially expressed genes (DEGs) during late germination. During the subsequent 3 days of seedling pre-emergence growth, the number of DEGs was reduced 10-fold to 277 root DEGs and 16-fold to 164 shoot DEGs. Among the DEGs in early seedlings were hormonal regulators, in particular for auxin, ethylene, and gibberellins. Furthermore, DEGs were identified for water and ion transporters, nitrate transporter and assimilation enzymes, and cell wall remodeling protein genes encoding enzymes targeting xyloglucan and pectin. We conclude that the transcriptomes of seedlings derived from the dimorphic diaspores, M+ seeds and IND fruits, undergo transcriptional resetting during the post-germination pre-emergence growth transition phase from germinated diaspores to growing seedlings.
Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
Faculty of Chemistry and Pharmacy University of Freiburg Freiburg Germany
Plant Cell Biology Faculty of Biology University of Marburg Marburg Germany
Zobrazit více v PubMed
Ahammed G. J., Gantait S., Mitra M., Yang Y. X., Li X. (2020). Role of ethylene crosstalk in seed germination and early seedling development: A review. Plant Physiol. Biochem. 151, 124–131. doi: 10.1016/j.plaphy.2020.03.016 PubMed DOI
Alexa A., Rahnenfuhrer J. (2021). topGO: Enrichment analysis for Gene Ontology. R package version 2.44.0.
Arjmand M. P., Lahiji H. S., Golfazani M. M., Biglouei M. H. (2023). New insights on the regulatory network of drought-responsive key genes in. Genetica 151, 29–45. doi: 10.1007/s10709-022-00177-3 PubMed DOI
Arshad W., Lenser T., Wilhelmsson P. K. I., Chandler J. O., Steinbrecher T., Marone F., et al. . (2021). A tale of two morphs: developmental patterns and mechanisms of seed coat differentiation in the dimorphic diaspore model Aethionema arabicum (Brassicaceae). Plant J. 107, 166–181. doi: 10.1111/tpj.15283 PubMed DOI
Arshad W., Marone F., Collinson M. E., Leubner-Metzger G., Steinbrecher T. (2020). Fracture of the dimorphic fruits of Aethionema arabicum (Brassicaceae). Botany 98, 65–75. doi: 10.1139/cjb-2019-0014 DOI
Arshad W., Sperber K., Steinbrecher T., Nichols B., Jansen V., Leubner-Metzger G., et al. . (2019). Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol. 221, 1434–1446. doi: 10.1111/nph.15490 PubMed DOI PMC
Arsovski A. A., Popma T. M., Haughn G. W., Carpita N. C., Mccann M. C., Western T. L. (2009). AtBXL1 encodes a bifunctional beta-D-xylosidase/alpha-L-arabinofuranosidase required for pectic arabinan modification in Arabidopsis mucilage secretory cells. Plant Physiol. 150, 1219–1234. doi: 10.1104/pp.109.138388 PubMed DOI PMC
Aryal B., Huynh J., Schneuwly J., Siffert A., Liu J., Alejandro S., et al. . (2019). ABCG36/PEN3/PDR8 is an exporter of the auxin precursor, indole-3-butyric acid, and involved in auxin-controlled development. Front. Plant Sci. 10, 899. doi: 10.3389/fpls.2019.00899 PubMed DOI PMC
Baskin C. C., Baskin J. M. (2014). Seeds - Ecology, biogeography, and evolution of dormancy and germination (San Diego, London: Academic Press; ).
Baskin J. M., Lu J. J., Baskin C. C., Tan D. Y., Wang L. (2014). Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: A review. Perspect. Plant Ecol. Evol. System. 16, 93–99. doi: 10.1016/j.ppees.2014.02.004 DOI
Belin C., Megies C., Hauserova E., Lopez-Molina L. (2009). Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Plant Cell 21, 2253–2268. doi: 10.1105/tpc.109.067702 PubMed DOI PMC
Bhattacharya S., Mayland-Quellhorst S., Muller C., Mummenhoff K. (2019. a). Two-tier morpho-chemical defence tactic in Aethionema via fruit morph plasticity and glucosinolates allocation in diaspores. Plant Cell Environ. 42, 1381–1392. doi: 10.1111/pce.13462 PubMed DOI
Bhattacharya S., Sperber K., Ozudogru B., Leubner-Metzger G., Mummenhoff K. (2019. b). Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Sci. Rep. 9, 16108. doi: 10.1038/s41598-019-52520-y PubMed DOI PMC
Bogaert K. A., Blomme J., Beeckman T., De Clerck O. (2022). Auxin’s origin: do PILS hold the key? Trends Plant Sci. 27, 227–236. doi: 10.1016/j.tplants.2021.09.008 PubMed DOI
Boron A. K., Van Loock B., Suslov D., Markakis M. N., Verbelen J. P., Vissenberg K. (2015). Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth. Ann. Bot. 115, 67–80. doi: 10.1093/aob/mcu221 PubMed DOI PMC
Cao D., Baskin C. C., Baskin J. M., Yang F., Huang Z. (2012). Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica. Ann. Bot. 110, 1545–1558. doi: 10.1093/aob/mcs205 PubMed DOI PMC
Cao J. (2012). The pectin lyases in Arabidopsis thaliana: Evolution, selection and expression profiles. PloS One 7, e46944. doi: 10.1371/journal.pone.0046944 PubMed DOI PMC
Cao J., Li X. R., Chen L., He M. X., Lan H. Y. (2022). The developmental delay of seedlings with cotyledons only confers stress tolerance to Suaeda aralocaspica (Chenopodiaceae) by unique performance on morphology, physiology, and gene expression. Front. Plant Sci. 13, 844430. doi: 10.3389/fpls.2022.844430 PubMed DOI PMC
Chandler J. O., Wilhelmsson P. K. I., Fernandez-Pozo N., Graeber K., Arshad W., Pérez M., et al. . (2024). The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures. Plant Cell 36, in press. doi: 10.1101/2023.12.14.571707 PubMed DOI PMC
Chang S., Puryear J., Cairney J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 11, 113–116. doi: 10.1007/BF02670468 DOI
Christianson J. A., Wilson I. W., Llewellyn D. J., Dennis E. S. (2009). The low-oxygen induced NAC domain transcription factor ANAC102 affects viability of Arabidopsis thaliana seeds following low-oxygen treatment. Plant Physiol. 149, 1724–1738. doi: 10.1104/pp.108.131912 PubMed DOI PMC
Cosgrove D. J. (2016). Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes. J. Exp. Bot. 67, 463–476. doi: 10.1093/jxb/erv511 PubMed DOI
Daher F. B., Braybrook S. A. (2015). How to let go: pectin and plant cell adhesion. Front. Plant Sci. 6, 523. doi: 10.3389/fpls.2015.00523 PubMed DOI PMC
Dekkers B. J. W., Pearce S., Van Bolderen-Veldkamp R. P. M., Marshall A., Wider P., Gilbert J., et al. . (2013). Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiol. 163, 205–215. doi: 10.1104/pp.113.223511 PubMed DOI PMC
Dhar S., Kim J., Yoon E. K., Jang S., Ko K., Lim J. (2022). SHORT-ROOT controls cell elongation in the etiolated Arabidopsis hypocotyl. Mol. Cells 45, 243–256. doi: 10.14348/molcells.2021.5008 PubMed DOI PMC
Ducatti K. R., Batista T. B., Hirai W. Y., Luccas D. A., Moreno L. D., Guimaraes C. C., et al. . (2022). Transcripts expressed during germination are associated with vigor in soybean seeds. Plants-Basel 11, 1310. doi: 10.3390/plants11101310 PubMed DOI PMC
Endo A., Tatematsu K., Hanada K., Duermeyer L., Okamoto M., Yonekura-Sakakibara K., et al. . (2012). Tissue-specific transcriptome analysis reveals cell wall metabolism, flavonol biosynthesis and defense responses are activated in the endosperm of germinating Arabidopsis thaliana seeds. Plant Cell Physiol. 53, 16–27. doi: 10.1093/pcp/pcr171 PubMed DOI
Fenner M. (1987). Seedlings. New Phytol. 106, 35–47. doi: 10.1111/j.1469-8137.1987.tb04681.x DOI
Feraru E., Feraru M. I., Barbez E., Waidmann S., Sun L., Gaidora A., et al. . (2019). PILS6 is a temperature-sensitive regulator of nuclear auxin input and organ growth in Arabidopsis thaliana . Proc. Natl. Acad. Sci. United States America 116, 3893–3898. doi: 10.1073/pnas.1814015116 PubMed DOI PMC
Feraru E., Feraru M. I., Moulinier-Anzola J., Schwihla M., Santos J. F. D., Sun L., et al. . (2022). PILS proteins provide a homeostatic feedback on auxin signaling output. Development 149, dev200929. doi: 10.1242/dev.200929 PubMed DOI PMC
Feraru E., Vosolsobe S., Feraru M. I., Petrasek J., Kleine-Vehn J. (2012). Evolution and structural diversification of PILS putative auxin carriers in plants. Front. Plant Sci. 3, 227. doi: 10.3389/fpls.2012.00227 PubMed DOI PMC
Fernandez-Pozo N., Metz T., Chandler J. O., Gramzow L., Merai Z., Maumus F., et al. . (2021). Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant J. 106, 275–293. doi: 10.1111/tpj.15161 PubMed DOI PMC
Finch-Savage W. E., Bassel G. W. (2016). Seed vigour and crop establishment: extending performance beyond adaptation. J. Exp. Bot. 67, 567–591. doi: 10.1093/jxb/erv490 PubMed DOI
Finch-Savage W. E., Footitt S. (2017). Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 68, 843–856. doi: 10.1093/jxb/erw477 PubMed DOI
Finch-Savage W. E., Leubner-Metzger G. (2006). Seed dormancy and the control of germination. New Phytol. 171, 501–523. doi: 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Footitt S., Clewes R., Feeney M., Finch-Savage W. E., Frigerio L. (2019). Aquaporins influence seed dormancy and germination in response to stress. Plant Cell Environ. 42, 2325–2339. doi: 10.1111/pce.13561 PubMed DOI PMC
Franzke A., Lysak M. A., Al-Shehbaz I. A., Koch M. A., Mummenhoff K. (2011). Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 16, 108–116. doi: 10.1016/j.tplants.2010.11.005 PubMed DOI
Gardarin A., Coste F., Wagner M. H., Durr C. (2016). How do seed and seedling traits influence germination and emergence parameters in crop species? A comparative analysis. Seed Sci. Res. 26, 317–331. doi: 10.1017/S0960258516000210 DOI
Gasch P., Fundinger M., Muller J. T., Lee T., Bailey-Serres J., Mustroph A. (2016). Redundant ERF-VII transcription factors bind to an evolutionarily conserved cis-motif to regulate hypoxia-responsive gene expression in Arabidopsis. Plant Cell 28, 160–180. doi: 10.1105/tpc.15.00866 PubMed DOI PMC
Geisler M., Aryal B., Di Donato M., Hao P. C. (2017). A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol. 58, 1601–1614. doi: 10.1093/pcp/pcx104 PubMed DOI
Gianella M., Bradford K. J., Guzzon F. (2021). Ecological, (epi)genetic and physiological aspects of bet-hedging in angiosperms. Plant Reprod. 34, 21–36. doi: 10.1007/s00497-020-00402-z PubMed DOI PMC
Goodstein D. M., Shu S. Q., Howson R., Neupane R., Hayes R. D., Fazo J., et al. . (2012). Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res. 40, D1178–D1186. doi: 10.1093/nar/gkr944 PubMed DOI PMC
Graeber K., Linkies A., Steinbrecher T., Mummenhoff K., Tarkowská D., Turečková V., et al. . (2014). DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proc. Natl. Acad. Sci. United States America 111, E3571–E3580. doi: 10.1073/pnas.1403851111 PubMed DOI PMC
Graeber K., Linkies A., Wood A. T., Leubner-Metzger G. (2011). A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell 23, 2045–2063. doi: 10.1105/tpc.111.084103 PubMed DOI PMC
Ha J. H., Han S. H., Lee H. J., Park C. M. (2017). Environmental adaptation of the heterotrophic-to-autotrophic transition: The developmental plasticity of seedling establishment. Crit. Rev. Plant Sci. 36, 128–137. doi: 10.1080/07352689.2017.1355661 DOI
He X. J., Mu R. L., Cao W. H., Zhang Z. G., Zhang J. S., Chen S. Y. (2005). AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J. 44, 903–916. doi: 10.1111/j.1365-313X.2005.02575.x PubMed DOI
Hoai P. T. T., Tyerman S. D., Schnell N., Tucker M., Mcgaughey S. A., Qiu J. E., et al. . (2020). Deciphering aquaporin regulation and roles in seed biology. J. Exp. Bot. 71, 1763–1773. doi: 10.1093/jxb/erz555 PubMed DOI
Holloway T., Steinbrecher T., Pérez M., Seville A., Stock D., Nakabayashi K., et al. . (2021). Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytol. 229, 2179–2191. doi: 10.1111/nph.16948 PubMed DOI
Hu Y. M., Vandenbussche F., van der Straeten D. (2017). Regulation of seedling growth by ethylene and the ethylene-auxin crosstalk. Planta 245, 467–489. doi: 10.1007/s00425-017-2651-6 PubMed DOI
Hu X. W., Wang Y. R., Wu Y. P. (2009). Effects of the pericarp on imbibition, seed germination, and seedling establishment in seeds of Hedysarum scoparium Fisch. et Mey. Ecol. Res. 24, 559–564. doi: 10.1007/s11284-008-0524-y DOI
Huang D. Q., Jaradat M. R., Wu W. R., Ambrose S. J., Ross A. R., Abrams S. R., et al. . (2007). Structural analogs of ABA reveal novel features of ABA perception and signaling in Arabidopsis. Plant J. 50, 414–428. doi: 10.1111/j.1365-313X.2007.03056.x PubMed DOI
Hundertmark M., Hincha D. K. (2008). LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana . BMC Genomics 9, 118. doi: 10.1186/1471-2164-9-118 PubMed DOI PMC
Huysmans M., Buono R. A., Skorzinski N., Radio M. C., De Winter F., Parizot B., et al. . (2018). NAC transcription factors ANAC087 and ANAC046 control distinct aspects of programmed cell death in the Arabidopsis columella and lateral root cap. Plant Cell 30, 2197–2213. doi: 10.1105/tpc.18.00293 PubMed DOI PMC
Ignatz M., Hourston J. E., Tureckova V., Strnad M., Meinhard J., Fischer U., et al. . (2019). The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet. Planta 250, 1717–1729. doi: 10.1007/s00425-019-03257-5 PubMed DOI PMC
Ilias I. A., Negishi K., Yasue K., Jomura N., Morohashi K., Baharum S. N., et al. . (2019). Transcriptome-wide effects of expansin gene manipulation in etiolated Arabidopsis seedling. J. Plant Res. 132, 159–172. doi: 10.1007/s10265-018-1067-0 PubMed DOI
Imbert E. (2002). Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. System. 5, 13–36. doi: 10.1078/1433-8319-00021 DOI
Johnson K. L., Ramm S., Kappel C., Ward S., Leyser O., Sakamoto T., et al. . (2015). The Tinkerbell (Tink) mutation identifies the dual-specificity MAPK phosphatase INDOLE-3-BUTYRIC ACID-RESPONSE5 (IBR5) as a novel regulator of organ size in Arabidopsis. PloS One 10, e0131103. doi: 10.1371/journal.pone.0131103 PubMed DOI PMC
Khedia J., Agarwal P., Agarwal P. K. (2019). Deciphering hydrogen peroxide-induced signalling towards stress tolerance in plants. 3 Biotech. 9, 395. doi: 10.1007/s13205-019-1924-0 PubMed DOI PMC
Kim M. J., Ruzicka D., Shin R., Schachtman D. P. (2012). The AP2/ERF transcription factor RAP2.11 modulates plant response to low-potassium conditions. Mol. Plant 5, 1042–1057. doi: 10.1093/mp/sss003 PubMed DOI
Kitamura S., Matsuda F., Tohge T., Yonekura-Sakakibara K., Yamazaki M., Saito K., et al. . (2010). Metabolic profiling and cytological analysis of proanthocyanidins in immature seeds of Arabidopsis thaliana flavonoid accumulation mutants. Plant J. 62, 549–559. doi: 10.1111/tpj.2010.62.issue-4 PubMed DOI
Lee T. A., Bailey-Serres J. (2019). Integrative analysis from the epigenome to translatome uncovers patterns of dominant nuclear regulation during transient stress. Plant Cell 31, 2573–2595. doi: 10.1105/tpc.19.00463 PubMed DOI PMC
Lee D., Polisensky D. H., Braam J. (2005). Genome-wide identification of touch- and darkness-regulated Arabidopsis genes: a focus on calmodulin-like and XTH genes. New Phytol. 165, 429–444. doi: 10.1111/j.1469-8137.2004.01238.x PubMed DOI
Lenser T., Graeber K., Cevik O. S., Adiguzel N., Donmez A. A., Grosche C., et al. . (2016). Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum . Plant Physiol. 172, 1691–1707. doi: 10.1104/pp.16.00838 PubMed DOI PMC
Lenser T., Tarkowska D., Novak O., Wilhelmsson P. K. I., Bennett T., Rensing S. A., et al. . (2018). When the BRANCHED network bears fruit: How carpic dominance causes fruit dimorphism in Aethionema . Plant J. 94, 352–371. doi: 10.1111/tpj.13861 PubMed DOI
Lepiniec L., Debeaujon I., Routaboul J. M., Baudry A., Pourcel L., Nesi N., et al. . (2006). Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57, 405–430. doi: 10.1146/annurev.arplant.57.032905.105252 PubMed DOI
Linkies A., Leubner-Metzger G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep. 31, 253–270. doi: 10.1007/s00299-011-1180-1 PubMed DOI
Linkies A., Müller K., Morris K., Turečková V., Cadman C. S. C., Corbineau F., et al. . (2009). Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: A comparative approach using Lepidium sativum and Arabidopsis thaliana . Plant Cell 21, 3803–3822. doi: 10.1105/tpc.109.070201 PubMed DOI PMC
Loades E., Perez M., Tureckova V., Tarkowska D., Strnad M., Seville A., et al. . (2023). Distinct hormonal and morphological control of dormancy and germination in Chenopodium album dimorphic seeds. Front. Plant Sci. 14, 1156794. doi: 10.3389/fpls.2023.1156794 PubMed DOI PMC
Loqué D., Ludewig U., Yuan L. X., Von Wirén N. (2005). Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol. 137, 671–680. doi: 10.1104/pp.104.051268 PubMed DOI PMC
Lorrai R., Gandolfi F., Boccaccini A., Ruta V., Possenti M., Tramontano A., et al. . (2018). Genome-wide RNA-seq analysis indicates that the DAG1 transcription factor promotes hypocotyl elongation acting on ABA, ethylene and auxin signaling. Sci. Rep. 8, 15895. doi: 10.1038/s41598-018-34256-3 PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. doi: 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lu J. J., Dong W. J., Tan D. Y., Baskin C. C., Baskin J. M. (2020). Dormancy and germination of the trimorphic achenes of a cold desert annual: spreading the risk over time. AoB Plants 12, plaa056. doi: 10.1093/aobpla/plaa056 PubMed DOI PMC
Lu J. J., Tan D. Y., Baskin J. M., Baskin C. C. (2015. a). Post-release fates of seeds in dehiscent and indehiscent siliques of the diaspore heteromorphic species Diptychocarpus strictus (Brassicaceae). Perspect. Plant Ecol. Evol. System. 17, 255–262. doi: 10.1016/j.ppees.2015.04.001 DOI
Lu J. J., Tan D. Y., Baskin C. C., Baskin J. M. (2017. a). Delayed dehiscence of the pericarp: role in germination and retention of viability of seeds of two cold desert annual Brassicaceae species. Plant Biol. 19, 14–22. doi: 10.1111/plb.12457 PubMed DOI
Lu J. J., Tan D. Y., Baskin C. C., Baskin J. M. (2017. b). Role of indehiscent pericarp in formation of soil seed bank in five cold desert Brassicaceae species. Plant Ecol. 218, 1187–1200. doi: 10.1007/s11258-017-0760-8 DOI
Lu J. J., Zhou Y. M., Tan D. Y., Baskin C. C., Baskin J. M. (2015. b). Seed dormancy in six cold desert Brassicaceae species with indehiscent fruits. Seed Sci. Res. 25, 276–285. doi: 10.1017/S0960258515000215 DOI
Mabuchi K., Maki H., Itaya T., Suzuki T., Nomoto M., Sakaoka S., et al. . (2018). MYB30 links ROS signaling, root cell elongation, and plant immune responses. Proc. Natl. Acad. Sci. United States America 115, E4710–E4719. doi: 10.1073/pnas.1804233115 PubMed DOI PMC
Macgregor D. R., Kendall S. L., Florance H., Fedi F., Moore K., Paszkiewicz K., et al. . (2015). Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism. New Phytol. 205, 642–652. doi: 10.1111/nph.13090 PubMed DOI
Maki H., Sakaoka S., Itaya T., Suzuki T., Mabuchi K., Amabe T., et al. . (2019). ANAC032 regulates root growth through the MYB30 gene regulatory network. Sci. Rep. 9, 11358. doi: 10.1038/s41598-019-47822-0 PubMed DOI PMC
Mamut J., Tan D.-Y., Baskin C. C., Baskin J. M. (2014). Role of trichomes and pericarp in the seed biology of the desert annual Lachnoloma lehmannii (Brassicaceae). Ecol. Res. 29, 33–44. doi: 10.1007/s11284-013-1098-x DOI
Maris A., Kaewthai N., Eklof J. M., Miller J. G., Brumer H., Fry S. C., et al. . (2010). Differences in enzymic properties of five recombinant xyloglucan endotransglucosylase/hydrolase (XTH) proteins of Arabidopsis thaliana . J. Exp. Bot. 62, 261–271. doi: 10.1093/jxb/erq263 PubMed DOI
Maun M. A., Payne A. M. (1989). Fruit and seed polymorphism and its relation to seedling growth in the genus Cakile . Can. J. Bot. 67, 2743–2750. doi: 10.1139/b89-353 DOI
Membre N., Bernier F., Staiger D., Berna A. (2000). Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211, 345–354. doi: 10.1007/s004250000277 PubMed DOI
Meng S., Peng J. S., He Y. N., Zhang G. B., Yi H. Y., Fu Y. L., et al. . (2016). NRT1.5 mediates the suppression of nitrate starvation-induced leaf senescence by modulating foliar potassium level. Mol. Plant 9, 461–470. doi: 10.1016/j.molp.2015.12.015 PubMed DOI
Merai Z., Graeber K., Wilhelmsson P., Ullrich K. K., Arshad W., Grosche C., et al. . (2019). Aethionema arabicum: a novel model plant to study the light control of seed germination. J. Exp. Bot. 70, 3313–3328. doi: 10.1093/jxb/erz146 PubMed DOI PMC
Miedes E., Suslov D., Vandenbussche F., Kenobi K., Ivakov A., van der Straeten D., et al. . (2013). Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls. J. Exp. Bot. 64, 2481–2497. doi: 10.1093/jxb/ert107 PubMed DOI
Mohammadin S., Peterse K., Van De Kerke S. J., Chatrou L. W., Donmez A. A., Mummenhoff K., et al. . (2017). Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. Am. J. Bot. 104, 1042–1054. doi: 10.3732/ajb.1700091 PubMed DOI
Moles A. T., Westoby M. (2006). Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105. doi: 10.1111/j.0030-1299.2006.14194.x DOI
Moneo-Sanchez M., Alonso-Chico A., Knox J. P., Dopico B., Labrador E., Martin I. (2019). beta-(1,4)-Galactan remodelling in Arabidopsis cell walls affects the xyloglucan structure during elongation. Planta 249, 351–362. doi: 10.1007/s00425-018-3008-5 PubMed DOI
Moneo-Sánchez M., Izquierdo L., Martín I., Labrador E., Dopico B. (2016). Subcellular location of subfamily a1 β-galactosidases and developmental regulation of transcript levels of their coding genes. Plant Physiol. Biochem. 109, 137–145. doi: 10.1016/j.plaphy.2016.09.016 PubMed DOI
Nakabayashi K., Walker M., Irwin D., Cohn J., Gurda S., Garcia L., et al. . (2022). The phytotoxin myrigalone A triggers a phased detoxification programme and inhibits Lepidium sativum seed germination via multiple mechanisms including interference with auxin homeostasis. Int. J. Mol. Sci. 23, 4618. doi: 10.3390/ijms23094618 PubMed DOI PMC
Nichols B. S., Leubner-Metzger G., Jansen V. (2020). Between a rock and a hard place: adaptive sensing and site-specific dispersal. Ecol. Lett. 23, 1370–1379. doi: 10.1111/ele.13564 PubMed DOI
Nie K. L., Zhao H. Y., Wang X. P., Niu Y. L., Zhou H. P., Zheng Y. (2022). The MIEL1-ABI5/MYB30 regulatory module fine tunes abscisic acid signaling during seed germination. J. Integr. Plant Biol. 64, 930–941. doi: 10.1111/jipb.13234 PubMed DOI
Overvoorde P. J., Okushima Y., Alonso J. M., Chan A., Chang C., Ecker J. R., et al. . (2005). Functional genomic analysis of the AUXIN/INDOLE-3-ACETIC ACID gene family members in Arabidopsis thaliana . Plant Cell 17, 3282–3300. doi: 10.1105/tpc.105.036723 PubMed DOI PMC
Park J., Kim Y. S., Kim S. G., Jung J. H., Woo J. C., Park C. M. (2011). Integration of auxin and salt signals by the NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 156, 537–549. doi: 10.1104/pp.111.177071 PubMed DOI PMC
Porra R. J., Thompson W. A., Kriedemann P. E. (1989). Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents - Verification of the concentration of chlorophyll ctandards by atomic-absorption spectroscopy. Biochim. Biophys. Acta 975, 384–394. doi: 10.1016/S0005-2728(89)80347-0 DOI
Rae G. M., Uversky V. N., David K., Wood M. (2014). DRM1 and DRM2 expression regulation: potential role of splice variants in response to stress and environmental factors in Arabidopsis. Mol. Genet. Genomics 289, 317–332. doi: 10.1007/s00438-013-0804-2 PubMed DOI
R Core Team . (2021). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Available at: https://www.R-project.org/.
Saitou N., Nei M. (1987). The neighbor-joining method - a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. doi: :10.1093/oxfordjournals.molbev.a040454 PubMed DOI
Saxe F., Weichold S., Reinecke A., Lisec J., Döring A., Neumetzler L., et al. . (2016). Age effects on hypocotyl mechanics. PloS One 11, 0167808. doi: 10.1371/journal.pone.0167808 PubMed DOI PMC
Scheler C., Weitbrecht K., Pearce S. P., Hampstead A., Buettner-Mainik A., Lee K., et al. . (2015). Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiol. 167, 200–215. doi: 10.1104/pp.114.247429 PubMed DOI PMC
Shigeyama T., Watanabe A., Tokuchi K., Toh S., Sakurai N., Shibuya N., et al. . (2016). alpha-Xylosidase plays essential roles in xyloglucan remodelling, maintenance of cell wall integrity, and seed germination in Arabidopsis thaliana . J. Exp. Bot. 67, 5615–5629. doi: 10.1093/jxb/erw321 PubMed DOI PMC
Shin R., Schachtman D. P. (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proc. Natl. Acad. Sci. United States America 101, 8827–8832. doi: 10.1073/pnas.0401707101 PubMed DOI PMC
Smolikova G., Strygina K., Krylova E., Vikhorev A., Bilova T., Frolov A., et al. . (2022). Seed-to-seedling transition in Pisum sativum L.: a transcriptomic approach. Plants (Basel) 11, 1686. doi: 10.3390/plants11131686 PubMed DOI PMC
Song J. Q., Wang H. F., Chu R. W., Zhao L. T., Li X. X., An S., et al. . (2023). Differences in physiological characteristics, seed germination, and seedling establishment in response to salt stress between dimorphic seeds in the halophyte Suaeda liaotungensis . Plants 12, 1408. doi: 10.3390/plants12061408 PubMed DOI PMC
Song S., Willems L., Jiao A., Zhao T., Schranz M. E., Bentsink L. (2022). The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana . J. Exp. Bot. 73, 5514–5528. doi: 10.1093/jxb/erac232 PubMed DOI PMC
Steinbrecher T., Leubner-Metzger G. (2017). The biomechanics of seed germination. J. Exp. Bot. 68, 765–783. doi: 10.1093/jxb/erw428 PubMed DOI
Steinbrecher T., Leubner-Metzger G. (2018). Tissue and cellular mechanics of seeds. Curr. Opin. Genet. Dev. 51, 1–10. doi: 10.1016/j.gde.2018.03.001 PubMed DOI
Steinbrecher T., Leubner-Metzger G. (2022). Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. J. Exp. Bot. 73, 1253–1257. doi: 10.1093/jxb/erac020 PubMed DOI PMC
Stortenbeker N., Bemer M. (2019). The SAUR gene family: the plant’s toolbox for adaptation of growth and development. J. Exp. Bot. 70, 17–27. doi: 10.1093/jxb/ery332 PubMed DOI
Sun Y., Li H., Huang J. R. (2012). Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol. Plant 5, 387–400. doi: 10.1093/mp/ssr110 PubMed DOI
Tan P. P., Du X. H., Shang Y. J., Zhu K. K., Joshi S., Kaur K., et al. . (2022). Ion transporters and their exploration for conferring abiotic stress tolerance in plants. Plant Growth Regul. 96, 1–23. doi: 10.1007/s10725-021-00762-0 DOI
Tang X. L., Peng Y., Li Z., Guo H. W., Xia X. L., Li B. S., et al. . (2022). The regulation of nitrate reductases in response to abiotic stress in Arabidopsis. Int. J. Mol. Sci. 23, 1202. doi: 10.3390/ijms23031202 PubMed DOI PMC
Teale W. D., Paponov I. A., Palme K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7, 847–859. doi: 10.1038/nrm2020 PubMed DOI
Templalexis D., Tsitsekian D., Liu C., Daras G., Simura J., Moschou P., et al. . (2022). Potassium transporter TRH1/KUP4 contributes to distinct auxin-mediated root system architecture responses. Plant Physiol. 188, 1043–1060. doi: 10.1093/plphys/kiab472 PubMed DOI PMC
Van Aken O., Zhang B. T., Law S., Narsai R., Whelan J. (2013). AtWRKY40 and AtWRKY63 modulate the expression of stress-responsive nuclear genes encoding mitochondrial and chloroplast proteins. Plant Physiol. 162, 254–271. doi: 10.1104/pp.113.215996 PubMed DOI PMC
Van Der Weele C. M., Spollen W. G., Sharp R. E., Baskin T. I. (2000). Growth of Arabidopsis thaliana seedlings under water deficit studied by control of water potential in nutrient-agar media. J. Exp. Bot. 51, 1555–1562. doi: 10.1093/jexbot/51.350.1555 PubMed DOI
Verslues P. E., Bray E. A. (2004). LWR1 and LWR2 are required for osmoregulation and osmotic adjustment in Arabidopsis. Plant Physiol. 136, 2831–2842. doi: 10.1104/pp.104.045856 PubMed DOI PMC
Voegele A., Linkies A., Müller K., Leubner-Metzger G. (2011). Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. J. Exp. Bot. 62, 5131–5147. doi: 10.1093/jxb/err214 PubMed DOI PMC
Waidmann S., Beziat C., Ferreira Da Silva Santos J., Feraru E., Feraru M. I., Sun L., et al. . (2023). Endoplasmic reticulum stress controls PIN-LIKES abundance and thereby growth adaptation. Proc. Natl. Acad. Sci. United States America 120, e2218865120. doi: 10.1073/pnas.2218865120 PubMed DOI PMC
Walck J. L., Hidayati S. N., Dixon K. W., Thompson K., Poschlod P. (2011). Climate change and plant regeneration from seed. Global Change Biol. 17, 2145–2161. doi: 10.1111/gcb.2011.17.issue-6 DOI
Wang T. J., Huang S. Z., Zhang A. I., Guo P., Liu Y. T., Xu C. M., et al. . (2021). JMJ17-WRKY40 and HY5-ABI5 modules regulate the expression of ABA-responsive genes in Arabidopsis. New Phytol. 230, 567–584. doi: 10.1111/nph.17177 PubMed DOI
Wang Y. C., Peng Y., Guo H. W. (2023. b). To curve for survival: Apical hook development. J. Integr. Plant Biol. 65, 324–342. doi: 10.1111/jipb.13441 PubMed DOI
Wang Y., Yuan Z., Wang J., Xiao H., Wan L., Li L., et al. . (2023. a). The nitrate transporter NRT2.1 directly antagonizes PIN7-mediated auxin transport for root growth adaptation. Proc. Natl. Acad. Sci. United States America 120, e2221313120. doi: 10.1073/pnas.2221313120 PubMed DOI PMC
Wilhelmsson P. K. I., Chandler J. O., Fernandez-Pozo N., Graeber K., Ullrich K. K., Arshad W., et al. . (2019). Usability of reference-free transcriptome assemblies for detection of differential expression: a case study on Aethionema arabicum dimorphic seeds. BMC Genomics 20, 95. doi: 10.1186/s12864-019-5452-4 PubMed DOI PMC
Wu T., Alizadeh M., Lu B. L., Cheng J. K., Hoy R., Bu M. Y., et al. . (2022). The transcriptional co-repressor SEED DORMANCY 4-LIKE (AtSDR4L) promotes the embryonic-to-vegetative transition in Arabidopsis thaliana. J. Integr. Plant Biol. 64, 2075–2096. doi: 10.1111/jipb.13360 PubMed DOI
Xu W. J., Dubos C., Lepiniec L. (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 20, 176–185. doi: 10.1016/j.tplants.2014.12.001 PubMed DOI
Xu P. P., Fang S., Chen H. Y., Cai W. M. (2020). The brassinosteroid-responsive xyloglucan endotransglucosylase/hydrolase 19 (XTH19) and XTH23 genes are involved in lateral root development under salt stress in Arabidopsis. Plant J. 104, 59–75. doi: 10.1111/tpj.14905 PubMed DOI
Xu J., Yin H. X., Yang L. L., Xie Z. X., Liu X. J. (2011). Differential salt tolerance in seedlings derived from dimorphic seeds of Atriplex centralasiatica: from physiology to molecular analysis. Planta 233, 859–871. doi: 10.1007/s00425-010-1347-y PubMed DOI
Yang F., Baskin J. M., Baskin C. C., Yang X., Cao D., Huang Z. (2015). Effects of germination time on seed morph ratio in a seed-dimorphic species and possible ecological significance. Ann. Bot. 115, 137–145. doi: 10.1093/aob/mcu210 PubMed DOI PMC
Yi C. Y., Wang X. C., Chen Q., Callahan D. L., Fournier-Level A., Whelan J., et al. . (2021). Diverse phosphate and auxin transport loci distinguish phosphate tolerant from sensitive Arabidopsis accessions. Plant Physiol. 187, 2656–2673. doi: 10.1093/plphys/kiab441 PubMed DOI PMC
Zhang H., Hu M. F., Ma H. Y., Jiang L., Zhao Z. Y., Ma J. B., et al. . (2021). Differential responses of dimorphic seeds and seedlings to abiotic stresses in the halophyte Suaeda salsa . Front. Plant Sci. 12, 630338. doi: 10.3389/fpls.2021.630338 PubMed DOI PMC
Zhang S. C., Wang X. J. (2017). One new kind of phytohormonal signaling integrator: Up-and-coming GASA family genes. Plant Signaling Behav. 12, e1226453. doi: 10.1080/15592324.2016.1226453 PubMed DOI PMC
Zhang Y. Y., Xie Y. F., Shi H. F., Zhuang Y. F., Zheng Y., Lin H. H., et al. . (2023). MYB30 regulates submergence tolerance by repressing ethylene biosynthesis via ACS7 in Arabidopsis. Plant Cell Physiol. 64, 814–825. doi: 10.1093/pcp/pcad041 PubMed DOI
Zhou Y. M., Lu J. J., Tan D. Y., Baskin C. C., Baskin J. M. (2015). Seed germination ecology of the cold desert annual Isatis violascens (Brassicaceae): two levels of physiological dormancy and role of the pericarp. PloS One 10, e0140983. doi: 10.1371/journal.pone.0140983 PubMed DOI PMC
Zhou X., Zhang Z. L., Park J., Tyler L., Yusuke J., Qiu K., et al. . (2016). The ERF11 transcription factor promotes internode elongation by activating gibberellin biosynthesis and signaling. Plant Physiol. 171, 2760–2770. doi: 10.1104/pp.16.00154 PubMed DOI PMC
Zhu Y. F., Huang P. C., Guo P. C., Chong L., Yu G. B., Sun X. L., et al. . (2020). CDK8 is associated with RAP2.6 and SnRK2.6 and positively modulates abscisic acid signaling and drought response in. New Phytol. 228, 1573–1590. doi: 10.1111/nph.16787 PubMed DOI
Zinsmeister J., Leprince O., Buitink J. (2020). Molecular and environmental factors regulating seed longevity. Biochem. J. 477, 305–323. doi: 10.1042/BCJ20190165 PubMed DOI