The biochemistry underpinning industrial seed technology and mechanical processing of sugar beet
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
direct funding from industry
KWS SAAT SE
BB/M000583/1
Biotechnology and Biological Sciences Research Council - United Kingdom
CZ.02.1.01/0.0/0.0/16_019/0000827
ERDF
PubMed
31414204
PubMed Central
PMC6790189
DOI
10.1007/s00425-019-03257-5
PII: 10.1007/s00425-019-03257-5
Knihovny.cz E-zdroje
- Klíčová slova
- Abscisic acid (ABA), Germination inhibitors, Pericarp (fruit coat), Polishing and washing, Seed processing, Seed technology, Sugar beet (Beta vulgaris subsp. vulgaris),
- MeSH
- Beta vulgaris růst a vývoj fyziologie MeSH
- biochemie MeSH
- klíčení MeSH
- kyselina abscisová metabolismus MeSH
- regulátory růstu rostlin metabolismus MeSH
- semena rostlinná růst a vývoj fyziologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- kyselina abscisová MeSH
- regulátory růstu rostlin MeSH
Seed-processing technologies such as polishing and washing enhance crop seed quality by limited removal of the outer layers and by leaching. Combined, this removes chemical compounds that inhibit germination. Industrial processing to deliver high-quality commercial seed includes removing chemical inhibitors of germination, and is essential to produce fresh sprouts, achieve vigorous crop establishment, and high yield potential in the field. Sugar beet (Beta vulgaris subsp. vulgaris var. altissima Doell.), the main sugar source of the temperate agricultural zone, routinely undergoes several processing steps during seed production to improve germination performance and seedling growth. Germination assays and seedling phenotyping was carried out on unprocessed, and processed (polished and washed) sugar beet fruits. Pericarp-derived solutes, known to inhibit germination, were tested in germination assays and their osmolality and conductivity assessed (ions). Abscisic acid (ABA) and ABA metabolites were quantified in both the true seed and pericarp tissue using UPLC-ESI(+)-MS/MS. Physical changes in the pericarp structures were assessed using scanning electron microscopy (SEM). We found that polishing and washing of the sugar beet fruits both had a positive effect on germination performance and seedling phenotype, and when combined, this positive effect was stronger. The mechanical action of polishing removed the outer pericarp (fruit coat) tissue (parenchyma), leaving the inner tissue (sclerenchyma) unaltered, as revealed by SEM. Polishing as well as washing removed germination inhibitors from the pericarp, specifically, ABA, ABA metabolites, and ions. Understanding the biochemistry underpinning the effectiveness of these processing treatments is key to driving further innovations in commercial seed quality.
Department of Biological Sciences Royal Holloway University of London Egham Surrey TW20 0EX UK
KWS SAAT SE and Co KGaA Grimsehlstr 31 37555 Einbeck Germany
Zobrazit více v PubMed
Abts W, Van de Poel B, Vandenbussche B, De Proft MP. Ethylene is differentially regulated during sugar beet germination and affects early root growth in a dose-dependent manner. Planta. 2014;240:679–686. PubMed
Abts W, Van De Poel B, Vandenbussche B, De Proft MF. Abscisic acid inhibits germination and indirectly delays ethylene biosynthesis of Beta vulgaris. Seed Sci Technol. 2015;43:156–167.
Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta. 2004;219:479–488. PubMed
Artschwager E. Development of flowers and seed in the sugar beet. J Agric Res. 1927;34:1–25.
Battle JP, Whittington WJ. The relation between inhibitory substances and variability in time to germination of sugar beet clusters. J Agric Sci Camb. 1969;73:337–346.
Blunk S, Malik AH, de Heer MI, Ekblad T, Bussell J, Sparkes D, Fredlund K, Sturrock CJ, Mooney SJ. Quantification of seed-soil contact of sugar beet (Beta vulgaris) using X-ray computed tomography. Plant Methods. 2017;13:1–14. PubMed PMC
Blunk S, de Heer MI, Sturrock CJ, Mooney SJ. Soil seedbed engineering and its impact on germination and establishment in sugar beet (Beta vulgaris L.) as affected by seed–soil contact. Seed Sci Res. 2018;28:236–244.
Chetram RS, Heydecker W. Moisture sensitivity, mechanical injury and gibberellin treatment of Beta vulgaris seeds. Nature. 1967;215:210–211.
Chiji H, Tanaka S, Izawa M. Phenolic germination inhibitors in the seed balls of red beet (Beta vulgaris L. var. rubra) Agric Biol Chem. 1980;44:205–207.
Chomontowski C, Wzorek H, Podlaski S. Impact of sugar beet seed priming on seed quality and performance under diversified environmental conditions of germination, emergence and growth. J Plant Growth. 2019 doi: 10.1007/s00344-019-09973-2. DOI
Coumans M, Come D, Gaspar T. Stabilized dormancy in sugarbeet fruits. I. Seed coats as a physicochemical barrier to oxygen. Bot Gaz. 1976;137:274–278.
De Kock P, Hunter R. A germination inhibitor from sugar beet. Nature. 1950;166:440–441. PubMed
Deleuran LC, Olesen MH, Boelt B. Spinach seed quality: potential for combining seed size grading and chlorophyll fluorescence sorting. Seed Sci Res. 2013;23:271–278.
Dewar J, Taylor JRN, Berjak P. Changes in selected plant growth regulators during germination in sorghum. Seed Sci Res. 1998;8:1–8.
Dohm JC, Minoche AE, Holtgräwe D, Capella-Gutiérrez S, Zakrzewski F, Tafer H, Rupp O, Sörensen TR, Stracke R, Reinhardt R, Goesmann A, Kraft T, Schulz B, Stadler PF, Schmidt T, Gabaldón T, Lehrach H, Weisshaar B, Himmelbauer H. The genome of the recently domesticated crop plant sugar beet (Beta vulgaris) Nature. 2013;505:546–549. PubMed
Draycott AP. Sugar beet. Oxford: Wiley; 2006.
Duan X, Burris JS. Film coating impairs leaching of germination inhibitors in sugar beet seed. Crop Sci. 1997;37:515–520.
Frese L. Conservation and access to sugarbeet germplasm. Sugar Tech. 2010;12:207–219.
Fukui R. Growth patterns and metabolic activity of pseudomonads in sugar beet spermospheres: relationship to pericarp colonization by Pythium ultimum. Phytopathology. 1994;84:1331.
Grappin P, Bouinot D, Sotta B, Miginiac E, Jullien M. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta. 2000;210:279–285. PubMed
Halmer P. Seed technology and seed enhancement. Acta Hort. 2008;771:17–26.
Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Machackova I, Fischer U, Leubner-Metzger G. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.): a comparative study of fruits and seeds. J Exp Bot. 2007;58:3047–3060. PubMed
Heydecker W, Chetram RS, Heydecker JC. Water relations of beetroot seed germination II. Effects of the ovary cap and of the endogenous inhibitors. Ann Bot. 1971;35:31–42.
Hradecká V, Novák O, Havlíček L, Strnad M. Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. J Chromatogr B. 2007;847:162–173. PubMed
Joosen RVL, Kodde J, Willems LAJ, et al. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination. Plant J. 2010;62:148–159. PubMed
Junttila O. Germination inhibitors in fruit extracts of red beet (Beta vulgaris cv. rubra) J Exp Bot. 1976;27:827–836.
Klitgard K. Report of the Germination Committee Working Group on germination methods of Beta vulgaris. Seed Sci Technol. 1978;6:215–224.
Kockelmann A, Meyer U. Seed production and quality, in sugar beet. Oxford: Blackwell; 2006.
Kockelmann A, Tilcher R, Fischer U. Seed production and processing. Sugar Tech. 2010;12:267–275.
Latorre ME, Bonelli PR, Rojas AM, Gerschenson LN. Microwave inactivation of red beet (Beta vulgaris L. var. conditiva) peroxidase and polyphenoloxidase and the effect of radiation on vegetable tissue quality. J Food Eng. 2012;109:676–684.
Longden PC. Washing sugar-beet seed. J Int Inst Sugar Beet Res. 1974;6:154–162.
Lukaszewska E, Sliwinska E. Most organs of sugar-beet (Beta vulgaris L.) plants at the vegetative and reproductive stages of development are polysomatic. Sex Plant Reprod. 2007;20:99–107.
Lukaszewska E, Virden R, Sliwinska E. Hormonal control of endoreduplication in sugar beet (Beta vulgaris L.) seedlings growing in vitro. Plant Biol. 2012;14:216–222. PubMed
Matthews S, Powell A. Electrical conductivity vigour test: physiological basis and use. Seed Test Int. 2006;131:32–35.
Metzner R, Dusschoten D, Bühler J, Schurr U, Jahnke S. Belowground plant development measured with magnetic resonance imaging (MRI): exploiting the potential for non-invasive trait quantification using sugar beet as a proxy. Front Plant Sci. 2014;5:469. PubMed PMC
Mitchell ED, Tolbert NE. Isolation from sugar beet fruit and characterization of cis-4-cyclohexene-1, 2-dicarboximide as a germination inhibitor. Biochem. 1968;7:1019–1025. PubMed
Morris PC, Grierson DG, Whittington WJ. Endogenous inhibitors and germination of Beta vulgaris. J Exp Bot. 1984;35:994–1002.
Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci Res. 2010;20:55–67.
Orzeszko-Rywka A, Podlaski S. The effect of sugar beet seed treatments on their vigour. Plant Soil Environ. 2003;49:249–254.
Pedrini S, Merritt DJ, Stevens J, Dixon K. Seed coating: science or marketing spin? Trends Plant Sci. 2017;22:106–116. PubMed
Peukert M, Dittbrenner A, Meinhard J, Fischer U, Mock H-P. Metabolic variability of seed material from diverse sugar beet (Beta vulgaris L.) genotypes and of different germination capacities. Seed Sci Res. 2016;26:57–66.
Podlaski SZ, Chrobak ZM. Über den Einfluss des durch die Leitfähigkeit der Wasserextrakte von Zuckerrübenfrüchten gemessenen Keiminhibitorgehalts auf die Keimfähigkeit und Keimgeschwindigkeit bei Rüben. Seed Sci Technol. 1986;14:631–640.
Richard G, Raymond P, Corbineau F, Pradet A. Effect of the pericarp on sugar beet (Beta vulgaris L.) seed germination: study of the energy metabolism. Seed Sci Technol. 1989;17:485–498.
Salimi Z, Boelt B. Classification of processing damage in sugar beet (Beta vulgaris) seeds by multispectral image analysis. Sensors. 2019;19:2360–2369. doi: 10.3390/s19102360. PubMed DOI PMC
Santos DSB, Pereira MFA. Restrictions of the tegument to the germination of Beta vulgaris L. seeds. Seed Sci Technol. 1989;17:601–612.
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9:676. PubMed PMC
Sharma R, Sogi DS, Saxena DC. Dehulling performance and textural characteristics of unshelled and shelled sunflower (Helianthus annuus L.) seeds. J Food Eng. 2009;92:1–7.
Sliwinska E, Jing H-C, Job C, Job D, Bergervoet JHW, Bino RJ, Groot SPC. Effect of harvest time and soaking treatment on cell cycle activity in sugarbeet seeds. Seed Sci Res. 1999;9:91–99.
Snyder FW. Relation of water soluble substances in fruits of sugar beet to speed of germination of sugar beet seeds. J Am Soc Sugar Beet Technol. 1965;13:379–388.
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. J Exp Bot. 2017;68:765–783. PubMed
Taylor AG, Allen PS, Bennett MA, Bradford KJ, Burris JS, Misra MK. Seed enhancements. Seed Sci Res. 1998;8:245–256.
Taylor AG, Goffinet MC, Pikuz SA, Shelkovenko TA, Mitchell MD, Chandler KM, Hammer DA, et al. Physico-chemical factors influence beet (Beta vulgaris L.) seed germination. In: Nicolas G, Bradford KJ, Come D, et al., editors. The biology of seeds: recent research advances. Wallingford: CAB International; 2003. pp. 433–440.
Tohidloo G, Chegini S, Farzad P, Ilkaee MN, Taleghani DF, Chegini S, Ali M, Chegini FP, Khodaie AH, Ilkaee MN, Golzardi F, Jalili F. Effect of polishing and washing on germination quality and viability of sugar beet seed. Int J Biosci. 2015;6:209–215.
Turečková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009;80:390–399. PubMed
Voegele A, Graeber K, Oracz K, Tarkowská D, Jacquemoud D, Turečková V, Urbanová T, Strnad M, Leubner-Metzger G. Embryo growth, testa permeability, and endosperm weakening are major targets for the environmentally regulated inhibition of Lepidium sativum seed germination by myrigalone A. J Exp Bot. 2012;63:5337–5350. PubMed PMC
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings
Cold-induced secondary dormancy and its regulatory mechanisms in Beta vulgaris
The effects of high oxygen partial pressure on vegetable Allium seeds with a short shelf-life