Molecular mechanisms of seed dormancy release by gas plasma-activated water technology

. 2022 Jun 24 ; 73 (12) : 4065-4078.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35427417

Grantová podpora
BB/M01651X/1 UK Biotechnology and Biological Sciences Research Council
BB/M005186/1 AgriTech Catalyst
BB/S018441/1 Biotechnology and Biological Sciences Research Council - United Kingdom
BB/S016112/1 Biotechnology and Biological Sciences Research Council - United Kingdom

Developing innovative agri-technologies is essential for the sustainable intensification of global food production. Seed dormancy is an adaptive trait which defines the environmental conditions in which the seed is able to germinate. Dormancy release requires sensing and integration of multiple environmental signals, a complex process which may be mimicked by seed treatment technologies. Here, we reveal molecular mechanisms by which non-thermal (cold) atmospheric gas plasma-activated water (GPAW) releases the physiological seed dormancy of Arabidopsis thaliana. GPAW triggered dormancy release by synergistic interaction between plasma-generated reactive chemical species (NO3-, H2O2, ·NO, and ·OH) and multiple signalling pathways targeting gibberellin and abscisic acid (ABA) metabolism and the expression of downstream cell wall-remodelling genes. Direct chemical action of GPAW on cell walls resulted in premature biomechanical endosperm weakening. The germination responses of dormancy signalling (nlp8, prt6, and dog1) and ABA metabolism (cyp707a2) mutants varied with GPAW composition. GPAW removes seed dormancy blocks by triggering multiple molecular signalling pathways combined with direct chemical tissue weakening to permit seed germination. Gas plasma technologies therefore improve seed quality by mimicking permissive environments in which sensing and integration of multiple signals lead to dormancy release and germination.

Zobrazit více v PubMed

Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sanchez-Vicente I, Nambara E, Lorenzo O.. 2015. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nature Communications 6, 8669. PubMed PMC

Bafoil M, Jemmat A, Martinez Y, Merbahi N, Eichwald O, Dunand C, Yousfi M.. 2018. Effects of low temperature plasmas and plasma activated waters on Arabidopsis thaliana germination and growth. PLoS One 13, e0195512. PubMed PMC

Bafoil M, Le Ru A, Merbahi N, Eichwald O, Dunand C, Yousfi M.. 2019. New insights of low-temperature plasma effects on germination of three genotypes of Arabidopsis thaliana seeds under osmotic and saline stresses. Scientific Reports 9, 8649. PubMed PMC

Bailly C. 2019. The signalling role of ROS in the regulation of seed germination and dormancy. Biochemical Journal 476, 3019–3032. PubMed

Barros-Galvao T, Vaistij FE, Graham IA.. 2019. Control of seed coat rupture by ABA-INSENSITIVE 5 in Arabidopsis thaliana. Seed Science Research 29, 143–148.

Bethke PC, Libourel IGL, Aoyama N, Chung Y-Y, Still DW, Jones RL.. 2007. The Arabidopsis aleurone layer responds to nitric oxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy. Plant Physiology 143, 1173–1188. PubMed PMC

Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E.. 2015. Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). Journal of Experimental Botany 66, 4013–4021. PubMed PMC

Bourke P, Ziuzina D, Boehm D, Cullen PJ, Keener K.. 2018. The potential of cold plasma for safe and sustainable food production. Trends in Biotechnology 36, 615–626. PubMed

Bruggeman PJ, Kushner MJ, Locke BR, et al. . 2016. Plasma–liquid interactions: a review and roadmap. Plasma Sources Science & Technology 25, 053002.

Chang S, Puryear J, Cairney J.. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11, 113–116.

Chen F, Nonogaki H, Bradford KJ.. 2002. A gibberellin-regulated xyloglucan endotransglycosylase gene is expressed in the endosperm cap during tomato seed germination. Journal of Experimental Botany 53, 215–223. PubMed

Dekkers BJW, Pearce S, van Bolderen-Veldkamp RPM, et al. . 2013. Transcriptional dynamics of two seed compartments with opposing roles in Arabidopsis seed germination. Plant Physiology 163, 205–215. PubMed PMC

Duermeyer L, Khodapanahi E, Yan DW, Krapp A, Rothstein SJ, Nambara E.. 2018. Regulation of seed dormancy and germination by nitrate. Seed Science Research 28, 150–157.

Eisenberg G. 1943. Colorimetric determination of hydrogen peroxide. Industrial and Engineering Chemistry Analytical Edition 15, 327–328.

Finch-Savage WE, Leubner-Metzger G.. 2006. Seed dormancy and the control of germination. New Phytologist 171, 501–523. PubMed

Fry SC. 1997. Novel ‘dot-blot’ assays for glycosyltransferases and glycosylhydrolases: optimization for xyloglucan endotransglycosylase (XET) activity. The Plant Journal 11, 1141–1150.

Garcia-Robledo E, Corzo A, Papaspyrou S.. 2014. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Marine Chemistry 162, 30–36.

Graeber K, Linkies A, Steinbrecher T, et al. . 2014. DELAY OF GERMINATION 1 mediates a conserved coat dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences, USA 111, E3571–E3580. PubMed PMC

Graeber K, Linkies A, Wood AT, Leubner-Metzger G.. 2011. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. The Plant Cell 23, 2045–2063. PubMed PMC

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ.. 2012. Molecular mechanisms of seed dormancy. Plant, Cell & Environment 35, 1769–1786. PubMed

Graves DB. 2012. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. Journal of Physics D: Applied Physics 45, 263001.

Herburger K, Frankova L, Picmanova M, Loh JW, Valenzuela-Ortega M, Meulewaeter F, Hudson AD, French CE, Fry SC.. 2020. Hetero-trans-β-glucanase produces cellulose–xyloglucan covalent bonds in the cell walls of structural plant tissues and is sttimulated by expansin. Molecular Plant 13, 1047–1062. PubMed PMC

Hermann K, Meinhard J, Dobrev P, Linkies A, Pesek B, Heß B, Machackova I, Fischer U, Leubner-Metzger G.. 2007. 1-Aminocyclopropane-1-carboxylic acid and abscisic acid during the germination of sugar beet (Beta vulgaris L.)—a comparative study of fruits and seeds. Journal of Experimental Botany 58, 3047–3060. PubMed

Holloway T, Steinbrecher T, Perez M, Seville A, Stock D, Nakabayashi K, Leubner-Metzger G.. 2021. Coleorhiza-enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytologist 229, 2179–2191. PubMed

Holman TJ, Jones PD, Russell L, et al. . 2009. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proceedings of the National Academy of Sciences, USA 106, 4549–4554. PubMed PMC

Ito M, Oh J-S, Ohta T, Shiratani M, Hori M.. 2018. Current status and future prospects of agricultural applications using atmospheric-pressure plasma technologies. Plasma Processes and Polymers 15, e1700073.

Kolbert Z, Barroso JB, Brouquisse R, et al. . 2019. A forty year journey: the generation and roles of NO in plants. Nitric Oxide-Biology and Chemistry 93, 53–70. PubMed

Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E.. 2004. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8ʹ-hydroxylases: key enzymes in ABA catabolism. The EMBO Journal 23, 1647–1656. PubMed PMC

Lee KJD, Dekkers BJW, Steinbrecher T, Walsh CT, Bacic A, Bentsink L, Leubner-Metzger G, Knox JP.. 2012. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. Plant Physiology 160, 1551–1566. PubMed PMC

Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D.. 2015. Cold plasma treatment enhances oilseed rape seed germination under drought stress. Scientific Reports 5, 13033. PubMed PMC

Linkies A, Müller K, Morris K, Turečková V, Cadman CSC, Corbineau F, Strnad M, Lynn JR, Finch-Savage WE, Leubner-Metzger G.. 2009. Ethylene interacts with abscisic acid to regulate endosperm rupture during germination: a comparative approach using Lepidium sativum and Arabidopsis thaliana. The Plant Cell 21, 3803–3822. PubMed PMC

Liu B, Honnorat B, Yang H, Arancibia J, Rajjou L, Rousseau A.. 2019. Non-thermal DBD plasma array on seed germination of different plant species. Journal of Physics D: Applied Physics 52, 025401.

Liu Y, Ye N, Liu R, Chen M, Zhang J.. 2010. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. Journal of Experimental Botany 61, 2979–2990. PubMed PMC

Livak KJ, Schmittgen TD.. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25, 402–408. PubMed

Lu X, Naidis GV, Laroussi M, Reuter S, Graves DB, Ostrikov K.. 2016. Reactive species in non-equilibrium atmospheric-pressure plasmas: generation, transport, and biological effects. Physics Reports 630, 1–84.

Lukes P, Dolezalova E, Sisrova I, Clupek M.. 2014. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Science & Technology 23, 015019.

Matakiadis T, Alboresi A, Jikumaru Y, Tatematsu K, Pichon O, Renou JP, Kamiya Y, Nambara E, Truong HN.. 2009. The Arabidopsis abscisic acid catabolic gene CYP707A2 plays a key role in nitrate control of seed dormancy. Plant Physiology 149, 949–960. PubMed PMC

Müller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G.. 2009. In vivo cell wall loosening by hydroxyl radicals during cress (Lepidium sativum L.) seed germination and elongation growth. Plant Physiology 150, 1855–1865. PubMed PMC

Nakabayashi K, Bartsch M, Xiang Y, Miatton E, Pellengahr S, Yano R, Seo M, Soppe WJ.. 2012. The time required for dormancy release in Arabidopsis is determined by DELAY OF GERMINATION1 protein levels in freshly harvested seeds. The Plant Cell 24, 2826–2838. PubMed PMC

Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E.. 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. The Plant Journal 41, 697–709. PubMed

Nambara E, Okamoto M, Tatematsu K, Yano R, Seo M, Kamiya Y.. 2010. Abscisic acid and the control of seed dormany and germination. Seed Science Research 20, 55–67.

Nee G, Kramer K, Nakabayashi K, Yuan BJ, Xiang Y, Miatton E, Finkemeier I, Soppe WJJ.. 2017. DELAY OF GERMINATION1 requires PP2C phosphatases of the ABA signalling pathway to control seed dormancy. Nature Communications 8, 72. PubMed PMC

Nishimura N, Tsuchiya W, Moresco JJ, et al. . 2018. Control of seed dormancy and germination by DOG1–AHG1 PP2C phosphatase complex via binding to heme. Nature Communications 9, 2132. PubMed PMC

Nonogaki H. 2017. Seed biology update—highlights and new discoveries in seed dormancy and germination research. Frontiers in Plant Science 8, 524. PubMed PMC

Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S.. 2003. Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell 15, 1591–1604. PubMed PMC

Okamoto M, Kuwahara A, Seo M, Kushiro T, Asami T, Hirai N, Kamiya Y, Koshiba T, Nambara E.. 2006. CYP707A1 and CYP707A2, which encode ABA 8ʹ-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiology 141, 97–107. PubMed PMC

Park DP, Davis K, Gilani S, Alonzo CA, Dobrynin D, Friedman G, Fridman A, Rabinovich A, Fridman G.. 2013. Reactive nitrogen species produced in water by non-equilibrium plasma increase plant growth rate and nutritional yield. Current Applied Physics 13, S19–S29.

Preston J, Tatematsu K, Kanno Y, Hobo T, Kimura M, Jikumaru Y, Yano R, Kamiya Y, Nambara E.. 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant & Cell Physiology 50, 1786–1800. PubMed

Ranieri P, Sponsel N, Kizer J, Rojas-Pierce M, Hernandez R, Gatiboni L, Grunden A, Stapelmann K.. 2021. Plasma agriculture: review from the perspective of the plant and its ecosystem. Plasma Processes and Polymers 18, e2000162.

Sahni M, Locke BR.. 2006. Quantification of hydroxyl radicals produced in aqueous phase pulsed electrical discharge reactors. Industrial & Engineering Chemistry Research 45, 5819–5825.

Sanchez-Montesino R, Bouza-Morcillo L, Marquez J, Ghita M, Duran-Nebreda S, Gomez L, Holdsworth MJ, Bassel G, Onate-Sanchez L.. 2019. A regulatory module controlling GA-mediated endosperm cell expansion is critical for seed germination in Arabidopsis. Molecular Plant 12, 71–85. PubMed PMC

Scheler C, Weitbrecht K, Pearce SP, et al. . 2015. Promotion of testa rupture during garden cress germination involves seed compartment-specific expression and activity of pectin methylesterases. Plant Physiology 167, 200–215. PubMed PMC

Shu K, Liu XD, Xie Q, He ZH.. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9, 34–45. PubMed

Steinbrecher T, Leubner-Metzger G.. 2017. The biomechanics of seed germination. Journal of Experimental Botany 68, 765–783. PubMed

Steinbrecher T, Leubner-Metzger G.. 2022. Xyloglucan remodelling enzymes and the mechanics of plant seed and fruit biology. Journal of Experimental Botany 73, 1253–1257. PubMed PMC

Stepanova V, Slavicek P, Kelar J, Prasil J, Smekal M, Stupavska M, Jurmanova J, Cernak M.. 2018. Atmospheric pressure plasma treatment of agricultural seeds of cucumber (Cucumis sativus L.) and pepper (Capsicum annuum L.) with effect on reduction of diseases and germination improvement. Plasma Processes and Polymers 15, 1700076.

Takamatsu T, Uehara K, Sasaki Y, Miyahara H, Matsumura Y, Iwasawa A, Ito N, Azuma T, Kohno M, Okino A.. 2014. Investigation of reactive species using various gas plasmas. RSC Advances 4, 39901–39905.

Voegele A, Linkies A, Müller K, Leubner-Metzger G.. 2011. Members of the gibberellin receptor gene family GID1 (GIBBERELLIN INSENSITIVE DWARF1) play distinct roles during Lepidium sativum and Arabidopsis thaliana seed germination. Journal of Experimental Botany 62, 5131–5147. PubMed PMC

Wright A, Bandulasena H, Ibenegbu C, Leak D, Holmes T, Zimmerman W, Shaw A, Iza F.. 2018. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AIChE Journal 64, 3803–3816. PubMed PMC

Yan D, Duermeyer L, Leoveanu C, Nambara E.. 2014. The functions of the endosperm during seed germination. Plant & Cell Physiology 55, 1521–1533. PubMed

Yan D, Easwaran V, Chau V, et al. . 2016. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nature Communications 7, 13179. PubMed PMC

Zhang Y, Chen B, Xu Z, Shi Z, Chen S, Huang X, Chen J, Wang X.. 2014. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. Journal of Experimental Botany 65, 3189–3200. PubMed PMC

Zhou R, Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ken Ostrikov K.. 2016. Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Scientific Reports 6, 32603. PubMed PMC

Zhou RW, Zhou RS, Wang PY, Xian YB, Mai-Prochnow A, Lu XP, Cullen PJ, Ostrikov K, Bazaka K.. 2020. Plasma-activated water: generation, origin of reactive species and biological applications. Journal of Physics D: Applied Physics 53.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...