Gas-Plasma-Activated Water Impact on Photo-Dependent Dormancy Mechanisms in Nicotiana tabacum Seeds
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/M01651X/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/V017462/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
35743152
PubMed Central
PMC9223463
DOI
10.3390/ijms23126709
PII: ijms23126709
Knihovny.cz E-zdroje
- Klíčová slova
- gas-plasma-activated water, germination, gibberellin oxidase, photo-dependent dormancy, seed dormancy, tobacco,
- MeSH
- Arabidopsis * fyziologie MeSH
- klíčení fyziologie MeSH
- semena rostlinná fyziologie MeSH
- tabák * MeSH
- vegetační klid fyziologie MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda MeSH
Seeds sense temperature, nutrient levels and light conditions to inform decision making on the timing of germination. Limited light availability for photoblastic species results in irregular germination timing and losses of population germination percentage. Seed industries are therefore looking for interventions to mitigate this risk. A growing area of research is water treated with gas plasma (GPAW), in which the formed solution is a complex consisting of reactive oxygen and nitrogen species. Gas plasma technology is widely used for sterilisation and is an emerging technology in the food processing industry. The use of the GPAW on seeds has previously led to an increase in germination performance, often attributed to bolstered antioxidant defence mechanisms. However, there is a limited understanding of how the solution may influence the mechanisms that govern seed dormancy and whether photoreceptor-driven germination mechanisms are affected. In our work, we studied how GPAW can influence the mechanisms that govern photo-dependent dormancy, isolating the effects at low fluence response (LFR) and very low fluence response (VLFR). The two defined light intensity thresholds affect germination through different phytochrome photoreceptors, PHYB and PHYA, respectively; we found that GPAW showed a significant increase in population germination percentage under VLFR and further described how each treatment affects key physiological regulators.
Zobrazit více v PubMed
Finch-Savage W., Bassel G. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016;67:567–591. doi: 10.1093/jxb/erv490. PubMed DOI
Finch-Savage W.E., Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171:501–523. doi: 10.1111/j.1469-8137.2006.01787.x. PubMed DOI
Finch-Savage W.E., Footitt S. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. J. Exp. Bot. 2017;68:843–856. doi: 10.1093/jxb/erw477. PubMed DOI
Batlla D., Benech-Arnold R.L. Weed seed germination and the light environment: Implications for weed management. Weed Biol. Manag. 2014;14:77–87. doi: 10.1111/wbm.12039. DOI
Kim W.-Y., Fujiwara S., Suh S.-S., Kim J., Kim Y., Han L., David K., Putterill J., Nam H.G., Somers D.E. ZEITLUPE is a circadian photoreceptor stabilized by GIGANTEA in blue light. Nature. 2007;449:356–360. doi: 10.1038/nature06132. PubMed DOI
Strasser B., Sánchez-Lamas M., Yanovsky M., Casal J., Cerdán P. Arabidopsis thaliana life without phytochromes. Proc. Natl. Acad. Sci. USA. 2010;107:4776–4781. doi: 10.1073/pnas.0910446107. PubMed DOI PMC
Legris M., Ince Y.Ç., Fankhauser C. Molecular mechanisms underlying phytochrome-controlled morphogenesis in plants. Nat. Commun. 2019;10:5219. doi: 10.1038/s41467-019-13045-0. PubMed DOI PMC
Sullivan J.A., Deng X.W. From seed to seed: The role of photoreceptors in Arabidopsis development. Dev. Biol. 2003;260:289–297. doi: 10.1016/S0012-1606(03)00212-4. PubMed DOI
Botto J.F., Sanchez R.A., Whitelam G.C., Casal J.J. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol. 1996;110:439–444. doi: 10.1104/pp.110.2.439. PubMed DOI PMC
Shinomura T. Phytochrome regulation of seed germination. J Plant Res. 1997;110:151–161. doi: 10.1007/BF02506854. PubMed DOI
Borthwick H.A., Hendricks S.B., Parker M.W., Toole E.H., Toole V.K. A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci. USA. 1952;38:662–666. doi: 10.1073/pnas.38.8.662. PubMed DOI PMC
Jiang Z., Xu G., Jing Y., Tang W., Lin R. Phytochrome B and REVEILLE1/2-mediated signalling controls seed dormancy and germination in Arabidopsis. Nat. Commun. 2016;7:12377. doi: 10.1038/ncomms12377. PubMed DOI PMC
Lee K.P., Piskurewicz U., Turečková V., Carat S., Chappuis R., Strnad M., Fankhauser C., Lopez-Molina L. Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes Dev. 2012;26:1984–1996. doi: 10.1101/gad.194266.112. PubMed DOI PMC
Yan A., Chen Z. The control of seed dormancy and germination by temperature, light and nitrate. Bot. Rev. 2020;86:39–75. doi: 10.1007/s12229-020-09220-4. DOI
Dirk L.M.A., Kumar S., Majee M., Downie A.B. PHYTOCHROME INTERACTING FACTOR1 interactions leading to the completion or prolongation of seed germination. Plant Signal. Behav. 2018;13:e1525999. doi: 10.1080/15592324.2018.1525999. PubMed DOI PMC
Footitt S., Douterelo-Soler I., Clay H., Finch-Savage W.E. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proc. Natl. Acad. Sci. USA. 2011;108:20236–20241. doi: 10.1073/pnas.1116325108. PubMed DOI PMC
Barros-Galvão T., Dave A., Gilday A.D., Harvey D., Vaistij F.E., Graham I.A. ABA INSENSITIVE4 promotes rather than represses PHYA-dependent seed germination in Arabidopsis thaliana. New Phytol. 2020;226:953–956. doi: 10.1111/nph.16363. PubMed DOI PMC
Arana M.V., Burgin M.J., de Miguel L.C., Sánchez R.A. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds. J. Exp. Bot. 2007;58:3997–4004. doi: 10.1093/jxb/erm256. PubMed DOI
Steinbrecher T., Leubner-Metzger G. The biomechanics of seed germination. J. Exp. Bot. 2017;68:765–783. doi: 10.1093/jxb/erw428. PubMed DOI
Ogawa M., Hanada A., Yamauchi Y., Kuwahara A., Kamiya Y., Yamaguchi S. Gibberellin biosynthesis and response during Arabidopsis seed germination. Plant Cell. 2003;15:1591–1604. doi: 10.1105/tpc.011650. PubMed DOI PMC
Bourke P., Ziuzina D., Boehm D., Cullen P., Keener K. The potential of cold plasma for safe and sustainable food production. Trends Biotechnol. 2018;36:615–626. doi: 10.1016/j.tibtech.2017.11.001. PubMed DOI
Weltmann K.-D., Kolb J.F., Holub M., Uhrlandt D., Šimek M., Ostrikov K., Hamaguchi S., Cvelbar U., Černák M., Locke B., et al. The future for plasma science and technology. Plasma Process. Polym. 2019;16:1800118. doi: 10.1002/ppap.201800118. DOI
Araújo S.d.S., Paparella S., Dondi D., Bentivoglio A., Carbonera D., Balestrazzi A. Physical Methods for Seed Invigoration: Advantages and Challenges in Seed Technology. Front. Plant Sci. 2016;7:646. doi: 10.3389/fpls.2016.00646. PubMed DOI PMC
Pedrini S., Merritt D.J., Stevens J., Dixon K. Seed Coating: Science or Marketing Spin? Trends Plant Sci. 2017;22:106–116. doi: 10.1016/j.tplants.2016.11.002. PubMed DOI
Sharma K.K., Singh U.S., Sharma P., Kumar A., Sharma L. Seed treatments for sustainable agriculture—A review. J. Appl. Nat. Sci. 2015;7:521–539. doi: 10.31018/jans.v7i1.641. DOI
Lukes P., Dolezalova E., Sisrova I., Clupek M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2and HNO2. Plasma Sources Sci. Technol. 2014;23:015019. doi: 10.1088/0963-0252/23/1/015019. DOI
Montazersadgh F., Wright A., Ren J., Shaw A., Neretti G., Bandulasena H., Iza F. Influence of the On-time on the Ozone Production in Pulsed Dielectric Barrier Discharges. Plasma. 2019;2:39–50. doi: 10.3390/plasma2010005. DOI
Bradu C., Kutasi K., Magureanu M., Puač N., Živković S. Reactive nitrogen species in plasma-activated water: Generation, chemistry and application in agriculture. J. Phys. D Appl. Phys. 2020;53:223001. doi: 10.1088/1361-6463/ab795a. DOI
Shaw A., Shama G., Iza F. Emerging applications of low temperature gas plasmas in the food industry. Biointerphases. 2015;10:029402. doi: 10.1116/1.4914029. PubMed DOI
Adamovich I., Baalrud S.D., Bogaerts A., Bruggeman P.J., Cappelli M., Colombo V., Czarnetzki U., Ebert U., Eden J.G., Favia P., et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017;50:323001. doi: 10.1088/1361-6463/aa76f5. DOI
Grainge G., Nakabayashi K., Steinbrecher T., Kennedy S., Ren J., Iza F., Leubner-Metzger G. Molecular mechanisms of seed dormancy release by gas plasma-activated water technology. J. Exp. Bot. 2022 doi: 10.1093/jxb/erac150. PubMed DOI PMC
Zhou L., Ye Y., Zhao Q., Du X., Zakari S., Su D., Pan G., Cheng F. Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination in lpa rice. Plant Growth Regul. 2018;85:411–424. doi: 10.1007/s10725-018-0402-8. DOI
Leubner-Metzger G. Functions and regulation of ß-1,3-glucanase during seed germination, dormancy release and after-ripening. Seed Sci. Res. 2003;13:17–34. doi: 10.1079/SSR2002121. DOI
Leubner-Metzger G. Seed after-ripening and over-expression of class I ß-1,3-glucanase confer maternal effects on tobacco testa rupture and dormancy release. Planta. 2002;215:959–968. doi: 10.1007/s00425-002-0837-y. PubMed DOI
Dong S., Liu Y., Zhang M., Zhang J., Wang J.H., Li Z.H. Maternal light environment interacts with genotype in regulating seed photodormancy in tobacco. Environ. Exp. Bot. 2022;194:104745. doi: 10.1016/j.envexpbot.2021.104745. DOI
Fragoso V., Oh Y., Kim S., Gase K., Baldwin I. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. J. Integr. Plant Biol. 2017;59:205–224. doi: 10.1111/jipb.12516. PubMed DOI
Adam E., Szell M., Szekeres M., Schäfer E., Nagy F. The developmental and tissue-specific expression of tobacco phytochrome-A genes. Plant J. 1994;6:283–293. doi: 10.1046/j.1365-313X.1994.06030283.x. DOI
Fernández A.P., Gil P., Valkai I., Nagy F., Schäfer E. Analysis of the Function of the Photoreceptors Phytochrome B and Phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana. Plant Cell Physiol. 2005;46:790–796. doi: 10.1093/pcp/pci073. PubMed DOI
Oh Y., Fragoso V., Guzzonato F., Kim S., Park C., Baldwin I. Root-expressed phytochromes B1 and B2, but not PhyA and Cry2, regulate shoot growth in nature. Plant Cell Environ. 2018;41:2577–2588. doi: 10.1111/pce.13341. PubMed DOI
Casal J.J., Sanchez R.A. Phytochromes and seed germination. Seed Sci. Res. 1998;8:317–329. doi: 10.1017/S0960258500004256. DOI
Borisjuk L., Rolletschek H. The oxygen status of the developing seed. New Phytol. 2009;182:17–30. doi: 10.1111/j.1469-8137.2008.02752.x. PubMed DOI
Mérai Z., Graeber K., Wilhelmsson P., Ullrich K.K., Arshad W., Grosche C., Tarkowská D., Turečková V., Strnad M., Rensing S.A., et al. Aethionema arabicum: A novel model plant to study the light control of seed germination. J. Exp. Bot. 2019;70:3313–3328. doi: 10.1093/jxb/erz146. PubMed DOI PMC
Bolouki N., Kuan W.-H., Huang Y.-Y., Hsieh J.-H. Characterizations of a Plasma-Water System Generated by Repetitive Microsecond Pulsed Discharge with Air, Nitrogen, Oxygen, and Argon Gases Species. Appl. Sci. 2021;11:6158. doi: 10.3390/app11136158. DOI
Lee K.J.D., Dekkers B.J.W., Steinbrecher T., Walsh C.T., Bacic A., Bentsink L., Leubner-Metzger G., Knox J.P. Distinct cell wall architectures in seed endosperms in representatives of the Brassicaceae and Solanaceae. Plant Physiol. 2012;160:1551–1566. doi: 10.1104/pp.112.203661. PubMed DOI PMC
Okamoto M., Kuwahara A., Seo M., Kushiro T., Asami T., Hirai N., Kamiya Y., Koshiba T., Nambara E. CYP707A1 and CYP707A2, which encode ABA 8’-hydroxylases, are indispensable for a proper control of seed dormancy and germination in Arabidopsis. Plant Physiol. 2006;141:97–107. doi: 10.1104/pp.106.079475. PubMed DOI PMC
Leubner-Metzger G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways. Planta. 2001;213:758–763. doi: 10.1007/s004250100542. PubMed DOI
Zhao H., Bao Y. PIF4: Integrator of light and temperature cues in plant growth. Plant Sci. 2021;313:111086. doi: 10.1016/j.plantsci.2021.111086. PubMed DOI
Saud S., Shi Z., Xiong L., Danish S., Datta R., Ahmad I., Fahad S., Banout J. Recognizing the Basics of Phytochrome-Interacting Factors in Plants for Abiotic Stress Tolerance. Plant Stress. 2022;3:100050. doi: 10.1016/j.stress.2021.100050. DOI
Locke B.R., Lukea P., Brisset J.L. In: Plasma Chemistry and Catalysis in Gases and Liquids. Vasile I.P., Magureanu M., Petr L., editors. Wiley-VCH; Weinheim, Germany: 2012. pp. 185–241. Chapter 6.
Gibbs D.J., Md Isa N., Movahedi M., Lozano-Juste J., Mendiondo G.M., Berckhan S., Marín-de la Rosa N., Vicente Conde J., Sousa Correia C., Pearce S.P., et al. Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol. Cell. 2014;53:369–379. doi: 10.1016/j.molcel.2013.12.020. PubMed DOI PMC
Bethke P.C., Libourel I.G.L., Jones R.L. Nitric oxide reduces seed dormancy in Arabidopsis. J. Exp. Bot. 2006;57:517–526. doi: 10.1093/jxb/erj060. PubMed DOI
Liu Y., Zhang J. Rapid accumulation of NO regulates ABA catabolism and seed dormancy during imbibition in Arabidopsis. Plant Signal. Behav. 2009;4:905–907. doi: 10.4161/psb.4.9.9532. PubMed DOI PMC
Albertos P., Romero-Puertas M.C., Tatematsu K., Mateos I., Sánchez-Vicente I., Nambara E., Lorenzo O. S-nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat. Commun. 2015;6:8669. doi: 10.1038/ncomms9669. PubMed DOI PMC
Holman T.J., Jones P.D., Russell L., Medhurst A., Ubeda Tomas S., Talloji P., Marquez J., Schmuths H., Tung S.A., Taylor I., et al. The N-end rule pathway promotes seed germination and establishment through removal of ABA sensitivity in Arabidopsis. Proc. Natl. Acad. Sci. USA. 2009;106:4549–4554. doi: 10.1073/pnas.0810280106. PubMed DOI PMC
Yan D., Easwaran V., Chau V., Okamoto M., Ierullo M., Kimura M., Endo A., Yano R., Pasha A., Gong Y., et al. NIN-like protein 8 is a master regulator of nitrate-promoted seed germination in Arabidopsis. Nat. Commun. 2016;7:13179. doi: 10.1038/ncomms13179. PubMed DOI PMC
Li Z., Gao Y., Zhang Y., Lin C., Gong D., Guan Y., Hu J. Reactive Oxygen Species and Gibberellin Acid Mutual Induction to Regulate Tobacco Seed Germination. Front. Plant Sci. 2018;9:1279. doi: 10.3389/fpls.2018.01279. PubMed DOI PMC
Müller K., Linkies A., Vreeburg R.A.M., Fry S.C., Krieger-Liszkay A., Leubner-Metzger G. In vivo cell wall loosening by hydroxyl radicals during cress (Lepidium sativum L.) seed germination and elongation growth. Plant Physiol. 2009;150:1855–1865. doi: 10.1104/pp.109.139204. PubMed DOI PMC
Wright A., Bandulasena H., Ibenegbu C., Leak D., Holmes T., Zimmerman W., Shaw A., Iza F. Dielectric barrier discharge plasma microbubble reactor for pretreatment of lignocellulosic biomass. AIChE J. 2018;64:3803–3816. doi: 10.1002/aic.16212. PubMed DOI PMC
Eisenberg G. Colorimetric Determination of Hydrogen Peroxide. Ind. Eng. Chem. Anal. Ed. 1943;15:327–328. doi: 10.1021/i560117a011. DOI
García-Robledo E., Corzo A., Papaspyrou S. A fast and direct spectrophotometric method for the sequential determination of nitrate and nitrite at low concentrations in small volumes. Mar. Chem. 2014;162:30–36. doi: 10.1016/j.marchem.2014.03.002. DOI
Graeber K., Linkies A., Wood A., Leubner-Metzger G. A guideline to family-wide comparative state-of-the-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011;23:2045–2063. doi: 10.1105/tpc.111.084103. PubMed DOI PMC
Sierro N., Battey J.N.D., Ouadi S., Bakaher N., Bovet L., Willig A., Goepfert S., Peitsch M.C., Ivanov N.V. The tobacco genome sequence and its comparison with those of tomato and potato. Nat. Commun. 2014;5:3833. doi: 10.1038/ncomms4833. PubMed DOI PMC
Dekkers B.J., Willems L., Bassel G.W., van Bolderen-Veldkamp R.P.M., Ligterink W., Hilhorst H.W.M., Bentsink L. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol. 2012;53:28–37. doi: 10.1093/pcp/pcr113. PubMed DOI