Spark-Discharge-Activated 3D-Printed Electrochemical Sensors
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38867513
PubMed Central
PMC11209655
DOI
10.1021/acs.analchem.4c01249
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
3D printing technology is a tremendously powerful technology to fabricate electrochemical sensing devices. However, current conductive filaments are not aimed at electrochemical applications and therefore require intense activation protocols to unleash a suitable electrochemical performance. Current activation methods based on (electro)chemical activation (using strong alkaline solutions and organic solvents and/or electrochemical treatments) or combined approaches are time-consuming and require hazardous chemicals and dedicated operator intervention. Here, pioneering spark-discharge-activated 3D-printed electrodes were developed and characterized, and it was demonstrated that their electrochemical performance was greatly improved by the effective removal of the thermoplastic support polylactic acid (PLA) as well as the formation of sponge-like and low-dimensional carbon nanostructures. This reagent-free approach consists of a direct, fast, and automatized spark discharge between the 3D-electrode and the respective graphite pencil electrode tip using a high-voltage power supply. Activated electrodes were challenged toward the simultaneous voltammetric determination of dopamine (DP) and serotonin (5-HT) in cell culture media. Spark discharge has been demonstrated as a promising approach for conductive filament activation as it is a fast, green (0.94 GREEnness Metric Approach), and automatized procedure that can be integrated into the 3D printing pipeline.
Department of Chemistry Masaryk University 625 00 Brno Czech Republic
Department of Chemistry University of Ioannina 45 110 Ioannina Greece
Zobrazit více v PubMed
Abdalla A.; Patel B. A. 3D Printed Electrochemical Sensors. Annu. Rev. Anal. Chem. 2021, 14, 47–63. 10.1146/annurev-anchem-091120-093659. PubMed DOI
Muñoz J.; Pumera M. 3D-printed biosensors for electrochemical and optical applications. TrAC, Trends Anal. Chem. 2020, 128 (6), 115933.10.1016/j.trac.2020.115933. DOI
Stefano J. S.; Kalinke C.; da Rocha R. G.; Rocha D. P.; da Silva V. A.; Bonacin J. A.; Angnes L.; Richter E. M.; Janegitz B. C.; Muñoz A. A. Electrochemical (Bio)Sensors Enabled by Fused Deposition Modeling-Based 3D Printing: A Guide to Selecting Designs, Printing Parameters, and Post-Treatment Protocols. Anal. Chem. 2022, 94 (17), 6417–6429. 10.1021/acs.analchem.1c05523. PubMed DOI
Silva-Neto H. A.; Dias A. A.; Coltro W. K. T. 3D-printed electrochemical platform with multi-purpose carbon black sensing electrodes. Microchim. Acta 2022, 189 (6), 235.10.1007/s00604-022-05323-4. PubMed DOI PMC
Hernández-Rodríguez J. F.; Rojas D.; Escarpa A. Electrochemical fluidic fused filament fabricated devices (eF4D): In-channel electrode activation. Sens. Actuat. B-Chem. 2023, 393, 134290.10.1016/j.snb.2023.134290. DOI
O’Neil G. D.; Ahmed S.; Halloran K.; Janusz J. N.; Rodríguez A.; Terrero Rodríguez I. M. Single-step fabrication of electrochemical flow cells utilizing multi-material 3D printing. Electrochem. Commun. 2019, 99, 56–60. 10.1016/j.elecom.2018.12.006. DOI
Katseli V.; Economou A.; Kokkinos C. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: Application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta 2020, 208, 120388.10.1016/j.talanta.2019.120388. PubMed DOI
Janegitz B. C.; Crapnell R. D.; de Oliveira P. R.; Kalinke C.; Whittingham M. J.; Garcia-Miranda Ferrari A.; Banks C. E. Novel Additive Manufactured Multielectrode Electrochemical Cell with Honeycomb Inspired Design for the Detection of Methyl Parathion in Honey Samples. ACS Meas. Sci. Au 2023, 3 (3), 217–225. 10.1021/acsmeasuresciau.3c00003. PubMed DOI PMC
Walsh D. I.; Kong D. S.; Murthy S. K.; Carr P. A. Enabling Microfluidics: from Clean Rooms to Makerspaces. Trends Biotechnol. 2017, 35 (5), 383–392. 10.1016/j.tibtech.2017.01.001. PubMed DOI PMC
Shergill R. S.; Patel B. A. Preprinting Saponification of Carbon Thermoplastic Filaments Provides Ready-to-Use Electrochemical Sensors. ACS Appl. Electron. Mater. 2023, 5 (9), 5120–5128. 10.1021/acsaelm.3c00862. DOI
Hernández-Rodríguez J. F.; Rojas D.; Escarpa A. Print-Pause-Print Fabrication of Tailored Electrochemical Microfluidic Devices. Anal. Chem. 2023, 95 (51), 18679–18684. 10.1021/acs.analchem.3c03364. PubMed DOI PMC
Kwaczyński K.; Szymaniec O.; Bobrowska D. M.; Poltorak L. Solvent-activated 3D-printed electrodes and their electroanalytical potential. Sci. Rep. 2023, 13, 22797.10.1038/s41598-023-49599-9. PubMed DOI PMC
Gusmão R.; Browne M. P.; Sofer Z.; Pumera M. The capacitance and electron transfer of 3D-printed graphene electrodes are dramatically influenced by the type of solvent used for pre-treatment. Electrochem. Commun. 2019, 102, 83–88. 10.1016/j.elecom.2019.04.004. DOI
Wirth D. M.; Sheaff M. J.; Waldman J. V.; Symcox M. P.; Whitehead H. D.; Sharp J. D.; Doerfler J. R.; Lamar A. A.; LeBlanc G. Electrolysis Activation of Fused-Filament-Fabrication 3D-Printed Electrodes for Electrochemical and Spectroelectrochemical Analysis. Anal. Chem. 2019, 91 (9), 5553–5557. 10.1021/acs.analchem.9b01331. PubMed DOI
Crevillen A. G.; Mayorga-Martinez C. C.; Vaghasiya J. V.; Pumera M. 3D-Printed SARS-CoV-2 RNA Genosensing Microfluidic System. Adv. Mater Technol. 2022, 7, 2101121.10.1002/admt.202101121. PubMed DOI PMC
Redondo E.; Muñoz J.; Pumera M. Green activation using reducing agents of carbon-based 3D printed electrodes: Turning good electrodes to great. Carbon 2021, 175, 413–419. 10.1016/j.carbon.2021.01.107. DOI
Richter E. M.; Rocha D. P.; Cardoso R. M.; Keefe E. M.; Foster C. W.; Munoz R. A. A.; Banks C. E. Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Anal. Chem. 2019, 91 (20), 12844–12851. 10.1021/acs.analchem.9b02573. PubMed DOI
Rocha D. P.; Ataide V. N.; de Siervo A.; Gonçalves J. M.; Munoz R. A. A.; Paixão T. R. L. C.; Angnes L. Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chem. Eng. J. 2021, 425, 130594.10.1016/j.cej.2021.130594. DOI
Pereira J. F. S.; Rocha R. G.; Castro S. V. F.; João A. F.; Borges P. H. S.; Rocha D. P.; de Siervo A.; Richter E. M.; Nossol E.; Gelamo R. V.; Muñoz R. A. A. Reactive oxygen plasma treatment of 3D-printed carbon electrodes towards high-performance electrochemical sensors. Sens. Actuat. B-Chem. 2021, 347, 130651.10.1016/j.snb.2021.130651. DOI
Duarte L. C.; Baldo T. A.; Silva-Neto H. A.; Figueredo F.; Janegitz B. C.; Coltro W. K. T. 3D printing of compact electrochemical cell for sequential analysis of steroid hormones. Sens. Actuat. B-Chem. 2022, 364, 131850.10.1016/j.snb.2022.131850. DOI
Trachioti M. G.; Lazanas A. Ch; Prodromidis M. I. Cooperative interaction of Ketjen black coating and electrical discharge post-treatment towards advanced screen-printed electrodes for hydroquinone and catechol.. Sens. Actuat. B-Chem. 2024, 401, 134947.10.1016/j.snb.2023.134947. DOI
Trachioti M. G.; Tzianni E. I.; Riman D.; Jurmanova J.; Prodromidis M. I.; Hrbac J. Extended coverage of screen-printed graphite electrodes by spark discharge produced gold nanoparticles with a 3D positioning device. Assessment of sparking voltage-time characteristics to develop sensors with advanced electrocatalytic properties. Electrochim. Acta 2019, 304, 292–300. 10.1016/j.electacta.2019.03.004. DOI
Trachioti M. G.; Hemzal D.; Hrbac J.; Prodromidis M. I. Generation of graphite nanomaterials from pencil leads with the aid of a 3D positioning sparking device: application to the voltammetric determination of nitroaromatic explosives. Sens. Actuat. B-Chem. 2020, 310, 127871.10.1016/j.snb.2020.127871. DOI
Crapnell R. D.; Garcia-Miranda Ferrari A.; Whittingham M. J.; Sigley E.; Hurst N. J.; Keefe E. M.; Banks C. E. Adjusting the Connection Length of Additively Manufactured Electrodes Changes the Electrochemical and Electroanalytical Performance. Sensors 2022, 22 (23), 9521.10.3390/s22239521. PubMed DOI PMC
Veloso W. B.; Paixão T. R. L. C.; Meloni G. N. 3D printed electrodes design and voltammetric response. Electrochim. Acta 2023, 449, 142166.10.1016/j.electacta.2023.142166. DOI
Trachioti M. G.; Hrbac J.; Prodromidis M. I. Determination of 8– hydroxy– 2′– deoxyguanosine in urine with “linear” mode sparked graphite screen-printed electrodes. Electrochim. Acta 2021, 399, 139371.10.1016/j.electacta.2021.139371. DOI
Shergill R. S.; Miller C. L.; Patel B. A. Influence of instrument parameters on the electrochemical activity of 3D printed carbon thermoplastic electrodes. Sci. Rep. 2023, 13 (1), 339.10.1038/s41598-023-27656-7. PubMed DOI PMC
Bin Hamzah H. H.; Keattch O.; Covill D.; Patel B. A. The effects of printing orientation on the electrochemical behaviour of 3D printed acrylonitrile butadiene styrene (ABS)/carbon black electrodes. Sci. Rep. 2018, 8 (1), 9135.10.1038/s41598-018-27188-5. PubMed DOI PMC
Lazanas A. Ch.; Prodromidis M. I. Electrochemical Impedance Spectroscopy-A Tutorial. ACS Meas. Sci. Au. 2023, 3, 162–193. 10.1021/acsmeasuresciau.2c00070. PubMed DOI PMC
Chieng B. W.; Ibrahim N. A.; Yunus W. M. Z. W.; Hussein M. Z. Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites: Effects of Graphene Nanoplatelets. Polymers 2014, 6 (1), 93–104. 10.3390/polym6010093. DOI
Singla P.; Mehta R.; Berek D.; Upadhyay S. N. Microwave Assisted Synthesis of Poly(lactic acid) and its Characterization using Size Exclusion Chromatography. J. Macromol. Sci. A 2012, 49 (11), 963–970. 10.1080/10601325.2012.722858. DOI
Rocha D. P.; Squissato A. L.; da Silva S. M.; Richter E. M.; Munoz R. A. A. Improved electrochemical detection of metals in biological samples using 3D-printed electrode: Chemical/electrochemical treatment exposes carbon-black conductive sites. Electrochim. Acta 2020, 335, 135688.10.1016/j.electacta.2020.135688. DOI
Qin D.; Kean R. T. Crystallinity Determination of Polylactide by FT-Raman Spectrometry. Appl. Spectrosc. 1998, 52 (4), 488–495. 10.1366/0003702981943950. DOI
Politis M.; Niccolini F. Serotonin in Parkinson’s disease. Behav. Brain Res. 2015, 277, 136–145. 10.1016/j.bbr.2014.07.037. PubMed DOI
Claeysen S.; Bockaert J.; Giannoni P. Serotonin: A New Hope in Alzheimer’s Disease?. ACS Chem. Neurosci. 2015, 6 (7), 940–943. 10.1021/acschemneuro.5b00135. PubMed DOI
Aaldijk E.; Vermeiren Y. The role of serotonin within the microbiota-gut-brain axis in the development of Alzheimer’s disease: A narrative review. Ageing Res. Rev. 2022, 75, 101556.10.1016/j.arr.2021.101556. PubMed DOI
Pan X.; Kaminga A. C.; Wen S. W.; Wu X.; Acheampong K.; Liu A. Dopamine and Dopamine Receptors in Alzheimer’s Disease: A Systematic Review and Network Meta-Analysis. Front. Aging Neurosci. 2019, 11, 175.10.3389/fnagi.2019.00175. PubMed DOI PMC
Martorana A.; Koch G. Is dopamine involved in Alzheimer’s disease?. Front. Aging Neurosci. 2014, 6, 252.10.3389/fnagi.2014.00252. PubMed DOI PMC
Latif S.; Jahangeer M.; Maknoon Razia D.; Ashiq M.; Ghaffar A.; Akram M.; El Allam A.; Bouyahya A.; Garipova L.; Ali Shariati M.; Thiruvengadam M.; Azam Ansari M. Dopamine in Parkinson’s disease. Clin. Chim. Acta 2021, 522, 114–126. 10.1016/j.cca.2021.08.009. PubMed DOI
Rojas D.; Della Pelle F.; Del Carlo M.; Compagnone D.; Escarpa A. Group VI transition metal dichalcogenides as antifouling transducers for electrochemical oxidation of catechol-containing structures. Electrochem. Commun. 2020, 115, 106718.10.1016/j.elecom.2020.106718. DOI
de la Guardia M. Green analytical chemistry. TrAC, Trends Anal. Chem. 2010, 29 (7), 577.10.1016/j.trac.2010.06.001. DOI
Plotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta 2018, 181, 204–209. 10.1016/j.talanta.2018.01.013. PubMed DOI
Galuszka A.; Konieczka P.; Migaszewski Z. M.; Namiesnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC, Trends Anal. Chem. 2012, 37, 61–72. 10.1016/j.trac.2012.03.013. DOI
Pena-Pereira F.; Wojnowski W.; Tobiszewski M. AGREE-Analytical GREEnness Metric Approach and Software. Anal. Chem. 2020, 92, 10076–10082. 10.1021/acs.analchem.0c01887. PubMed DOI PMC