Lab-on-a-Scalpel: Medical Tool Incorporating a Disposable Fully 3D-Printed Electrochemical Cell Promoting Drop-Volume Chemical Analysis in the Operating Theater
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40353603
PubMed Central
PMC12120817
DOI
10.1021/acs.analchem.5c00599
Knihovny.cz E-zdroje
- MeSH
- 3D tisk * MeSH
- adrenalin * analýza krev MeSH
- elektrochemické techniky * přístrojové vybavení MeSH
- laboratoř na čipu * MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adrenalin * MeSH
Surgical operations are intricate and invasive procedures that require continuous monitoring of the patient's biochemical profile. Point-of-care testing would allow healthcare professionals to identify abnormalities and make the necessary interventions to minimize the risk of complications and ensure patient safety. To this end, we report the development of a disposable and compact fully 3D-printed electrochemical cell incorporated into a medical scalpel (Lab-on-a-Scalpel), aiming to promote on-site (electro)chemical analysis in the operating theater. This multifunctional device minimizes the number of instruments needed during surgery and can be fabricated on-demand by using a desktop-sized 3D printer at a very low cost. The performance of the Lab-on-a-Scalpel sensing device was evaluated over various electrochemical techniques (cyclic voltammetry, amperometry, and differential pulse voltammetry) and different setups (stirring, drop-volume analysis, polarization potentials, etc.) for the determination of epinephrine. Results showed attractive analytical figures-of-merit, with the limit of detection (LOD) reaching 0.13 μM, and high accuracy in recovery studies conducted on artificial blood samples. Our findings suggest that Lab-on-a-Scalpel is a valuable tool that enables near-patient diagnostics with a minimum sample volume and holds promise to become an essential tool for robotic-assisted surgery.
Zobrazit více v PubMed
Cheng H., Clymer J. W., Po-Han Chen B., Sadeghirad B., Ferko N. C., Cameron C. G., Hinoul P.. Prolonged Operative Duration Is Associated with Complications: A Systematic Review and Meta-Analysis. Journal of Surgical Research. 2018;229:134–144. doi: 10.1016/j.jss.2018.03.022. PubMed DOI
Aseni P., Orsenigo S., Storti E., Pulici M., Arlati S.. Current Concepts of Perioperative Monitoring in High-Risk Surgical Patients: A Review. Patient Saf. Surg. 2019;13:32. doi: 10.1186/s13037-019-0213-5. PubMed DOI PMC
Noor, Z. M. Life-Threatening Cardiac Arrhythmias during Anesthesia and Surgery. In Cardiac Arrhythmias-Translational Approach from Pathophysiology to Advanced Care; IntechOpen: 2022.
Finnerty C. C., Mabvuure N. T., Ali A., Kozar R. A., Herndon D. N., Martindale R. G., McClave S. A., Kozar R. A., Heyland D. K.. The Surgically Induced Stress Response. J. Parenter. Enteral Nutr. 2013;37:21S–29S. doi: 10.1177/0148607113496117. PubMed DOI PMC
Preeshagul I., Gharbaran R., Jeong K. H., Abdel-Razek A., Lee L. Y., Elman E., Suh K. S.. Potential Biomarkers for Predicting Outcomes in CABG Cardiothoracic Surgeries. J. Cardiothorac. Surg. 2013;8:176. doi: 10.1186/1749-8090-8-176. PubMed DOI PMC
Nourie N., Ghaleb R., Lefaucheur C., Louis K.. Toward Precision Medicine: Exploring the Landscape of Biomarkers in Acute Kidney Injury. Biomolecules. 2024;14:82. doi: 10.3390/biom14010082. PubMed DOI PMC
Shushan B.. A Review of Clinical Diagnostic Applications of Liquid Chromatography- Tandem Mass Spectrometry. Mass Spectrom Rev. 2010;29:930–944. doi: 10.1002/mas.20295. PubMed DOI
Sahu R. K., Mordechai S.. Spectroscopic Techniques in Medicine: The Future of Diagnostics. Appl. Spectrosc Rev. 2016;51:484–499. doi: 10.1080/05704928.2016.1157809. DOI
Tzianni Ε. I., Moutsios I., Moschovas D., Avgeropoulos A., Govaris K., Panagiotidis L., Prodromidis M. I.. Smartphone Paired SIM Card-Type Integrated Creatinine Biosensor. Biosens Bioelectron. 2022;207:114204. doi: 10.1016/j.bios.2022.114204. PubMed DOI
Tzianni E. I., Hrbac J., Christodoulou D. K., Prodromidis M. I.. A Portable Medical Diagnostic Device Utilizing Free-Standing Responsive Polymer Film-Based Biosensors and Low-Cost Transducer for Point-of-Care Applications. Sens Actuators B Chem. 2020;304:127356. doi: 10.1016/j.snb.2019.127356. DOI
Christodouleas D. C., Kaur B., Chorti P.. From Point-of-Care Testing to EHealth Diagnostic Devices (EDiagnostics) ACS Cent Sci. 2018;4:1600–1616. doi: 10.1021/acscentsci.8b00625. PubMed DOI PMC
Rhee A. J., Kahn R. A.. Laboratory Point-of-Care Monitoring in the Operating Room. Current Opinion in Anaesthesiology. 2010;23:741–748. doi: 10.1097/ACO.0b013e32834015bd. PubMed DOI
Anik, U. Electrochemical Medical Biosensors for POC Applications. In Medical Biosensors for Point of Care (POC) Applications; Woodhead Publishing: 2017; pp 275–292.
Ramos D. L. O., de Faria L. V., Alves D. A. C., Muñoz R. A. A., dos Santos W. T. P., Richter E. M.. Electrochemical Platform Produced by 3D Printing for Analysis of Small Volumes Using Different Electrode Materials. Talanta. 2023;265:124832. doi: 10.1016/j.talanta.2023.124832. PubMed DOI
Cardoso R. M., Kalinke C., Rocha R. G., dos Santos P. L., Rocha D. P., Oliveira P. R., Janegitz B. C., Bonacin J. A., Richter E. M., Munoz R. A. A.. Additive-Manufactured (3D-Printed) Electrochemical Sensors: A Critical Review. Anal. Chim. Acta. 2020;1118:73–91. doi: 10.1016/j.aca.2020.03.028. PubMed DOI
Katseli V., Thomaidis N., Economou A., Kokkinos C.. Miniature 3D-Printed Integrated Electrochemical Cell for Trace Voltammetric Hg(II) Determination. Sens Actuators B Chem. 2020;308:127715. doi: 10.1016/j.snb.2020.127715. DOI
Kalinke C., Neumsteir N. V., Roberto de Oliveira P., Janegitz B. C., Bonacin J. A.. Sensing of L-Methionine in Biological Samples through Fully 3D-Printed Electrodes. Anal. Chim. Acta. 2021;1142:135–142. doi: 10.1016/j.aca.2020.10.034. PubMed DOI
Koukouviti E., Plessas A. K., Pagkali V., Economou A., Papaefstathiou G. S., Kokkinos C.. 3D-Printed Electrochemical Glucose Device with Integrated Fe(II)-MOF Nanozyme. Microchim. Acta. 2023;190:274. doi: 10.1007/s00604-023-05860-6. PubMed DOI PMC
Liu M. M., Zhong Y., Chen Y., Wu L. N., Chen W., Lin X. H., Lei Y., Liu A. L.. Electrochemical Monitoring the Effect of Drug Intervention on PC12 Cell Damage Model Cultured on Paper-PLA 3D Printed Device. Anal. Chim. Acta. 2022;1194:339409. doi: 10.1016/j.aca.2021.339409. PubMed DOI
de Matos Morawski F., Martins G., Ramos M. K., Zarbin A. J. G., Blanes L., Bergamini M. F., Marcolino-Junior L. H.. A Versatile 3D Printed Multi-Electrode Cell for Determination of Three COVID-19 Biomarkers. Anal. Chim. Acta. 2023;1258:341169. doi: 10.1016/j.aca.2023.341169. PubMed DOI
Rosenberg P. H., Veering B. T., Urmey W. F.. Maximum Recommended Doses of Local Anesthetics: A Multifactorial Concept. Reg. Anesth. Pain Med. 2004;29:564–575. doi: 10.1016/j.rapm.2004.08.003. PubMed DOI
Hassanpour S. E., Zirakzadeh H., Aghajani Y.. The Effect of Subcutaneous Epinephrine Dosage on Blood Loss in Surgical Incisions. World J. Plast Surg. 2020;9:309–312. doi: 10.29252/wjps.9.3.309. PubMed DOI PMC
Koukouviti E., Kokkinos C.. 3D Printed Enzymatic Microchip for Multiplexed Electrochemical Biosensing. Anal. Chim. Acta. 2021;1186:339114. doi: 10.1016/j.aca.2021.339114. PubMed DOI
Papavasileiou A. V., Děkanovský L., Chacko L., Wu B., Luxa J., Regner J., Paštika J., Koňáková D., Sofer Z.. Unraveling the Versatility of Carbon Black – Polylactic Acid (CB/PLA) 3D-Printed Electrodes via Sustainable Electrochemical Activation. Small Methods. 2025:2402214. doi: 10.1002/smtd.202402214. PubMed DOI
Manzanares Palenzuela C. L., Novotný F., Krupička P., Sofer Z., Pumera M.. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Anal. Chem. 2018;90:5753–5757. doi: 10.1021/acs.analchem.8b00083. PubMed DOI
Carvalho M. S., Rocha R. G., Nascimento A. B., Araújo D. A. G., Paixão T. R. L. C., Lopes O. F., Richter E. M., Muñoz R. A. A.. Enhanced Electrochemical Performance of 3D-Printed Electrodes via Blue-Laser Irradiation and (Electro)Chemical Treatment. Electrochim. Acta. 2024;506:144995. doi: 10.1016/j.electacta.2024.144995. DOI
Cardoso R. M., Castro S. V. F., Silva M. N. T., Lima A. P., Santana M. H. P., Nossol E., Silva R. A. B., Richter E. M., Paixão T. R. L. C., Muñoz R. A. A.. 3D-Printed Flexible Device Combining Sampling and Detection of Explosives. Sens Actuators B Chem. 2019;292:308–313. doi: 10.1016/j.snb.2019.04.126. DOI
Hernández-Rodríguez J. F., Trachioti M. G., Hrbac J., Rojas D., Escarpa A., Prodromidis M. I.. Spark-Discharge-Activated 3D-Printed Electrochemical Sensors. Anal. Chem. 2024;96:10127–10133. doi: 10.1021/acs.analchem.4c01249. PubMed DOI PMC
Richter E. M., Rocha D. P., Cardoso R. M., Keefe E. M., Foster C. W., Munoz R. A. A., Banks C. E.. Complete Additively Manufactured (3D-Printed) Electrochemical Sensing Platform. Anal. Chem. 2019;91:12844–12851. doi: 10.1021/acs.analchem.9b02573. PubMed DOI
Kalinke C., Neumsteir N. V., de Oliveira Aparecido G., de Barros Ferraz T. V., dos Santos P. L., Janegitz B. C., Bonacin J. A.. Comparison of Activation Processes for 3D Printed PLA-Graphene Electrodes: Electrochemical Properties and Application for Sensing of Dopamine. Analyst. 2020;145:1207. doi: 10.1039/C9AN01926J. PubMed DOI
Honeychurch K. C., Rymansaib Z., Iravani P.. Anodic Stripping Voltammetric Determination of Zinc at a 3-D Printed Carbon Nanofiber–Graphite–Polystyrene Electrode Using a Carbon Pseudo-Reference Electrode. Sens Actuators B Chem. 2018;267:476–482. doi: 10.1016/j.snb.2018.04.054. DOI
Yi H., Li Z., Li K.. Application of Mesoporous SiO2-Modified Carbon Paste Electrode for Voltammetric Determination of Epinephrine. Russian Journal of Electrochemistry. 2013;49:1073–1080. doi: 10.1134/S1023193512080046. DOI
Sipuka D. S., Sebokolodi T. I., Olorundare F. O. G., Muzenda C., Nkwachukwu O. V., Nkosi D., Arotiba O. A.. Electrochemical Sensing of Epinephrine on a Carbon Nanofibers and Gold Nanoparticle-Modified Electrode. Electrocatalysis. 2023;14:9–17. doi: 10.1007/s12678-022-00769-9. DOI
Bacil R. P., Garcia P. H. M., Serrano S. H. P.. New Insights on the Electrochemical Mechanism of Epinephrine on Glassy Carbon Electrode. J. Electroanal. Chem. 2022;908:116111. doi: 10.1016/j.jelechem.2022.116111. DOI
Lavanya N., Fazio E., Neri F., Bonavita A., Leonardi S. G., Neri G., Sekar C.. Simultaneous Electrochemical Determination of Epinephrine and Uric Acid in the Presence of Ascorbic Acid Using SnO2/Graphene Nanocomposite Modified Glassy Carbon Electrode. Sens Actuators B Chem. 2015;221:1412–1422. doi: 10.1016/j.snb.2015.08.020. DOI
Canevari T. C., Nakamura M., Cincotto F. H., De Melo F. M., Toma H. E.. High Performance Electrochemical Sensors for Dopamine and Epinephrine Using Nanocrystalline Carbon Quantum Dots Obtained under Controlled Chronoamperometric Conditions. Electrochim. Acta. 2016;209:464–470. doi: 10.1016/j.electacta.2016.05.108. DOI
Teradale A. B., Lamani S. D., Ganesh P. S., Kumara Swamy B. E., Das S. N.. Niacin Film Coated Carbon Paste Electrode Sensor for the Determination of Epinephrine in Presence of Uric Acid: A Cyclic Voltammetric Study. Analytical Chemistry Letters. 2017;7:748–764. doi: 10.1080/22297928.2017.1396917. DOI
Shankar S. S., Shereema R. M., Rakhi R. B.. Electrochemical Determination of Adrenaline Using MXene/Graphite Composite Paste Electrodes. ACS Appl. Mater. Interfaces. 2018;10:43343–43351. doi: 10.1021/acsami.8b11741. PubMed DOI
Gopal P., Narasimha G., Reddy T. M.. Development, Validation and Enzyme Kinetic Evaluation of Multi Walled Carbon Nano Tubes Mediated Tyrosinase Based Electrochemical Biosensing Platform for the Voltammetric Monitoring of Epinephrine. Process Biochemistry. 2020;92:476–485. doi: 10.1016/j.procbio.2020.02.006. DOI
Li Z., Guo Y., Yue H., Gao X., Huang S., Zhang X., Yu Y., Zhang H., Zhang H.. Electrochemical Determination of Epinephrine Based on Ti3C2Tx MXene-Reduced Graphene Oxide/ITO Electrode. J. Electroanal. Chem. 2021;895:115425. doi: 10.1016/j.jelechem.2021.115425. DOI
Pecheu C. N., Tchieda V. K., Tajeu K. Y., Jiokeng S. L. Z., Lesch A., Tonle I. K., Ngameni E., Janiak C.. Electrochemical Determination of Epinephrine in Pharmaceutical Preparation Using Laponite Clay-Modified Graphene Inkjet-Printed Electrode. Molecules. 2023;28:5487. doi: 10.3390/molecules28145487. PubMed DOI PMC
da Silva V. A. O. P., Stefano J. S., Kalinke C., Bonacin J. A., Janegitz B. C.. Additive Manufacturing Sensor for Stress Biomarker Detection. Chemosensors. 2023;11:306. doi: 10.3390/chemosensors11050306. DOI
Rantataro S., Ferrer Pascual L., Laurila T.. Ascorbic Acid Does Not Necessarily Interfere with the Electrochemical Detection of Dopamine. Sci. Rep. 2022;12:20225. doi: 10.1038/s41598-022-24580-0. PubMed DOI PMC
Colan J., Davila A., Zhu Y., Aoyama T., Hasegawa Y.. OpenRST: An Open Platform for Customizable 3D Printed Cable-Driven Robotic Surgical Tools. IEEE Access. 2023;11:6092–6105. doi: 10.1109/ACCESS.2023.3236821. DOI