Advanced 3D-Printed Flexible Composite Electrodes of Diamond, Carbon Nanotubes, and Thermoplastic Polyurethane

. 2024 Dec 13 ; 6 (23) : 14638-14647. [epub] 20241119

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39697844

In this work, we pioneered the preparation of diamond-containing flexible electrodes using 3D printing technology. The herein developed procedure involves a unique integration of boron-doped diamond (BDD) microparticles and multi-walled carbon nanotubes (CNTs) within a flexible polymer, thermoplastic polyurethane (TPU). Initially, the process for the preparation of homogeneous filaments with optimal printability was addressed, leading to the development of two TPU/CNT/BDD composite electrodes with different CNT:BDD weight ratios (1:1 and 1:2), which were benchmarked against a TPU/CNT electrode. Scanning electron microscopy revealed a uniform distribution of conductive fillers within the composite materials with no signs of clustering or aggregation. Notably, increasing the proportion of BDD particles led to a 10-fold improvement in conductivity, from 0.12 S m-1 for TPU/CNT to 1.2 S m-1 for TPU/CNT/BDD (1:2). Cyclic voltammetry of the inorganic redox markers, [Ru(NH3)6]3+/2+ and [Fe(CN)6]3-/4-, also revealed a reduction in peak-to-peak separation (ΔE p) with a higher BDD content, indicating enhanced electron transfer kinetics. This was further confirmed by the highest apparent heterogeneous electron transfer rate constants (k 0 app) of 1 × 10-3 cm s-1 obtained for both markers for the TPU/CNT/BDD (1:2) electrode. Additionally, the functionality of the flexible TPU/CNT/BDD electrodes was successfully validated by the electrochemical detection of dopamine, a complex organic molecule, at millimolar concentrations by using differential pulse voltammetry. This proof-of-concept may accelerate development of highly desirable diamond-based flexible devices with customizable geometries and dimensions and pave the way for various applications where flexibility is mandated, such as neuroscience, biomedical fields, health, and food monitoring.

Zobrazit více v PubMed

Balmer R. S.; Brandon J. R.; Clewes S. L.; Dhillon H. K.; Dodson J. M.; Friel I.; Inglis P. N.; Madgwick T. D.; Markham M. L.; Mollart T. P.; et al. Chemical Vapour Deposition Synthetic Diamond: Materials, Technology and Applications. J. Condens. Matter Phys. 2009, 21 (36), 364221.10.1088/0953-8984/21/36/364221. PubMed DOI

Lu Y.-J.; Lin C.-N.; Shan C.-X. Optoelectronic Diamond: Growth, Properties, and Photodetection Applications. Adv. Opt. Mater. 2018, 6 (20), 1800359.10.1002/adom.201800359. DOI

Yang N.; Yu S.; Macpherson J. V.; Einaga Y.; Zhao H.; Zhao G.; Swain G. M.; Jiang X. Conductive Diamond: Synthesis, Properties, and Electrochemical Applications. Chem. Soc. Rev. 2019, 48 (1), 157–204. 10.1039/C7CS00757D. PubMed DOI

Baluchová S.; Daňhel A.; Dejmková H.; Ostatná V.; Fojta M.; Schwarzová-Pecková K. Recent Progress in the Applications of Boron Doped Diamond Electrodes in Electroanalysis of Organic Compounds and Biomolecules - A Review. Anal. Chim. Acta 2019, 1077, 30–66. 10.1016/j.aca.2019.05.041. PubMed DOI

Zhang D.; Chi B.; Li B.; Gao Z.; Du Y.; Guo J.; Wei J. Fabrication of Highly Conductive Graphene Flexible Circuits by 3D Printing. Synth. Met. 2016, 217, 79–86. 10.1016/j.synthmet.2016.03.014. DOI

Pillai A. S.; Chandran A.; Peethambharan S. K. MWCNT Ink with PEDOT:PSS as a Multifunctional Additive for Energy Efficient Flexible Heating Applications. Appl. Mater. Today 2021, 23, 100987.10.1016/j.apmt.2021.100987. DOI

Luo X.; Liu Y.; Qin R.; Ao F.; Wang X.; Zhang H.; Yang M.; Liu X. Tissue-Nanoengineered Hyperbranched Polymer Based Multifunctional Hydrogels as Flexible “Wounped Treatment-Health Monitoring” Bioelectronic Implant. Appl. Mater. Today 2022, 29, 101576.10.1016/j.apmt.2022.101576. DOI

Jeong J.-W.; Shin G.; Park Sung I.; Yu Ki J.; Xu L.; Rogers John A. Soft Materials in Neuroengineering for Hard Problems in Neuroscience. Neuron 2015, 86 (1), 175–186. 10.1016/j.neuron.2014.12.035. PubMed DOI

Jeong B.-Y.; Lee S.; Shin H. H.; Kwon S.; Kim S. H.; Ryu J. H.; Yoon S. M. Highly Conductive Self-Healable Rhenium Oxide-Polytetrahydrofuran Composite for Resilient Flexible Electrode. ACS Mater. Lett. 2022, 4 (10), 1944–1953. 10.1021/acsmaterialslett.2c00606. DOI

de Freitas R. C.; Fonseca W. T.; Azzi D. C.; Raymundo-Pereira P. A.; Oliveira O. N.; Janegitz B. C. Flexible Electrochemical Sensor Printed with Conductive Ink Made with Craft Glue and Graphite to Detect Drug and Neurotransmitter. Microchem. J. 2023, 191, 108823.10.1016/j.microc.2023.108823. DOI

Mahato K.; Wang J. Electrochemical Sensors: From the Bench to the Skin. Sens. Actuators B Chem. 2021, 344, 130178.10.1016/j.snb.2021.130178. DOI

Jakus A. E.; Secor E. B.; Rutz A. L.; Jordan S. W.; Hersam M. C.; Shah R. N. Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications. ACS Nano 2015, 9 (4), 4636–4648. 10.1021/acsnano.5b01179. PubMed DOI

Lu X.; Lin R.; Zhu S.; Lin Z.; Song X.; Huang F.; Zheng W. Ultralarge Elastic Deformation (180° Fold) of Cubic-natBP Microwires for Wearable Flexible Strain Sensors. ACS Mater. Lett. 2023, 5 (8), 2282–2291. 10.1021/acsmaterialslett.3c00454. DOI

Fan B.; Zhu Y.; Rechenberg R.; Rusinek C. A.; Becker M. F.; Li W. Large-scale, All Polycrystalline Diamond Structures Transferred onto Flexible Parylene-C Films for Neurotransmitter Sensing. Lab Chip 2017, 17 (18), 3159–3167. 10.1039/C7LC00229G. PubMed DOI PMC

Hébert C.; Cottance M.; Degardin J.; Scorsone E.; Rousseau L.; Lissorgues G.; Bergonzo P.; Picaud S. Monitoring the Evolution of Boron Doped Porous Diamond Electrode on Flexible Retinal Implant by OCT and In Vivo Impedance Spectroscopy. Mater. Sci. Eng. C 2016, 69, 77–84. 10.1016/j.msec.2016.06.032. PubMed DOI

Rycewicz M.; Ficek M.; Gajewski K.; Kunuku S.; Karczewski J.; Gotszalk T.; Wlasny I.; Wysmołek A.; Bogdanowicz R. Low-Strain Sensor Based on the Flexible Boron-Doped Diamond-Polymer Structures. Carbon 2021, 173, 832–841. 10.1016/j.carbon.2020.11.071. DOI

Cardoso R. M.; Kalinke C.; Rocha R. G.; dos Santos P. L.; Rocha D. P.; Oliveira P. R.; Janegitz B. C.; Bonacin J. A.; Richter E. M.; Munoz R. A. A. Additive-manufactured (3D-printed) Electrochemical Sensors: A Critical Review. Anal. Chim. Acta 2020, 1118, 73–91. 10.1016/j.aca.2020.03.028. PubMed DOI

Crapnell R. D.; Kalinke C.; Silva L. R. G.; Stefano J. S.; Williams R. J.; Abarza Munoz R. A.; Bonacin J. A.; Janegitz B. C.; Banks C. E. Additive Manufacturing Electrochemistry: An Overview of Producing Bespoke Conductive Additive Manufacturing Filaments. Mater. Today 2023, 71, 73–90. 10.1016/j.mattod.2023.11.002. DOI

Kalsoom U.; Peristyy A.; Nesterenko P. N.; Paull B. A 3D Printable Diamond Polymer Composite: A Novel Material for Fabrication of Low Cost Thermally Conducting Devices. RSC Adv. 2016, 6 (44), 38140–38147. 10.1039/C6RA05261D. DOI

Waheed S.; Cabot J. M.; Smejkal P.; Farajikhah S.; Sayyar S.; Innis P. C.; Beirne S.; Barnsley G.; Lewis T. W.; Breadmore M. C.; Paull B. Three-Dimensional Printing of Abrasive, Hard, and Thermally Conductive Synthetic Microdiamond-Polymer Composite Using Low-Cost Fused Deposition Modeling Printer. ACS Appl. Mater. Interfaces 2019, 11 (4), 4353–4363. 10.1021/acsami.8b18232. PubMed DOI

Kalsoom U.; Waheed S.; Paull B. Fabrication of Humidity Sensor Using 3D Printable Polymer Composite Containing Boron-Doped Diamonds and LiCl. ACS Appl. Mater. Interfaces 2020, 12 (4), 4962–4969. 10.1021/acsami.9b22519. PubMed DOI

Sartori A. F.; Belardinelli P.; Dolleman R. J.; Steeneken P. G.; Ghatkesar M. K.; Buijnsters J. G. Inkjet-Printed High-Q Nanocrystalline Diamond Resonators. Small 2019, 15 (4), 1803774.10.1002/smll.201803774. PubMed DOI

Liu Z.; Baluchová S.; Brocken B.; Ahmed E.; Pobedinskas P.; Haenen K.; Buijnsters J. G. Inkjet Printing-Manufactured Boron-Doped Diamond Chip Electrodes for Electrochemical Sensing Purposes. ACS Appl. Mater. Interfaces 2023, 15 (33), 39915–39925. 10.1021/acsami.3c04824. PubMed DOI PMC

Kondo T.; Sakamoto H.; Kato T.; Horitani M.; Shitanda I.; Itagaki M.; Yuasa M. Screen-Printed Diamond Electrode: A Disposable Sensitive Electrochemical Electrode. Electrochem. Commun. 2011, 13 (12), 1546–1549. 10.1016/j.elecom.2011.10.013. DOI

Kondo T.; Udagawa I.; Aikawa T.; Sakamoto H.; Shitanda I.; Hoshi Y.; Itagaki M.; Yuasa M. Enhanced Sensitivity for Electrochemical Detection Using Screen-Printed Diamond Electrodes via the Random Microelectrode Array Effect. Anal. Chem. 2016, 88 (3), 1753–1759. 10.1021/acs.analchem.5b03986. PubMed DOI

Matsunaga T.; Kondo T.; Shitanda I.; Hoshi Y.; Itagaki M.; Tojo T.; Yuasa M. Sensitive Electrochemical Detection of L-Cysteine at a Screen-Printed Diamond Electrode. Carbon 2021, 173, 395–402. 10.1016/j.carbon.2020.10.096. DOI

Nicholson R. S. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Anal. Chem. 1965, 37 (11), 1351–1355. 10.1021/ac60230a016. DOI

Bard A. J.; Faulkner L. R.; White H. S.. Electrochemical Methods: Fundamentals and Applications; John Wiley & Sons, 2022.

Wang Y.; Lin J.; Zong R.; He J.; Zhu Y. Enhanced photoelectric catalytic degradation of methylene blue via TiO2 nanotube arrays hybridized with graphite-like carbon. J. Mol. Catal. A Chem. 2011, 349 (1), 13–19. 10.1016/j.molcata.2011.08.020. DOI

Cieślik M.; Rodak A.; Susik A.; Wójcik N.; Szociński M.; Ryl J.; Formela K. Multiple Reprocessing of Conductive PLA 3D-Printing Filament: Rheology, Morphology, Thermal and Electrochemical Properties Assessment. Materials 2023, 16, 1307.10.3390/ma16031307. PubMed DOI PMC

Park S.-H.; Hwang J.; Park G.-S.; Ha J.-H.; Zhang M.; Kim D.; Yun D.-J.; Lee S.; Lee S. H. Modeling the Electrical Resistivity of Polymer Composites with Segregated Structures. Nat. Commun. 2019, 10 (1), 2537.10.1038/s41467-019-10514-4. PubMed DOI PMC

Hohimer C. J.; Petrossian G.; Ameli A.; Mo C.; Pötschke P. 3D Printed Conductive Thermoplastic Polyurethane/Carbon Nanotube Composites for Capacitive and Piezoresistive Sensing in Soft Pneumatic Actuators. Addit. Manuf. 2020, 34, 101281.10.1016/j.addma.2020.101281. DOI

Ye X.; Hu Z.; Li X.; Wang S.; Wang B.; Zhao Y.; He J.; Liu J.; Zhang J. Effect of Annealing and Carbon Nanotube Infill on the Mechanical and Electrical Properties of Additively Manufactured Polyether-Ether-Ketone Nanocomposites via Fused Filament Fabrication. Addit. Manuf. 2022, 59, 103188.10.1016/j.addma.2022.103188. DOI

Zelenský M.; Fischer J.; Baluchová S.; Klimša L.; Kopeček J.; Vondráček M.; Fekete L.; Eidenschink J.; Matysik F. M.; Mandal S.; et al. Chem-mechanical Polishing Influenced Morphology, Spectral and Electrochemical Characteristics of Boron Doped Diamond. Carbon 2023, 203, 363–376. 10.1016/j.carbon.2022.11.069. DOI

Manzanares Palenzuela C. L.; Novotný F.; Krupička P.; Sofer Z.; Pumera M. 3D-Printed Graphene/Polylactic Acid Electrodes Promise High Sensitivity in Electroanalysis. Anal. Chem. 2018, 90 (9), 5753–5757. 10.1021/acs.analchem.8b00083. PubMed DOI

Cardoso R. M.; Silva P. R. L.; Lima A. P.; Rocha D. P.; Oliveira T. C.; do Prado T. M.; Fava E. L.; Fatibello-Filho O.; Richter E. M.; Muñoz R. A. A. 3D-Printed Graphene/Polylactic Acid Electrode for Bioanalysis: Biosensing of Glucose and Simultaneous Determination of Uric Acid and Nitrite in Biological Fluids. Sens. Actuators B Chem. 2020, 307, 127621.10.1016/j.snb.2019.127621. DOI

Kwaczyński K.; Szymaniec O.; Bobrowska D. M.; Poltorak L. Solvent-activated 3D-printed Electrodes and their Electroanalytical Potential. Sci. Rep. 2023, 13 (1), 22797.10.1038/s41598-023-49599-9. PubMed DOI PMC

de Oliveira F. M.; de Melo E. I.; da Silva R. A. B. 3D Pen: A Low-cost and Portable Tool for Manufacture of 3D-printed Sensors. Sens. Actuators B Chem. 2020, 321, 128528.10.1016/j.snb.2020.128528. DOI

Cieślik M.; Susik A.; Banasiak M.; Bogdanowicz R.; Formela K.; Ryl J. Tailoring Diamondised Nanocarbon-Loaded Poly(lactic acid) Composites for Highly Electroactive Surfaces: Extrusion and Characterisation of Filaments for Improved 3D-Printed Surfaces. Microchim. Acta 2023, 190 (9), 370.10.1007/s00604-023-05940-7. PubMed DOI PMC

Kalinke C.; Neumsteir N. V.; Aparecido G. d. O.; Ferraz T. V. d. B.; dos Santos P. L.; Janegitz B. C.; Bonacin J. A. Comparison of Activation Processes for 3D Printed PLA-Graphene Electrodes: Electrochemical Properties and Application for Sensing of Dopamine. Analyst 2020, 145 (4), 1207–1218. 10.1039/C9AN01926J. PubMed DOI

Novotný F.; Urbanová V.; Plutnar J.; Pumera M. Preserving Fine Structure Details and Dramatically Enhancing Electron Transfer Rates in Graphene 3D-Printed Electrodes via Thermal Annealing: Toward Nitroaromatic Explosives Sensing. ACS Appl. Mater. Interfaces 2019, 11 (38), 35371–35375. 10.1021/acsami.9b06683. PubMed DOI

Hernández-Rodríguez J. F.; Trachioti M. G.; Hrbac J.; Rojas D.; Escarpa A.; Prodromidis M. I. Spark-Discharge-Activated 3D-Printed Electrochemical Sensors. Anal. Chem. 2024, 96 (25), 10127–10133. 10.1021/acs.analchem.4c01249. PubMed DOI PMC

Peristyy A.; Paull B.; Nesterenko P. N. Chromatographic Performance of Synthetic Polycrystalline Diamond as a Stationary Phase in Normal Phase High Performance Liquid Chromatography. J. Chromatogr. A 2015, 1391, 49–59. 10.1016/j.chroma.2015.02.069. PubMed DOI

Ghosh K.; Ng S.; Iffelsberger C.; Pumera M. Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode. Chem. - Eur. J. 2020, 26 (67), 15746–15753. 10.1002/chem.202004250. PubMed DOI

Browne M. P.; Novotný F.; Sofer Z.; Pumera M. 3D Printed Graphene Electrodes’ Electrochemical Activation. ACS Appl. Mater. Interfaces 2018, 10 (46), 40294–40301. 10.1021/acsami.8b14701. PubMed DOI

Baluchová S.; Brycht M.; Taylor A.; Mortet V.; Krůšek J.; Dittert I.; Sedláková S.; Klimša L.; Kopeček J.; Schwarzová-Pecková K. Enhancing Electroanalytical Performance of Porous Boron-Doped Diamond Electrodes by Increasing Thickness for Dopamine Detection. Anal. Chim. Acta 2021, 1182, 338949.10.1016/j.aca.2021.338949. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...