Inherent Impurities in Graphene/Polylactic Acid Filament Strongly Influence on the Capacitive Performance of 3D-Printed Electrode
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
GACR EXPRO: 19-26896X
Grant Agency of the Czech Republic
MEYS CR (LM2018110)
Ministry of Education, Youth and Sports of Czech Republic
PubMed
33166037
DOI
10.1002/chem.202004250
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printing, energy storage, graphene/PLA, impurities, supercapacitors,
- Publikační typ
- časopisecké články MeSH
Additive manufacturing or 3D-printing have become promising fabrication techniques in the field of electrochemical energy storage applications such as supercapacitors, and batteries. Of late, a commercially available graphene/polylactic acid (PLA) filament has been commonly used for Fused Deposition Modeling (FDM) 3D-printing in the fabrication of electrodes for supercapacitors and Li-ion batteries. This graphene/PLA filament contains metal-based impurities such as titanium oxide and iron oxide. In this study, we show a strong influence of inherent impurities in the graphene/PLA filament for supercapacitor applications. A 3D-printed electrode is prepared and subsequently thermally activated for electrochemical measurement. A deep insight has been taken to look into the pseudocapacitive contribution from the metal-based impurities which significantly enhanced the overall capacitance of the 3D-printed graphene/PLA electrode. A systematic approach has been shown to remove the impurities from the printed electrodes. This has a broad implication on the interpretation of the capacitance of 3D-printed composites.
Zobrazit více v PubMed
M. P. Browne, E. Redondo, M. Pumera, Chem. Rev. 2020, 120, 2783-2810.
A. Ambrosi, M. Pumera, Chem. Soc. Rev. 2016, 45, 2740-2755.
I. Zein, D. W. Hutmacher, K. C. Tan, S. H. Teoh, Biomaterials 2002, 23, 1169-1185.
T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, D. Hui, Compos. Part B: Eng. 2018, 143, 172-196.
C. W. Foster, M. P. Down, Y. Zhang, X. Ji, S. J. Rowley-Neale, G. C. Smith, P. J. Kelly, C. E. Banks, Sci. Rep. 2017, 7, 42233.
C. Y. Foo, H. N. Lim, M. A. Mahdi, M. H. Wahid, N. M. Huang, Sci. Rep. 2018, 8, 7399.
M. P. Browne, F. Novotný, Z. K. Sofer, M. Pumera, ACS Appl. Mater. Interfaces 2018, 10, 40294-40301.
R. M. Cardoso, D. M. H. Mendonça, W. P. Silva, M. N. T. Silva, E. Nossol, R. A. B. da Silva, E. M. Richter, R. A. A. Muñoz, Anal. Chim. Acta 2018, 1033, 49-57.
C. L. Manzanares-Palenzuela, S. Hermanova, Z. Sofer, M. Pumera, Nanoscale 2019, 11, 12124-12131.
C. L. Manzanares Palenzuela, F. Novotný, P. Krupička, Z. K. Sofer, M. Pumera, Anal. Chem. 2018, 90, 5753-5757.
R. Gusmão, M. P. Browne, Z. Sofer, M. Pumera, Electrochem. Commun. 2019, 102, 83-88.
D. M. Wirth, M. J. Sheaff, J. V. Waldman, M. P. Symcox, H. D. Whitehead, J. D. Sharp, J. R. Doerfler, A. A. Lamar, G. LeBlanc, Anal. Chem. 2019, 91, 5553-5557.
F. Novotný, V. Urbanová, J. Plutnar, M. Pumera, ACS Appl. Mater. Interfaces 2019, 11, 35371-35375.
M. P. Browne, M. Pumera, Chem. Commun. 2019, 55, 8374-8377.
M. P. Browne, V. Urbanova, J. Plutnar, F. Novotný, M. Pumera, J. Mater. Chem. A 2020, 8, 1120-1126.
I. Pomestchenko, D. Stolyarov, E. Polyakova, I. Stolyarov, PCT/US2016/043575, 2017, WO/2017/019511.
C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, J. Mater. Chem. 2012, 22, 19161-19167.
K. Tang, Y. Li, H. Cao, C. Su, Z. Zhang, Y. Zhang, Electrochim. Acta 2016, 190, 678-688.
A. Ramadoss, S. J. Kim, Carbon 2013, 63, 434-445.
S. Yang, Y. Lin, X. Song, P. Zhang, L. Gao, ACS Appl. Mater. Interfaces 2015, 7, 17884-17892.
R. Kumar, R. K. Singh, A. R. Vaz, R. Savu, S. A. Moshkalev, ACS Appl. Mater. Interfaces 2017, 9, 8880-8890.
H. Fan, R. Niu, J. Duan, W. Liu, W. Shen, ACS Appl. Mater. Interfaces 2016, 8, 19475-19483.
L. Li, P. Gao, S. Gai, F. He, Y. Chen, M. Zhang, P. Yang, Electrochim. Acta 2016, 190, 566-573.
A. Ambrosi, S. Y. Chee, B. Khezri, R. D. Webster, Z. Sofer, M. Pumera, Angew. Chem. Int. Ed. 2012, 51, 500-503;
Angew. Chem. 2012, 124, 515-518.
A. Ambrosi, C. K. Chua, B. Khezri, Z. Sofer, R. D. Webster, M. Pumera, Proc. Natl. Acad. Sci. USA 2012, 109, 12899-12904.
L. Wang, A. Ambrosi, M. Pumera, Angew. Chem. Int. Ed. 2013, 52, 13818-13821;
Angew. Chem. 2013, 125, 14063-14066.
C. H. A. Wong, C. K. Chua, B. Khezri, R. D. Webster, M. Pumera, Angew. Chem. Int. Ed. 2013, 52, 8685-8688;
Angew. Chem. 2013, 125, 8847-8850.
C. H. A. Wong, Z. Sofer, M. Kubešová, J. Kučera, S. Matějková, M. Pumera, Proc. Natl. Acad. Sci. USA 2014, 111, 13774-13779.
A. Ambrosi, C. K. Chua, N. M. Latiff, A. H. Loo, C. H. A. Wong, A. Y. S. Eng, A. Bonanni, M. Pumera, Chem. Soc. Rev. 2016, 45, 2458-2493.
S. Ng, C. Iffelsberger, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2020, 30, 1910193.
K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart J.: Nat. Sci. 2008, 42, 357-361.
A. C. Ferrari, D. M. Basko, Nat. Nanotechnol. 2013, 8, 235-246.
A. C. Ferrari, Solid State Commun. 2007, 143, 47-57.
W. Zhang, Y. He, M. Zhang, Z. Yin, Q. Chen, J. Phys. D 2000, 33, 912.
T. Mazza, E. Barborini, P. Piseri, P. Milani, D. Cattaneo, A. L. Bassi, C. E. Bottani, C. Ducati, Phys. Rev. B 2007, 75, 045416.
NIST Chemistry Webbook, https://webbook.nist.gov/chemistry/vib-ser/.
T. R. Williams, J. Chem. Educ. 1963, 40, 616.
H. Booth, Magn. Reson. Chem. 1992, 30, 364.
V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, B. Dunn, Nat. Mater. 2013, 12, 518-522.
R. Wang, S. Wang, X. Peng, Y. Zhang, D. Jin, P. K. Chu, L. Zhang, ACS Appl. Mater. Interfaces 2017, 9, 32745-32755.
Z. Le, F. Liu, P. Nie, X. Li, X. Liu, Z. Bian, G. Chen, H. B. Wu, Y. Lu, ACS Nano 2017, 11, 2952-2960.
C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, Y. Huang, Nat. Commun. 2015, 6, 6929.
B. Conway in Electrochemical supercapacitor, Kluwer Academic/Plenum Publishers, New York, 1999.
L. L. Zhang, X. S. Zhao, Chem. Soc. Rev. 2009, 38, 2520-2531.
M. S. Halper, J. C. Ellenbogen, MITRE Nanosystems Group. 2006.
Y. Huang, J. Liang, Y. Chen, Small 2012, 8, 1805-1834.
E. Frackowiak, F. Béguin, Carbon 2001, 39, 937-950.
J. Zhu, S. Tang, H. Xie, Y. Dai, X. Meng, ACS Appl. Mater. Interfaces 2014, 6, 17637-17646.
Q. Wang, L. Jiao, H. Du, Y. Wang, H. Yuan, J. Power Sources 2014, 245, 101-106.
A. Y. S. Eng, A. Ambrosi, C. K. Chua, F. Šaněk, Z. Sofer, M. Pumera, Chem. Eur. J. 2013, 19, 12673-12683.
S. Giri, D. Ghosh, C. K. Das, Adv. Funct. Mater. 2014, 24, 1312-1324.
K. Ghosh, C. Y. Yue, Electrochim. Acta 2018, 276, 47-63.
F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X.-X. Liu, Y. Li, Nanoscale 2013, 5, 7984-7990.
K. Ghosh, C. Y. Yue, M. M. Sk, R. K. Jena, S. Bi, Sustainable Energy Fuels 2018, 2, 280-293.
K. Ghosh, C. Yue, M. Sk, R. Jena, ACS Appl. Mater. Interfaces 2017, 9, 15350.
3D-Printed COVID-19 immunosensors with electronic readout