3D-Printed COVID-19 immunosensors with electronic readout
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
34393616
PubMed Central
PMC8349461
DOI
10.1016/j.cej.2021.131433
PII: S1385-8947(21)03014-X
Knihovny.cz E-zdroje
- Klíčová slova
- 3D-printed electrodes, Antigen test, Electrochemical detection, SARS-CoV-2, Surface engineering,
- Publikační typ
- časopisecké články MeSH
3D printing technology has brought light in the fight against the COVID-19 global pandemic event through the decentralized and on-demand manufacture of different personal protective equipment and medical devices. Nonetheless, since this technology is still in an early stage, the use of 3D-printed electronic devices for antigen test developments is almost an unexplored field. Herein, a robust and general bottom-up biofunctionalization approach via surface engineering is reported aiming at providing the bases for the fabrication of the first 3D-printed COVID-19 immunosensor prototype with electronic readout. The 3D-printed COVID-19 immunosensor was constructed by covalently anchoring the COVID-19 recombinant protein on a 3D-printed graphene-based nanocomposite electrode surface. The electrical readout relies on impedimetrically monitoring changes at the electrode/electrolyte interface after interacting with the monoclonal COVID-19 antibody via competitive assay, fact that hinders the redox conversion of a benchmark redox marker. Overall, the developed 3D-printed system exhibits promising electroanalytical capabilities in both buffered and human serum samples, displaying an excellent linear response with a detection limit at trace levels (0.5 ± 0.1 μg·mL-1). Such achievements demonstrate advantage of light-of-speed distribution of 3D printing datafiles with localized point-of-care low-cost printing and bioelectronic devices to help contain the spread of emerging infectious diseases such as COVID-19. This technology is applicable to any post-COVID-19 SARS diseases.
Zobrazit více v PubMed
Cucinotta D., Vanelli M. WHO declares COVID-19 a pandemic. Acta Biomed. 2020;91:157–160. PubMed PMC
Chauhan G., Madou M.J., Kalra S., Chopra V., Ghosh D., Martinez-Chapa S.O. Nanotechnology for COVID-19: therapeutics and vaccine research. ACS Nano. 2020;14:7760–7782. PubMed
Chung Y.H., Beiss V., Fiering S.N., Steinmetz N.F. Covid-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020;14(10):12522–12537. PubMed
Cao X. COVID-19: immunopathology and its implications for therapy. Nature. Rev. Immunol. 2020;20(5):269–270. PubMed PMC
Chan W.C.W. Nano research for COVID-19. ACS Nano. 2020;14(4):3719–3720. PubMed
Corral J.E., Hoogenboom S.A., Kröner P.T., Vazquez-Roque M.I., Picco M.F., Farraye F.A., Wallace M.B. COVID-19 polymerase chain reaction testing before endoscopy: an economic analysis. Gastrointest. Endosc. 2020;92(3):524–534.e6. PubMed PMC
Udugama B., Kadhiresan P., Kozlowski H.N., Malekjahani A., Osborne M., Li V.Y.C., Chen H., Mubareka S., Gubbay J.B., Chan W.C.W. Diagnosing COVID-19: the disease and tools for detection. ACS Nano. 2020;14:3822–3835. PubMed
Hirotsu Y., Maejima M., Shibusawa M., Nagakubo Y., Hosaka K., Amemiya K., Sueki H., Hayakawa M., Mochizuki H., Tsutsui T., Kakizaki Y., Miyashita Y., Yagi S., Kojima S., Omata M. Comparison of automated SARS-CoV-2 antigen test for COVID-19 infection with quantitative RT-PCR using 313 nasopharyngeal swabs, including from seven serially followed patients. Int. J. Infect. Dis. 2020;99:397–402. PubMed PMC
Griffin S. Covid-19: Lateral flow tests are better at identifying people with symptoms, finds Cochrane review. BMJ. 2021;372 PubMed
Ogawa T., Fukumori T., Nishihara Y., Sekine T., Okuda N., Nishimura T., Fujikura H., Hirai N., Imakita N., Kasahara K. Another false-positive problem for a SARS-CoV-2 antigen test in Japan. J. Clin. Virol. 2020;131:104612. PubMed PMC
Xiao T., Wu F., Hao J., Zhang M., Yu P., Mao L. In vivo analysis with electrochemical sensors and biosensors. Anal. Chem. 2017;89(1):300–313. PubMed
Li R., Qi H., Ma Y., Deng Y., Liu S., Jie Y., Jing J., He J., Zhang X., Wheatley L., Huang C., Sheng X., Zhang M., Yin L. A flexible and physically transient electrochemical sensor for real-time wireless nitric oxide monitoring. Nat. Commun. 2020;11:3207. PubMed PMC
Bukkitgar S.D., Shetti N.P., Aminabhavi T.M. Electrochemical investigations for COVID-19 detection-a comparison with other viral detection methods. Chem. Eng. J. 2021;420:127575. PubMed PMC
Lim R.R.X., Bonanni A. The potential of electrochemistry for the detection of coronavirus-induced infections. TrAC - Trends Anal. Chem. 2021;133 PubMed PMC
Khan M.Z.H., Hasan M.R., Hossain S.I., Ahommed M.S., Daizy M. Ultrasensitive detection of pathogenic viruses with electrochemical biosensor: State of the art. Biosens. Bioelectron. 2020;166:112431. PubMed PMC
Poghossian A., Jablonski M., Molinnus D., Wege C., Schöning M.J. Field-effect sensors for virus detection: From Ebola to SARS-CoV-2 and plant viral enhancers. Front. Plant. Sci. 2020;11 PubMed PMC
Mahshid S.S., Flynn S.E., Mahshid S. The potential application of electrochemical biosensors in the COVID-19 pandemic: a perspective on the rapid diagnostics of SARS-CoV-2. Biosens. Bioelectron. 2021;176 PubMed PMC
Fabiani L., Saroglia M., Galatà G., De Santis R., Fillo S., Luca V., Faggioni G., D'Amore N., Regalbuto E., Salvatori P., Terova G., Moscone D., Lista F., Arduini F. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: a reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 2021;17 PubMed PMC
Seo G., Lee G., Kim M.J., Baek S.-H., Choi M., Ku B., Lee C.-S., Jun S., Park D., Kim H.G., Kim S.-J., Lee J.-O., Kim T., Changkyun E., Park, Il Kim S. Rapid detection of COVID-19 causative virus (SARS-CoV-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano. 2020;14:5142. PubMed
Azahar Ali M., Hu C., Jahan S., Yuan B., Sadeq Saleh M., Ju E., Gao S.J., Panat R., Ali M.A., Hu C., Jahan S., Yuan B., Saleh M.S., Panat R., Ju E., Gao S., Panat R. Sensing of COVID-19 antibodies in seconds via aerosol jet nanoprinted reduced-graphene-oxide-coated 3D electrodes. Adv. Mat. 2021;33:2006647. PubMed PMC
Alafeef M., Dighe K., Moitra P., Pan D. Rapid, Ultrasensitive, and Quantitative Detection of SARS-CoV-2 Using Antisense Oligonucleotides Directed Electrochemical Biosensor Chip. ACS Nano. 2020;14(12):17028–17045. PubMed PMC
Choong Y.Y.C., Tan H.W., Patel D.C., Choong W.T.N., Chen C.-H., Low H.Y., Tan M.J., Patel C.D., Chua C.K. The global rise of 3D printing during the COVID-19 pandemic. Nat. Rev. Mat. 2020;5(9):637–639. PubMed PMC
Nazir A., Azhar A., Nazir U., Liu Y.F., Qureshi W.S., Chen J.E., Alanazi E. J. Manuf.; Syst: 2020. The rise of 3D printing entangled with smart computer aided design during COVID-19 era. PubMed PMC
Oladapo B.I., Ismail S.O., Afolalu T.D., Olawade D.B., Zahedi M. Review on 3D printing: fight against COVID-19. Mat. Chem. Phys. 2021;258 PubMed PMC
Kumar K.P.A., Pumera M. 3D-Printing to mitigate COVID-19 pandemic. Adv. Funct. Mater. 2021;31(22):2100450. PubMed PMC
Browne M.P., Redondo E., Pumera M. 3D printing for electrochemical energy applications. ACS Publ. 2020;120:2783–2810. PubMed
Yang H., Leow W.R., Chen X. Editorial 3D printing of flexible electronic devices. Small Methods. 2018;2(1):1700259.
Muñoz J., Pumera M. Accounts in 3D-printed electrochemical sensors: towards monitoring of environmental pollutants. ChemElectroChem. 2020;7:3404–3413.
Ng S., Iffelsberger C., Michalička J., Pumera M. Atomic layer deposition of electrocatalytic insulator Al2O3on three-dimensional printed nanocarbons. ACS Nano. 2021;15(1):686–697. PubMed
Katseli V., Economou A., Kokkinos C. A novel all-3D-printed cell-on-a-chip device as a useful electroanalytical tool: application to the simultaneous voltammetric determination of caffeine and paracetamol. Talanta. 2020;208 PubMed
Zangheri M., Mirasoli M., Guardigli M., Di Nardo F., Anfossi L., Baggiani C., Simoni P., Benassai M., Roda A. Chemiluminescence-based biosensor for monitoring astronauts’ health status during space missions: results from the International Space Station. Biosens. Bioelectron. 2019;129:260–268. PubMed
Martins G., Gogola J.L., Budni L.H., Janegitz B.C., Marcolino-Junior L.H., Bergamini M.F. 3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Anal. Chim. Acta. 2021;1147:30–37. PubMed PMC
Muñoz J., Pumera M. 3D-printed biosensors for electrochemical and optical applications. TrAC Trends Anal. Chem. 2020;128:115933.
Cardoso R.M., Mendonça D.M.H., Silva W.P., Silva M.N.T., Nossol E., da Silva R.A.B., Richter E.M., Muñoz R.A.A. 3D printing for electroanalysis: From multiuse electrochemical cells to sensors. Anal. Chim. Acta. 2018;1033:49–57. PubMed
dos Santos P.L., Katic V., Loureiro H.C., dos Santos M.F., dos Santos D.P., Formiga A.L.B., Bonacin J.A. Enhanced performance of 3D printed graphene electrodes after electrochemical pre-treatment: role of exposed graphene sheets Sensors Actuators. B Chem. 2019;281:837–848.
Rocha D.P., Ataide V.N., de Siervo A., Gonçalves J.M., Muñoz R.A.A., Paixão T.R.L.C., Angnes L. Reagentless and sub-minute laser-scribing treatment to produce enhanced disposable electrochemical sensors via additive manufacture. Chem. Eng. J. 2021;425
Ambrosi A., Pumera M. 3D-printing technologies for electrochemical applications. Chem. Soc. Rev. 2016;45(10):2740–2755. PubMed
Muñoz J., Montes R., Baeza M. Trends in electrochemical impedance spectroscopy involving nanocomposite transducers: characterization, architecture surface and bio-sensing. TrAC - Trends Anal. Chem. 2017;97:201–215.
Browne M.P., Novotný F., Sofer Z., Pumera M. 3D Printed graphene electrodes’ electrochemical activation. ACS Appl. Mater. Interfaces. 2018;10(46):40294–40301. PubMed
Layqah L.A., Eissa S. An electrochemical immunosensor for the corona virus associated with the middle east respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim. Acta. 2019;186:1–10. PubMed PMC
Muñoz J., Redondo E., Pumera M. Bistable (supra)molecular switches on 3D-printed responsive interfaces with electrical readout. ACS Appl. Mater. Interfaces. 2021;13(11):12649–12655. PubMed
Bharath G., Naldoni A., Ramsait K.H., Abdel-Wahab A., Madhu R., Alsharaeh E., Ponpandian N. Enhanced electrocatalytic activity of gold nanoparticles on hydroxyapatite nanorods for sensitive hydrazine sensors. J. Mater. Chem. A. 2016;4(17):6385–6394.
Muñoz J., Redondo E., Pumera M. Chiral 3D-printed bioelectrodes. Adv. Funct. Mater. 2021;31(16):2010608.
Redondo E., Muñoz J., Pumera M. Green activation using reducing agents of carbon-based 3D printed electrodes: turning good electrodes to great. Carbon N. Y. 2021;175:413–419.
Muñoz J., Montes R., Bastos-Arrieta J., Guardingo M., Busqué F., Ruíz-Molina D., Palet C., García-Orellana J., Baeza M. Carbon nanotube-based nanocomposite sensor tuned with a catechol as novel electrochemical recognition platform of uranyl ion in aqueous samples Sensors Actuators. B Chem. 2018;273:1807–1815.
Browne M.P., Urbanova V., Plutnar J., Novotný F., Pumera M. Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting. J. Mater. Chem. A. 2020;8(3):1120–1126.
Ghosh K., Ng S., Iffelsberger C., Pumera M. Inherent impurities in graphene/polylactic acid filament strongly influence on the capacitive performance of 3D-printed electrode. Chem. - A Eur. J. 2020;26(67):15746–15753. PubMed
Muñoz J., Campos-Lendinez Á., Crivillers N., Mas-Torrent M. Selective discrimination of toxic polycyclic aromatic hydrocarbons in water by targeting π-stacking interactions. ACS Appl. Mater. Interfaces. 2020;12(23):26688–26693. PubMed
Zhao Z., Huang C., Huang Z., Lin F., He Q., Tao D., Jaffrezic-Renault N., Guo Z. Advancements in electrochemical biosensing for respiratory virus detection: a review. TrAC - Trends Anal. Chem. 2021;139:116253. PubMed PMC
Zhang Z., Hu W., Li L., Ding H., Li H. Therapeutic monoclonal antibodies and clinical laboratory tests: When, why, and what is expected? J. Clin. Lab. Anal. 2018;32(3):e22307. PubMed PMC